Geometry of \mathbb{R} Roots of 9×9 Polynomial Systems

Luis Feliciano
Texas A\&M University

July 16, 2018
REU: DMS - 1757872

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& f_{2}\left(x_{8}, x_{9}\right)=c_{6} x_{9}^{2}+c_{7} x_{8} x_{9}+c_{8} x_{8}+c_{9} x_{9}+c_{10}
\end{aligned}
$$

A Quadratic Pentanomial 2×2 system!

Motivation

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& f_{2}\left(x_{8}, x_{9}\right)=c_{6} x_{9}^{2}+c_{7} x_{8} x_{9}+c_{8} x_{8}+c_{9} x_{9}+c_{10}
\end{aligned}
$$

A Quadratic Pentanomial 2x2 system!

Solving polynomial equations becomes more and more complicated as we increase the number of terms and variables.

Motivation

$f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5}$
$f_{2}\left(x_{8}, x_{9}\right)=c_{6} x_{9}^{2}+c_{7} x_{8} x_{9}+c_{8} x_{8}+c_{9} x_{9}+c_{10}$
A Quadratic Pentanomial 2x2 system!

Solving polynomial equations becomes more and more complicated as we increase the number of terms and variables.

Today we'll take a look at some constructions that give us rough approximations for roots in a fraction of the time!

A Quick Review

A convex set is a set of points such that, given any two points P, Q, then the line segment $P Q$ is also in the set

A Quick Review

A convex set is a set of points such that, given any two points P, Q, then the line segment $P Q$ is also in the set

A Quick Review

A convex set is a set of points such that, given any two points P, Q, then the line segment $P Q$ is also in the set

A Quick Review

A convex set is a set of points such that, given any two points P, Q, then the line segment $P Q$ is also in the set

A Quick Review

A convex set is a set of points such that, given any two points P, Q, then the line segment $P Q$ is also in the set

A Quick Review

A convex set is a set of points such that, given any two points P, Q, then the line segment $P Q$ is also in the set

A Quick Review

A convex set is a set of points such that, given any two points P, Q, then the line segment $P Q$ is also in the set

A Quick Review

A convex set is a set of points such that, given any two points P, Q, then the line segment $P Q$ is also in the set

Convex Hull

Denoted by conv $\{\cdot\}$

Convex Hull

Denoted by conv $\{\cdot\}$
For any $S \subset \mathbb{R}^{n}$

Convex Hull

Denoted by conv $\{\cdot\}$
For any $S \subset \mathbb{R}^{n}$
$\operatorname{conv}\{S\}:=$ smallest convex set containing S

Convex Hull

Denoted by conv $\{\cdot\}$
For any $S \subset \mathbb{R}^{n}$
$\operatorname{conv}\{S\}:=$ smallest convex set containing S

Convex Hull

Denoted by conv $\{\cdot\}$
For any $S \subset \mathbb{R}^{n}$
$\operatorname{conv}\{S\}:=$ smallest convex set containing S

Convex Hull

Denoted by conv $\{\cdot\}$
For any $S \subset \mathbb{R}^{n}$
$\operatorname{conv}\{S\}:=$ smallest convex set containing S

Denoted by Newt(•)

Denoted by Newt(•)
 $f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}$

> Denoted by Newt (\cdot)
> $f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}$
> where $x^{a_{i}}=x_{1}^{a_{1, i}} x_{2}^{a_{2, i}} \cdots x_{n}^{a_{n, i}}$

Denoted by Newt(•)
$f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}$
where $x^{a_{i}}=x_{1}^{a_{1, i}} x_{2}^{a_{2, i}} \cdots x_{n}^{a_{n, i}}$
$\operatorname{Newt}(f):=\operatorname{conv}\left\{a_{i} \mid c_{i} \neq 0\right\}$

Denoted by Newt(•)
$f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}$
where $x^{a_{i}}=x_{1}^{a_{1, i}} x_{2}^{a_{2, i}} \cdots x_{n}^{a_{n, i}}$
$\operatorname{Newt}(f):=\operatorname{conv}\left\{a_{i} \mid c_{i} \neq 0\right\}$

Ex:
$f(x, y)=1+x^{2}+y^{3}-100 x y$

Newton Polytope

Denoted by Newt(•)
$f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}$
where $x^{a_{i}}=x_{1}^{a_{1, i}} x_{2}^{a_{2, i}} \cdots x_{n}^{a_{n, i}}$
$\operatorname{Newt}(f):=\operatorname{conv}\left\{a_{i} \mid c_{i} \neq 0\right\}$

Ex:

$$
\begin{aligned}
f(x, y) & =1+x^{2}+y^{3}-100 x y \\
& =1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}
\end{aligned}
$$

Denoted by Newt(•)
$f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}$
where $x^{a_{i}}=x_{1}^{a_{1, i}} x_{2}^{a_{2, i}} \cdots x_{n}^{a_{n, i}}$
$\operatorname{Newt}(f):=\operatorname{conv}\left\{a_{i} \mid c_{i} \neq 0\right\}$

Ex:
$f(x, y)=1+x^{2}+y^{3}-100 x y$

$$
=1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}
$$

$(0,0)$
$(2,0)$
$(0,3)$
$(1,1)$

Denoted by Newt(•)
$f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}$
where $x^{a_{i}}=x_{1}^{a_{1, i}} x_{2}^{a_{2, i}} \cdots x_{n}^{a_{n, i}}$
$\operatorname{Newt}(f):=\operatorname{conv}\left\{a_{i} \mid c_{i} \neq 0\right\}$

Ex:

$$
\begin{aligned}
\overline{f(x, y)} & =1+x^{2}+y^{3}-100 x y \\
& =1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}
\end{aligned}
$$

Denoted by Newt(•)
$f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}$
where $x^{a_{i}}=x_{1}^{a_{1, i}} x_{2}^{a_{2, i}} \cdots x_{n}^{a_{n, i}}$
$\operatorname{Newt}(f):=\operatorname{conv}\left\{a_{i} \mid c_{i} \neq 0\right\}$

Ex:
$f(x, y)=1+x^{2}+y^{3}-100 x y$

$$
=1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}
$$

$$
\begin{aligned}
& (0,0) \\
& (2,0) \\
& (0,3) \\
& (1,1)
\end{aligned}
$$

Although we didn't make use of the following in our research...

Ex:

$$
\begin{aligned}
f(x, y) & =1+x^{2}+y^{3}-100 x y \\
& =1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}
\end{aligned}
$$

$$
(0,0)
$$

$$
\begin{equation*}
(2,0) \tag{0,3}
\end{equation*}
$$

$(1,1)$

Newton Polytope

Although we didn't make use of the following in our research... The volume of the Newton polytope can be used to compute the degree of the corresponding hypersurface, and via mixed volumes, the number of roots of systems of equations!

Ex:

$$
\begin{aligned}
f(x, y) & =1+x^{2}+y^{3}-100 x y \\
& =1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}
\end{aligned}
$$

Archimedean Newton Polytope

Archimedean Newton Polytope

Denoted by ArchNewt (f)

Archimedean Newton Polytope

Denoted by $\operatorname{ArchNewt}(f)$
$\operatorname{ArchNewt}(f):=\operatorname{conv}\left\{\left(a_{i},-\log \left|c_{i}\right|\right) \mid i \in\{1, \ldots, t\}, c_{i} \neq 0\right\}$

Archimedean Newton Polytope

Denoted by ArchNewt (f)
$\operatorname{ArchNewt}(f):=\operatorname{conv}\left\{\left(a_{i},-\log \left|c_{i}\right|\right) \mid i \in\{1, \ldots, t\}, c_{i} \neq 0\right\}$
$f(x, y)=1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}$

Archimedean Newton Polytope

Denoted by ArchNewt (f)
$\operatorname{ArchNewt}(f):=\operatorname{conv}\left\{\left(a_{i},-\log \left|c_{i}\right|\right) \mid i \in\{1, \ldots, t\}, c_{i} \neq 0\right\}$
$f(x, y)=1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}$
$\Rightarrow \operatorname{ArchNewt}(f)=$
$\operatorname{conv}\{(0,0,-\log (1))$

Archimedean Newton Polytope

Denoted by ArchNewt (f)
$\operatorname{ArchNewt}(f):=\operatorname{conv}\left\{\left(a_{i},-\log \left|c_{i}\right|\right) \mid i \in\{1, \ldots, t\}, c_{i} \neq 0\right\}$
$f(x, y)=1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}$
$\Rightarrow \operatorname{ArchNewt}(f)=$
$\operatorname{conv}\{(0,0,-\log (1)),(2,0,-\log (1)),(0,3,-\log (1)),(1,1,-\log (100))\}$

Archimedean Newton Polytope

Denoted by ArchNewt (f)
$\operatorname{ArchNewt}(f):=\operatorname{conv}\left\{\left(a_{i},-\log \left|c_{i}\right|\right) \mid i \in\{1, \ldots, t\}, c_{i} \neq 0\right\}$
$f(x, y)=1 * x^{0} * y^{0}+1 * x^{2} * y^{0}+1 * x^{0} * y^{3}-100 * x^{1} * y^{1}$
$\Rightarrow \operatorname{ArchNewt}(f)=$
$\operatorname{conv}\{(0,0,-\log (1)),(2,0,-\log (1)),(0,3,-\log (1)),(1,1,-\log (100))\}$
$\Rightarrow \operatorname{conv}\{(0,0,0),(2,0,0),(0,3,0),(1,1,-\log (100))\}$
$\operatorname{conv}\{(0,0,0),(2,0,0),(0,3,0),(1,1,-\log (100))\}$

Archimedean Tropical Variety

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$
\rightarrow The outer normals of $\operatorname{ArchNewt}(f)$ that point downwards

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$
\rightarrow The outer normals of $\operatorname{ArchNewt}(f)$ that point downwards

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$
\rightarrow The outer normals of $\operatorname{ArchNewt}(f)$ that point downwards

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$
\rightarrow The outer normals of $\operatorname{ArchNewt}(f)$ that point downwards

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$
\rightarrow The outer normals of $\operatorname{ArchNewt}(f)$ that point downwards

Archimedean Tropical Variety

Let's project the lower faces of $\operatorname{ArchNewt}(f)$ onto the $x y$-plane

Archimedean Tropical Variety

Let's project the lower faces of $\operatorname{ArchNewt}(f)$ onto the $x y$-plane

Archimedean Tropical Variety

Let's project the lower faces of $\operatorname{ArchNewt}(f)$ onto the $x y$-plane

Archimedean Tropical Variety

Let's project the lower faces of $\operatorname{ArchNewt}(f)$ onto the $x y$-plane This gives us a triangulation of our Newton Polytope!

Archimedean Tropical Variety

Let's project the lower faces of $\operatorname{ArchNewt}(f)$ onto the $x y$-plane This gives us a triangulation of our Newton Polytope! We take the outer normals of these lower faces

Archimedean Tropical Variety

Let's project the lower faces of $\operatorname{ArchNewt}(f)$ onto the $x y$-plane This gives us a triangulation of our Newton Polytope!
We take the outer normals of these lower faces
\rightarrow We normalize them to be of the form $(w,-1)$, and take w to be a vertex of $\operatorname{ArchTrop}(f)$!

Archimedean Tropical Variety

Let's project the lower faces of $\operatorname{ArchNewt}(f)$ onto the $x y$-plane
This gives us a triangulation of our Newton Polytope!
We take the outer normals of these lower faces
\rightarrow We normalize them to be of the form $(w,-1)$, and take w to be a vertex of $\operatorname{ArchTrop}(f)$!
\rightarrow Roughly* translates to a point in each triangle!

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$
\rightarrow The outer normals of $\operatorname{ArchNewt}(f)$ that point downwards

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$
\rightarrow The outer normals of $\operatorname{ArchNewt}(f)$ that point downwards
\rightarrow The outer normals of the edges of $\operatorname{Newt}(f)$

Archimedean Tropical Variety

We need two things to construct $\operatorname{ArchTrop}(f)$
\rightarrow The outer normals of $\operatorname{ArchNewt}(f)$ that point downwards
\rightarrow The outer normals of the exterior edges of Newt (f)

Archimedean Tropical Variety

Putting these two together, we get...

Archimedean Tropical Variety

Putting these two together, we get...

Archimedean Tropical Variety - Roughly*

Archimedean Tropical Variety - Roughly*

The vertices of $\operatorname{ArchTrop}(f)$ are dual to the triangulation of Newt (f) induced by the lower faces of $\operatorname{ArchNewt}(f)$

Archimedean Tropical Variety - Roughly*

The vertices of $\operatorname{ArchTrop}(f)$ are dual to the triangulation of Newt (f) induced by the lower faces of $\operatorname{ArchNewt}(f)$
The rays are dual to the edges of $\operatorname{Newt}(f)$

Archimedean Tropical Variety - Roughly*

The vertices of $\operatorname{ArchTrop}(f)$ are dual to the triangulation of Newt (f) induced by the lower faces of $\operatorname{ArchNewt}(f)$
The rays are dual to the edges of $\operatorname{Newt}(f)$

Archimedean Tropical Variety - Roughly*

The vertices of $\operatorname{ArchTrop}(f)$ are dual to the triangulation of Newt (f) induced by the lower faces of $\operatorname{ArchNewt}(f)$

The rays are dual to the edges of $\operatorname{Newt}(f)$

Archimedean Tropical Variety

$\operatorname{ArchTrop}(f)$ gives us metric information about the roots and areas where we can find constant isotopy types!

A Word on Isotopy Types

A Word on Isotopy Types

Much like how the quadratic discriminant $b^{2}-4 a c$ gives us information about the number of roots

A Word on Isotopy Types

Much like how the quadratic discriminant $b^{2}-4 a c$ gives us information about the number of roots
$\operatorname{ArchTrop}(f)$ can do this for more general curves

A Word on Isotopy Types

Much like how the quadratic discriminant $b^{2}-4 a c$ gives us information about the number of roots
$\operatorname{ArchTrop}(f)$ can do this for more general curves
Ex:

$$
\overline{f(x}, y)=1+x^{2}+y^{3}-c x y(c>0)
$$

A Word on Isotopy Types

Much like how the quadratic discriminant $b^{2}-4 a c$ gives us information about the number of roots
$\operatorname{ArchTrop}(f)$ can do this for more general curves
Ex:
$f(x, y)=1+x^{2}+y^{3}-c x y(c>0)$
\Rightarrow The zero set of $f(x, y)$ is either \varnothing, a point, or an oval!

A Word on Isotopy Types

Much like how the quadratic discriminant $b^{2}-4 a c$ gives us information about the number of roots
$\operatorname{ArchTrop}(f)$ can do this for more general curves
Ex:
$f(x, y)=1+x^{2}+y^{3}-c x y(c>0)$
\Rightarrow The zero set of $f(x, y)$ is either \varnothing, a point, or an oval!
\Rightarrow This occurs when $c<\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}, c=\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}, c>\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}$, respectively

A Word on Isotopy Types

Much like how the quadratic discriminant $b^{2}-4 a c$ gives us information about the number of roots
$\operatorname{ArchTrop}(f)$ can do this for more general curves
Ex:
$f(x, y)=1+x^{2}+y^{3}-c x y(c>0)$
\Rightarrow The zero set of $f(x, y)$ is either \varnothing, a point, or an oval!
\Rightarrow This occurs when $c<\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}, c=\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}, c>\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}$, respectively

A Word on Isotopy Types

Much like how the quadratic discriminant $b^{2}-4 a c$ gives us information about the number of roots
$\operatorname{ArchTrop}(f)$ can do this for more general curves
Ex:
$f(x, y)=1+x^{2}+y^{3}-c x y(c>0)$
\Rightarrow The zero set of $f(x, y)$ is either \varnothing, a point, or an oval!
\Rightarrow This occurs when $c<\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}, c=\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}, c>\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}$, respectively

A Word on Isotopy Types

Much like how the quadratic discriminant $b^{2}-4 a c$ gives us information about the number of roots
ArchTrop (f) can do this for more general curves
Ex:
$f(x, y)=1+x^{2}+y^{3}-c x y(c>0)$
\Rightarrow The zero set of $f(x, y)$ is either \varnothing, a point, or an oval!
\Rightarrow This occurs when $c<\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}, c=\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}, c>\frac{6}{2^{\frac{1}{3}} 3^{\frac{1}{2}}}$, respectively

ArchTrop $_{+}(f)$

ArchTrop $_{+}(f)$

$\operatorname{ArchTrop}_{+}(f) \subset \operatorname{ArchTrop}(f)$

ArchTrop $_{+}(f)$

$\operatorname{ArchTrop}_{+}(f) \subset \operatorname{ArchTrop}^{(f)}$

This time we focus on the signs of our coefficients!

ArchTrop $_{+}(f)$

$\operatorname{ArchTrop}_{+}(f) \subset \operatorname{ArchTrop}(f)$

This time we focus on the signs of our coefficients!
$f(x, y)=1+x^{2}+y^{3}-100 x y$

ArchTrop $_{+}(f)$

$\operatorname{ArchTrop}_{+}(f) \subset \operatorname{ArchTrop}(f)$

This time we focus on the signs of our coefficients!
$f(x, y)=1+x^{2}+y^{3}-100 x y$

ArchTrop $_{+}(f)$

$\operatorname{ArchTrop}_{+}(f) \subset \operatorname{ArchTrop}(f)$
This time we focus on the signs of our coefficients!
$f(x, y)=1+x^{2}+y^{3}-100 x y$

ArchTrop $_{+}(f)$

$\operatorname{ArchTrop}_{+}(f) \subset \operatorname{ArchTrop}(f)$
This time we focus on the signs of our coefficients!
$f(x, y)=1+x^{2}+y^{3}-100 x y$

More specifically, we are interested in alternating signs!

Archimedean Tropical Variety

We go from this...

Archimedean Tropical Variety

To this!

Archimedean Tropical Variety

ArchTrop $_{+}(f)$ gives us a piecewise linear function that resembles the set of positive roots

A Small Discrepancy...

$$
f(x)=1-1.1 x+x^{2}
$$

A Small Discrepancy...

$$
f(x)=1-1.1 x+x^{2}
$$

ArchTrop $_{+}(f)$ looks like

A Small Discrepancy...

$$
f(x)=1-1.1 x+x^{2}
$$

ArchTrop $_{+}(f)$ looks like

A Small Discrepancy...

$f(x)=1-1.1 x+x^{2}$
ArchTrop $_{+}(f)$ looks like

But if you look at the discriminant $\Rightarrow 1.1^{2}-4<0 \Rightarrow f$ has two non- \mathbb{R} roots!

A Small Discrepancy...

$f(x)=1-1.1 x+x^{2}$
ArchTrop $_{+}(f)$ looks like

But if you look at the discriminant
$\Rightarrow 1.1^{2}-4<0 \Rightarrow f$ has two non- \mathbb{R} roots!
On the other hand, if you look at

A Small Discrepancy...

$f(x)=1-1.1 x+x^{2}$
ArchTrop $_{+}(f)$ looks like

But if you look at the discriminant
$\Rightarrow 1.1^{2}-4<0 \Rightarrow f$ has two non- \mathbb{R} roots!
On the other hand, if you look at
$\left\{c \in \mathbb{R}_{+} \mid\right.$connected zero set of $\left.\left(1-c x+x^{2}\right) \neq \operatorname{ArchTrop}_{+}(f)\right\}$

A Small Discrepancy...

$f(x)=1-1.1 x+x^{2}$
ArchTrop $_{+}(f)$ looks like

But if you look at the discriminant $\Rightarrow 1.1^{2}-4<0 \Rightarrow f$ has two non- \mathbb{R} roots!

On the other hand, if you look at
$\left\{c \in \mathbb{R}_{+} \mid\right.$connected zero set of $\left.\left(1-c x+x^{2}\right) \neq \operatorname{ArchTrop}_{+}(f)\right\}$
$=(0,2)$

Our Research

Our Research - Newton Polytope

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& f_{2}\left(x_{8}, x_{9}\right)=c_{6} x_{9}^{2}+c_{7} x_{8} x_{9}+c_{8} x_{8}+c_{9} x_{9}+c_{10}
\end{aligned}
$$

Our Research - Newton Polytope

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& f_{2}\left(x_{8}, x_{9}\right)=c_{6} x_{9}^{2}+c_{7} x_{8} x_{9}+c_{8} x_{8}+c_{9} x_{9}+c_{10}
\end{aligned}
$$

Our Research - f_{1}

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& f_{2}\left(x_{8}, x_{9}\right)=c_{6} x_{9}^{2}+c_{7} x_{8} x_{9}+c_{8} x_{8}+c_{9} x_{9}+c_{10}
\end{aligned}
$$

Our Research - f_{1}

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& \text { Suppose } c_{1}=1, c_{2}=-10, c_{3}=-10, c_{4}=2, c_{5}=1
\end{aligned}
$$

Our Research - f_{1}

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& \text { Suppose } c_{1}=1, c_{2}=-10, c_{3}=-10, c_{4}=2, c_{5}=1
\end{aligned}
$$

Our Research - f_{1}

ArchNewt $\left(f_{1}\right)$ given these coefficients is...

Our Research - f_{1}

ArchNewt $\left(f_{1}\right)$ given these coefficients is...

Our Research - f_{1}

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& \text { Suppose } c_{1}=1, c_{2}=-10, c_{3}=-10, c_{4}=2, c_{5}=1
\end{aligned}
$$

Our Research - f_{1}

$f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5}$
Suppose $c_{1}=1, c_{2}=-10, c_{3}=-10, c_{4}=2, c_{5}=1$

Our Research - f_{1}

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& \text { Suppose } c_{1}=6, c_{2}=-8, c_{3}=-3, c_{4}=2, c_{5}=7
\end{aligned}
$$

Our Research - f_{1}

$f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5}$
Suppose $c_{1}=6, c_{2}=-8, c_{3}=-3, c_{4}=2, c_{5}=7$

Our Research - f_{1}

$$
\begin{aligned}
& f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5} \\
& \text { Suppose } c_{1}=6, c_{2}=-8, c_{3}=-3, c_{4}=2, c_{5}=7
\end{aligned}
$$

Our Research

Our Research

No matter the coefficients, these 5 cases encompass all the possible triangulations of f_{1} !

Our Research

$f_{1}\left(x_{8}, x_{9}\right)=c_{1} x_{8}^{2}+c_{2} x_{8} x_{9}+c_{3} x_{8}+c_{4} x_{9}+c_{5}$
Suppose $c_{1}=1, c_{2}=-10, c_{3}=-10, c_{4}=2, c_{5}=1$

Our Research

$f_{2}\left(x_{8}, x_{9}\right)=c_{6} x_{8} x_{9}+c_{7} x_{8}^{2}+c_{8} x_{8}+c_{9} x_{9}+c_{10}$
Suppose $c_{6}=1, c_{7}=-10, c_{8}=-10, c_{9}=2, c_{1} 0=1$

Our Research

A Theorem on $\operatorname{Arch} \operatorname{Trop}(f)$

A Theorem on $\operatorname{ArchTrop}(f)$

$Z_{\mathbb{C}}(f):=$ the Complex zero set of f

A Theorem on $\operatorname{ArchTrop}(f)$

$Z_{\mathbb{C}}(f):=$ the Complex zero set of f

Theorem

For any pentanomial f in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, any point of $\log \left|Z_{\mathbb{C}}(f)\right|$ is within distance $\log (4)$ of some point of $\operatorname{ArchTrop}(f)$.

A Theorem on Arch $_{\text {Trop }}^{+}(f)$

$Z_{+}(f):=$ the positive zero set of f

A Theorem on Arch $_{\text {Trop }}^{+}(f)$

$Z_{+}(f):=$ the positive zero set of f

Theorem

For any pentanomial f in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, any point of $\log \left|Z_{+}(f)\right|$ is within distance $\log (4)$ of some point of ArchTrop $_{+}(f)$.

Using the same coefficients...

Using the same coefficients...

Theorem

If F is a random real 2×2 quadratic pentanomial system with supports having Cayley embedding

$$
A=\left[\begin{array}{llllllllll}
2 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 2 & 1 & 0 & 1 & 0
\end{array}\right]
$$

such that the coefficient vector $\left(c_{1}, \ldots, c_{10}\right)$ has each c_{i} with mean 0 , then with probability at least $41 \%, F$ has the same number of positive roots as the cardinality of $\operatorname{ArchTrop}\left(f_{1}\right) \cap \operatorname{ArchTrop}\left(f_{2}\right)$.

Successes!

Successes!

Successes!

But why?

Some intuition...

But why?

Some intuition...

But why?

Some intuition...

But why?

Some intuition...

But why?

Some intuition...

But why?

Some intuition...

A Theorem on the Intersections

Theorem

For any 2×2 polynomial system non-degenerate F with supports having Cayley embedding A, the number of nonzero real roots of F depends only on the completed signed A-discriminant chamber containing F.

A Theorem on the Intersections

Theorem

For any 2×2 polynomial system non-degenerate F with supports having Cayley embedding A, the number of nonzero real roots of F depends only on the completed signed A-discriminant chamber containing F.

That being said...

That being said...

We can compute the Hausdorff distance between $\operatorname{ArchTrop}\left(f_{1}\right) \cap \operatorname{ArchTrop}\left(f_{2}\right)$ and $\log \left|Z_{+}\left(f_{1}\right)\right| \cap \log \left|Z_{+}\left(f_{2}\right)\right|$ for 1000 random examples to obtain the following:

That being said...

We can compute the Hausdorff distance between $\operatorname{ArchTrop}\left(f_{1}\right) \cap \operatorname{ArchTrop}\left(f_{2}\right)$ and $\log \left|Z_{+}\left(f_{1}\right)\right| \cap \log \left|Z_{+}\left(f_{2}\right)\right|$ for 1000 random examples to obtain the following:

Future Research

Future Research

1. Generalizing our code

Future Research

1. Generalizing our code
2. Finding the conditions under which

$$
h_{0}\left(Z_{+}(f)\right)=h_{0}\left(\operatorname{ArchTrop}_{+}(f)\right)
$$

Future Research

1. Generalizing our code
2. Finding the conditions under which

$$
h_{0}\left(Z_{+}(f)\right)=h_{0}\left(\operatorname{ArchTrop}_{+}(f)\right)
$$

3. Stability and the Jacobian
