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Motivation

f1(x8, x9) = c1x
2
8 + c2x8x9 + c3x8 + c4x9 + c5

f2(x8, x9) = c6x
2
9 + c7x8x9 + c8x8 + c9x9 + c10

A Quadratic Pentanomial 2x2 system!

Solving polynomial equations becomes more and more
complicated as we increase the number of terms and variables.

Today we’ll take a look at some constructions that give us
rough approximations for roots in a fraction of the time!
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A Quick Review

A convex set is a set of points such that, given any two points
P ,Q , then the line segment PQ is also in the set
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Convex Hull

Denoted by conv{·}

For any S ⊂ Rn

conv{S} := smallest convex set containing S
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Newton Polytope

Denoted by Newt(·)

f(x) =
t∑

i=1
cix

ai

where xai = x
a1,i
1 x

a2,i
2 · · · xan,i

n

Newt(f) := conv{ai | ci 6= 0}

Ex:
f(x, y) = 1 + x2 + y3 − 100xy

= 1 ∗ x0 ∗ y0 + 1 ∗ x2 ∗ y0 + 1 ∗ x0 ∗ y3 − 100 ∗ x1 ∗ y1
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Newton Polytope

Although we didn’t make use of the following in our research...

Ex:
f(x, y) = 1 + x2 + y3 − 100xy

= 1 ∗ x0 ∗ y0 + 1 ∗ x2 ∗ y0 + 1 ∗ x0 ∗ y3 − 100 ∗ x1 ∗ y1
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Newton Polytope

Although we didn’t make use of the following in our research...

The volume of the Newton polytope can be used to compute
the degree of the corresponding hypersurface, and via mixed
volumes, the number of roots of systems of equations!

Ex:
f(x, y) = 1 + x2 + y3 − 100xy

= 1 ∗ x0 ∗ y0 + 1 ∗ x2 ∗ y0 + 1 ∗ x0 ∗ y3 − 100 ∗ x1 ∗ y1
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Archimedean Newton Polytope

Denoted by ArchNewt(f)

ArchNewt(f) := conv{(ai,−Log|ci|) | i ∈ {1, . . . , t}, ci 6= 0}

f(x, y) = 1 ∗ x0 ∗ y0 + 1 ∗ x2 ∗ y0 + 1 ∗ x0 ∗ y3 − 100 ∗ x1 ∗ y1

⇒ ArchNewt(f) =

conv{(0, 0,−Log(1)), (2, 0,−Log(1)), (0, 3,−Log(1)), (1, 1,−Log(100))}

⇒ conv{(0, 0, 0), (2, 0, 0), (0, 3, 0), (1, 1,−Log(100))}
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conv{(0, 0, 0), (2, 0, 0), (0, 3, 0), (1, 1,−Log(100))}
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Archimedean Tropical Variety

We need two things to construct ArchTrop(f)

→ The outer normals of ArchNewt(f) that point downwards
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Archimedean Tropical Variety

Let’s project the lower faces of ArchNewt(f) onto the xy-plane
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Let’s project the lower faces of ArchNewt(f) onto the xy-plane

This gives us a triangulation of our Newton Polytope!
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Archimedean Tropical Variety

Let’s project the lower faces of ArchNewt(f) onto the xy-plane

This gives us a triangulation of our Newton Polytope!

We take the outer normals of these lower faces

→We normalize them to be of the form (w,−1), and take

w to be a vertex of ArchTrop(f)!
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Archimedean Tropical Variety

Let’s project the lower faces of ArchNewt(f) onto the xy-plane

This gives us a triangulation of our Newton Polytope!

We take the outer normals of these lower faces

→We normalize them to be of the form (w,−1), and take

w to be a vertex of ArchTrop(f)!

→ Roughly* translates to a point in each triangle!
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Archimedean Tropical Variety

We need two things to construct ArchTrop(f)

→ The outer normals of ArchNewt(f) that point downwards

Luis Feliciano Texas A&M University MATH REU FINAL PRESENTATION



Archimedean Tropical Variety

We need two things to construct ArchTrop(f)

→ The outer normals of ArchNewt(f) that point downwards

→ The outer normals of the edges of Newt(f)
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Archimedean Tropical Variety

We need two things to construct ArchTrop(f)

→ The outer normals of ArchNewt(f) that point downwards

→ The outer normals of the exterior edges of Newt(f)
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Archimedean Tropical Variety

Putting these two together, we get...
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Archimedean Tropical Variety

Putting these two together, we get...
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Archimedean Tropical Variety - Roughly*

The vertices of ArchTrop(f) are dual to the triangulation of
Newt(f) induced by the lower faces of ArchNewt(f)

The rays are dual to the edges of Newt(f)
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Archimedean Tropical Variety

ArchTrop(f) gives us metric information about the roots and
areas where we can find constant isotopy types!

Luis Feliciano Texas A&M University MATH REU FINAL PRESENTATION



A Word on Isotopy Types

Much like how the quadratic discriminant b2 − 4ac gives us
information about the number of roots

ArchTrop(f) can do this for more general curves

Ex:
f(x, y) = 1 + x2 + y3 − cxy (c > 0)

⇒ The zero set of f(x, y) is either ∅, a point, or an oval!

⇒ This occurs when c < 6

2
1
3 3

1
2

, c = 6

2
1
3 3

1
2

, c > 6

2
1
3 3

1
2

, respectively
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A Word on Isotopy Types

Much like how the quadratic discriminant b2 − 4ac gives us
information about the number of roots
ArchTrop(f) can do this for more general curves
Ex:
f(x, y) = 1 + x2 + y3 − cxy (c > 0)
⇒ The zero set of f(x, y) is either ∅, a point, or an oval!
⇒ This occurs when c < 6
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ArchTrop+(f)

ArchTrop+(f) ⊂ ArchTrop(f)

This time we focus on the signs of our coefficients!

f(x, y) = 1 + x2 + y3 − 100xy
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ArchTrop+(f)

ArchTrop+(f) ⊂ ArchTrop(f)

This time we focus on the signs of our coefficients!

f(x, y) = 1 + x2 + y3 − 100xy

More specifically, we are interested in alternating signs!
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Archimedean Tropical Variety

We go from this...
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Archimedean Tropical Variety

To this!
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Archimedean Tropical Variety

ArchTrop+(f) gives us a piecewise linear function that
resembles the set of positive roots
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A Small Discrepancy...

f(x) = 1− 1.1x + x2

ArchTrop+(f) looks like

But if you look at the discriminant
⇒ 1.12 − 4 < 0⇒ f has two non-R roots!

On the other hand, if you look at

{c ∈ R+ | connected zero set of (1− cx + x2) 6= ArchTrop+(f)}

= (0, 2)
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Our Research
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Our Research - Newton Polytope

f1(x8, x9) = c1x
2
8 + c2x8x9 + c3x8 + c4x9 + c5

f2(x8, x9) = c6x
2
9 + c7x8x9 + c8x8 + c9x9 + c10
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Our Research - f1

f1(x8, x9) = c1x
2
8 + c2x8x9 + c3x8 + c4x9 + c5

f2(x8, x9) = c6x
2
9 + c7x8x9 + c8x8 + c9x9 + c10
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Our Research - f1

f1(x8, x9) = c1x
2
8 + c2x8x9 + c3x8 + c4x9 + c5

Suppose c1 = 1, c2 = −10, c3 = −10, c4 = 2, c5 = 1
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Our Research - f1

ArchNewt(f1) given these coefficients is...
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f1(x8, x9) = c1x
2
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Suppose c1 = 6, c2 = −8, c3 = −3, c4 = 2, c5 = 7
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Our Research

No matter the coefficients, these 5 cases encompass all the
possible triangulations of f1!
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Our Research

f1(x8, x9) = c1x
2
8 + c2x8x9 + c3x8 + c4x9 + c5

Suppose c1 = 1, c2 = −10, c3 = −10, c4 = 2, c5 = 1
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Our Research

f2(x8, x9) = c6x8x9 + c7x
2
8 + c8x8 + c9x9 + c10

Suppose c6 = 1, c7 = −10, c8 = −10, c9 = 2, c10 = 1
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Our Research

Luis Feliciano Texas A&M University MATH REU FINAL PRESENTATION



A Theorem on ArchTrop(f)

ZC(f) := the Complex zero set of f

Theorem

For any pentanomial f in C[x1, . . . , xn], any point of Log|ZC(f)|
is within distance log(4) of some point of ArchTrop(f).
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A Theorem on ArchTrop+(f)

Z+(f) := the positive zero set of f

Theorem

For any pentanomial f in R[x1, . . . , xn], any point of Log|Z+(f)|
is within distance log(4) of some point of ArchTrop+(f).
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A Theorem on ArchTrop+(f)

Z+(f) := the positive zero set of f

Theorem

For any pentanomial f in R[x1, . . . , xn], any point of Log|Z+(f)|
is within distance log(4) of some point of ArchTrop+(f).
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Using the same coefficients...
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Theorem

If F is a random real 2× 2 quadratic pentanomial system with
supports having Cayley embedding

A =

[
2 1 1 0 0 0 1 1 0 0
0 1 0 1 0 2 1 0 1 0

]
,

such that the coefficient vector (c1, . . . , c10) has each ci with
mean 0, then with probability at least 41%, F has the same
number of positive roots as the cardinality of
ArchTrop(f1) ∩ArchTrop(f2).
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Successes!
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Failures...
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Failures...crickets...
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Failures...
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But why?

Some intuition...
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A Theorem on the Intersections

Theorem

For any 2× 2 polynomial system non-degenerate F with
supports having Cayley embedding A, the number of nonzero
real roots of F depends only on the completed signed
A-discriminant chamber containing F .
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That being said...

We can compute the Hausdorff distance between
ArchTrop(f1) ∩ArchTrop(f2) and Log|Z+(f1)| ∩ Log|Z+(f2)|
for 1000 random examples to obtain the following:
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Future Research

1. Generalizing our code

2. Finding the conditions under which

h0(Z+(f)) = h0(ArchTrop+(f))

3. Stability and the Jacobian
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