A Faster Randomized Algorithm for Root Counting in Prime Power Rings

Leann Kopp and Natalie Randall

July 17, 2018

Abstract

Let p be a prime and $f \in \mathbb{Z}[x]$ a polynomial of degree d such that f is not identically zero $\bmod p$. We introduce a Las Vegas randomized algorithm to count the number of roots of f in $\mathbb{Z} /\left(p^{k}\right)$ for $k \in \mathbb{N}$ with $k \geq 2$ which runs in time $d^{1.5+o(1)}(\log p)^{2+o(1)} 1.12^{k}$. We compare the randomized algorithm to simple brute force to see when we have practical time gains. In addition, we present an upper bound on the number of roots of f (as a function of p, k, and the degree of f) that is optimal for $k=2$.

1 Introduction

A deterministic algorithm for counting roots in $\mathbb{Z} /\left(p^{k}\right)$ in time $\left(d \log (p)+2^{t}\right)^{O(1)}$ is given in [2]. Here we propose a Las Vegas randomized algorithm which runs in time $d^{1.5+o(1)}(\log p)^{2+o(1)} 1.12^{k}$. By "Las Vegas randomized," we mean that our algorithm undercounts roots with a fixed error probability but otherwise returns a correct root count and always correctly announces failure. For instance, if we take our fixed error probability to be $\frac{1}{3}$, we can get an overall failure probability of less than $\frac{1}{3^{100}}$ by running the algorithm 100 times. Las Vegas randomized algorithms are common across algorithmic number theory; there are fast, widely accepted Las Vegas randomized algorithms for checking primality and for factoring polynomials over finite fields $[1,3,4]$. In our algorithm, we introduce randomization by using fast factorization (see [3]) to find roots of f in $\mathbb{Z} /(p)$.

Prior to the deterministic algorithm in [2] there was little information on counting the roots of a polynomial over prime power rings. We can easily count the number of roots of a polynomial f in $\mathbb{Z} /(p)$ by taking the degree of $\operatorname{gcd}\left(x^{p}-x, f\right)$, but this method relies on $\mathbb{Z} /(p)$ being a unique factorization domain, and $\mathbb{Z} /\left(p^{k}\right)$ is not a unique factorization domain for $k>1$. To overcome this issue, we consider the Taylor expansion of our polynomial f about a root ζ of the $\bmod p$ reduction of f with a perturbation of $p \varepsilon$, where $\varepsilon \in\left\{0, \ldots, p^{k}-1\right\}$. From this expansion, we can divide by certain powers of p in order to recursively isolate the roots of f in the ring $\mathbb{Z} /\left(p^{k}\right)$. From a similar expansion, we also get an upper bound for the number of roots of f in $\mathbb{Z} /\left(p^{k}\right)$ given by $\min \{d, p\} p^{k-1}$ and a sharp upper bound for $k=2$ given by $\min \left\{\left\lfloor\frac{d}{2}\right\rfloor, p\right\} p^{k-1}+(d \bmod 2)$.

2 Background and Randomized Algorithm

Lemma 2.1 (Hensel's Lemma). If $f \in \mathbb{Z}[x]$ is a polynomial with integer coefficients, p is prime, and $\zeta_{J} \in\left\{0, \ldots, p^{J-1}-1\right\}$ is a root of $f\left(\bmod p^{J}\right)$ and $f^{\prime}\left(\zeta_{J}\right) \neq 0(\bmod p)$, then there is a unique $\zeta \in\left\{0, \ldots, p^{J+1}-1\right\}$ with $f(\zeta)=0\left(\bmod p^{J+1}\right)$ and $\zeta=\zeta_{J}\left(\bmod p^{J}\right)$.

We will see below that we can use Hensel's Lemma to determine the number of lifts of a root ζ_{i} with $s\left(i, \zeta_{i}\right)=1$.

Consider the expansion of f given by

$$
f(\zeta+p \varepsilon)=f(\zeta)+f^{\prime}(\zeta) p \varepsilon+\cdots+\frac{f^{\min (d, k-1)}(\zeta)}{\min (d, k-1)!} p^{\min (d, k-1)} \varepsilon^{\min (d, k-1)} \bmod p^{k}
$$

where ζ is a root of the $\bmod p$ reduction of f. Let $s \in\{1, \ldots, k\}$ be the maximal integer such that p^{s} divides each of $f(\zeta), f^{\prime}(\zeta) p, \ldots, \frac{f^{\min (d, k-1)(\zeta)}}{\min (d, k-1)!} p^{\min (d, k-1)}$. More precisely, $s=\min \left\{\operatorname{ord}_{p}(f(\zeta)), \operatorname{ord}_{p}\left(f^{\prime}(\zeta) p\right), \ldots, \operatorname{ord}_{p}\left(\frac{f^{\min (d, k-1)(\zeta)}}{\min (d, k-1)!} p^{\min (d, k-1)}\right)\right\}$, where $\operatorname{ord}_{p}(x)$ refers to the p-adic valuation of x. If $f(\zeta+p \varepsilon)=0\left(\bmod p^{k}\right)$, then we can write

$$
p^{s}\left(\frac{f(\zeta)}{p^{s}}+\frac{f^{\prime}(\zeta)}{p^{s-1}} \varepsilon+\cdots+\frac{f^{\min (d, k-1)}(\zeta)}{\left(\min (d, k-1)!p^{s-\min (d, k-1)}\right.} \varepsilon^{\min (d, k-1)}\right)=0 \bmod p^{k},
$$

which is true if and only if

$$
\frac{f(\zeta)}{p^{s}}+\frac{f^{\prime}(\zeta)}{p^{s-1}} \varepsilon+\cdots+\frac{f^{\min (d, k-1)}(\zeta)}{\left(\min (d, k-1)!p^{s-\min (d, k-1)}\right.} \varepsilon^{\min (d, k-1)}=0 \bmod p^{k-s} .
$$

In the case where $s=1$, if $f^{\prime}(\zeta)=0 \bmod p$ then we must have that $p^{2} \nmid f(\zeta)$ and so ζ has no lifts $\bmod p^{k}$; however, if $f^{\prime}(\zeta) \neq 0 \bmod p$, then ζ lifts to one unique root by Hensel's Lemma. In the case where $s=k$, the entire expression $p^{s}\left(\frac{f(\zeta)}{p^{s}}+\frac{f^{\prime}(\zeta)}{p^{s-1}} \varepsilon+\cdots+\frac{f^{\min (d, k-1)}(\zeta)}{\left(\min (d, k-1)!p^{s-\min (d, k-1)}\right.} \varepsilon^{\min (d, k-1)}\right)$ vanishes identically $\bmod p^{k}$, so any $\varepsilon \in\left\{0, \ldots, p^{k-1}\right\}$ is a zero of $f(\zeta+p \varepsilon)$ and therefore we have that ζ has p^{k-1} lifts.

The key idea of the randomized algorithm is that counting the number of roots when $s=1$ and $s=k$ is simple, as described above, and we can reduce all the computations to these two cases using recursion. If $s \in\{2, \ldots, k-1\}$, we can reapply the algorithm to an instance of counting roots for the polynomial $\frac{f(\zeta)}{p^{s}}+\frac{f^{\prime}(\zeta)}{p^{s-1}} \varepsilon+\cdots+\frac{f^{\min (d, k-1)}(\zeta)}{\left(\min (d, k-1)!p^{s-\min (d, k-1)}\right.} \varepsilon^{\min (d, k-1)}$ in $\mathbb{Z} /\left(p^{k-s}\right)$. Eventually this will reduce to the case where either $s=1$ or $s=k$ and the recursion will terminate, giving us that the root ζ of $f \bmod p$ has a total number of p^{s-1}. (the number of roots of $\left.\frac{f(\zeta)}{p^{s}}+\frac{f^{\prime}(\zeta)}{p^{s-1}} \varepsilon+\cdots+\frac{f^{\min (d, k-1)}(\zeta)}{\left(\min (d, k-1)!p^{s-\min (d, k-1)}\right.} \varepsilon^{\min (d, k-1)} \bmod p^{k-s}\right)$ lifts to roots in $\mathbb{Z} /\left(p^{k}\right)$.

```
Algorithm 1 Randomized Prime Power Root Counting
    function \(\operatorname{Count}(f \in \mathbb{Z}[x]\) has degree \(d\) and is not identically \(0 \bmod p\), prime \(p, k \in \mathbb{N}\)
    such that \(k \geq 2\) )
            Factor \(f\) as in [3]
            count \(:=\) number of distinct linear factors of multiplicity \(1 \triangleright\) These roots in \(\mathbb{Z} /(p)\) can
    be lifted uniquely to roots in \(\mathbb{Z} /\left(p^{k}\right)\).
            Push \(\left\{\zeta_{0} \in\{0, \ldots, p-1\} \mid f\left(\zeta_{0}\right)=f^{\prime}\left(\zeta_{0}\right)=0 \bmod p\right.\) and \(\left.f\left(\zeta_{0}\right)=0 \bmod p^{2}\right\}\) onto a stack
    \(S\)
            while \(S \neq 0\) do
                Pop a root \(\zeta_{0}\) from the stack and define \(s\left(0, \zeta_{0}\right):=\) maximal integer such that \(p^{s\left(0, \zeta_{0}\right)}\)
    divides each of \(f\left(\zeta_{0}\right), f^{\prime}\left(z_{0}\right) p \varepsilon, \ldots, \frac{f^{\min (d, k-1)\left(\zeta_{0}\right)}}{\min (d, k-1)!} p^{\min (d, k-1)}\)
                if \(s\left(0, \zeta_{0}\right)=k\) then
                    count \(\leftarrow\) count \(+p^{k-1}\)
                else
                    Define \(f_{\zeta_{0}}(x):=\frac{1}{p^{s\left(0, \zeta_{0}\right)}} f\left(\zeta_{0}+p x\right)\)
                count \(\leftarrow\) count \(+p^{s\left(0, \zeta_{0}\right)-1} \operatorname{COUNT}\left(f_{\zeta_{0}}(x), p, k-s\left(0, \zeta_{0}\right)\right)\)
                end if
            end while
            return count
    end function
```

Since the non-degenerate roots of the mod p reduction of f have a unique lift by Hensel's Lemma, we only need to keep track of the degenerate roots. Our recurrence takes a degenerate root ζ_{0} as a point in a cluster of roots of f in $\mathbb{Z} /\left(p^{k}\right)$ and recovers the other points in this cluster by expanding ζ_{0} to more digits base- p. In this way, we count the number of roots of f in $\mathbb{Z} /\left(p^{k}\right)$ by counting the number of lifts from each root ζ_{i} of f in $\mathbb{Z} /(p)$.

3 Discussion of Complexity Bound and Experimental Data

Figure 1: Diagram of complexity tree

In the Figure 1, we see the basic tree structure of the algorithm. We need only keep track of the degenerate roots of f; the degenerate roots of f, denoted by ζ_{i}, become the children
nodes from which more branching occurs. The depth and branching of our recurrence tree is strongly limited by the value of k and the degree of f. For the initial parent node, the total number of degenerate roots is less than or equal to $\frac{d}{2}$, and for each subsequent child node, the total number of degenerate roots is less than or equal to $\frac{s\left(i, \zeta_{i}\right)-d_{f_{\varsigma_{i}}}}{2}$. Non-degenerate roots have a unique lift by Hensel's Lemma, so non-degenerate roots require no additional computations and are therefore shown on the left of the tree. We also see that we have a maximum of $s\left(1, \zeta_{1}\right) \cdots s\left(l, \zeta_{l}\right)$ nodes at the bottom level of the tree.

We use Kedlaya-Umans fast $\mathbb{Z} /(p)[x]$ factoring algorithm found in [3], which takes time $d^{1.5+o(1)}(\log p)^{1+o(1)}+d^{1+o(1)}(\log p)^{2+o(1)}$ for a degree d polynomial, in order to factor the polynomials at each node in $\mathbb{Z} /(p)$. In simplest terms, we can consider our total complexity as being less than or equal to (the number of nodes in the recursion tree) \times (the complexity of factoring over $\mathbb{Z} /(p)[x])$. Optimizing parameters, the worst case occurs when $d \approx e \approx 2.71828$ and the depth of the tree is $\frac{k}{e}$. The final complexity of the randomized algorithm is given by

$$
\begin{gathered}
\left(d^{1.5} \log p\right)^{1+o(1)}+\left(d \log ^{2} p\right)^{1+o(1)}+\left[\left(\min \{d, k-1\}^{1.5} \log p\right)^{1+o(1)}+(\min \{d, k-\right. \\
\left.\left.1\} \log ^{2} p\right)^{1+o(1)}\right](e / 2)^{[k / e\rfloor},
\end{gathered}
$$

where $(e / 2)^{\lfloor k / e\rfloor} \approx 1.12^{k}$.
Based on this complexity bound, we expect to see time improvements even for p as small as 2 when compared to brute-force counting since brute-force counting takes time approximately p^{k}, giving us that brute-force takes time approximately 2^{k} for $p=2$, while the randomized algorithm takes time approximately 1.12^{k}. More details regarding computational time with $p=2$ are given in Tables 1 and 2 .

We now present computational data which illustrates the advantages to using the randomized algorithm over the brute force method. The brute force method takes a polynomial f, a prime p, and a power k, and evaluates f at each value i from 0 to $p^{k}-1$. If $f(i)$ is identically equal to $0\left(\bmod p^{k}\right)$, then that contributes to the total number of roots of $f \in \mathbb{Z} /\left(p^{k}\right)$. We start by comparing the run times of the brute force algorithm and the randomized algorithm for $p=2$.

Table 1 displays the average difference in computation time for the number of roots of 100 random polynomials of degree less than or equal to 100 in $\mathbb{Z} /\left(2^{k}\right)$ for the given k, between brute force and the randomized algorithm (negative implies brute force was faster). The times are shown in seconds. In general, a single computation took less than a second, so differences in the milliseconds are not insignificant. From the table, we see a switch from brute-force being more efficient to the randomized algorithm being more efficient at $k=10$, and the difference becomes more pronounced as k increases.

k	8	9	10	11	15
Avg Diff (in seconds)	-0.0011	-0.00029	0.0028	0.01701	0.32499

Table 1: Average Difference in Run Times for 100 random polynomials with $p=2$, taken as (time of brute-force)-(time of randomized algorithm)

f	p	k	Brute Force	Randomized Algorithm
$-71 x^{4}+21 x^{3}-84 x^{2}-47 x+63$	2	5	0 ns	0 ns
$21 x^{5}-66 x^{4}-24 x^{3}-88 x^{2}-17 x-32$	2	6	0 ns	$1000.00 \mu \mathrm{~s}$
$-75 x^{6}+82 x^{5}-93 x^{4}-19 x^{3}+3 x+65$	2	7	$1000.00 \mu \mathrm{~s}$	$1000.00 \mu \mathrm{~s}$
$x^{7}+x^{6}+62 x^{5}-23 x^{3}-58 x-66$	2	8	$1000.00 \mu \mathrm{~s}$	$1000.00 \mu \mathrm{~s}$
$48 x^{8}-23 x^{6}+90 x^{5}-19 x^{3}+31 x+7$	2	9	3.00 ms	$1000.00 \mu \mathrm{~s}$
$80 x^{8}-37 x^{7}-89 x^{6}+58 x^{3}+32 x^{2}-61$	2	10	5.00 ms	0 ns
$-52 x^{8}+51 x^{6}-75 x^{5}+23 x^{3}-27 x^{2}-38 x$	2	11	11.00 ms	3.00 ms
$61 x^{10}-80 x^{9}-17 x^{6}-90 x^{5}+13 x^{4}+68$	2	12	51.00 ms	2.00 ms
$18 x^{10}+51 x^{8}+49 x^{6}+34 x^{5}-64 x^{2}+70$	2	13	35.00 ms	2.00 ms
$89 x^{12}-56 x^{9}+73 x^{5}-x^{4}+80 x^{3}+69 x^{2}$	2	14	75.00 ms	6.00 ms
$-93 x^{10}-36 x^{6}+53 x^{5}-78 x^{4}-67 x^{2}+88$	2	15	212.00 ms	2.00 ms

Table 2: Run times for $5 \leq k \leq 15, d<k-1$

Table 2 shows the difference in computational time with specific examples, giving an idea of the overall time it takes for both the randomized algorithm and brute-force to run when $p=2$. The difference in computational run time becomes more noticeable when we introduce larger primes.

f	p	k	Brute Force	Randomized Algorithm
$-44 x^{84}+71 x^{83}-17 x^{67}-75 x^{49}-10 x^{11}-7$	211	3	92.19 sec	11.00 ms
$-10 x^{89}+31 x^{82}-51 x^{61}+77 x^{50}+95 x^{48}+x^{38}$	701	3	65.83 min	$1000.00 \mu \mathrm{~s}$
$-15 x^{99}-59 x^{74}-96 x^{29}+72 x^{28}-87 x^{27}+47 x^{3}$	1049	3	3.81 hours	$1000.00 \mu \mathrm{~s}$

Table 3: Run times for p with at least 3 digits

Table 3 illustrates the advantages of using the randomized algorithm over brute-force for computations involving large prime numbers. Table 4 displays the run times for the randomized algorithm for prime numbers with at least four digits. We begin to see a very significant difference between brute force and the randomized algorithm for large primes; it took the brute force method almost 4 hours to count the number of roots of a polynomial in $\mathbb{Z} /\left(p^{k}\right)$ when p was a 4 digit prime number, while the randomized algorithm counted the roots of a polynomial in $\mathbb{Z} /\left(p^{k}\right)$ when p was a 9 digit prime in approximately a minute and a half.

f	p	k	t
$-56 x^{76}+73 x^{64}-x^{57}+80 x^{40}+69 x^{35}+76 x$	8713	3	2.00 ms
$53 x^{94}-78 x^{37}-67 x^{27}+88 x^{26}-5 x^{9}-36 x^{8}$	13177	3	4.00 ms
$55 x^{98}-49 x^{74}+86 x^{60}-23 x^{43}+17 x^{19}+31 x^{2}$	95213	3	27.00 ms
$35 x^{93}+34 x^{84}-14 x^{56}-92 x^{54}-90 x^{27}-32 x^{2}$	104729	3	29.00 ms
$62 x^{78}-31 x^{57}+57 x^{21}+98 x^{16}-80 x^{6}-51 x^{5}$	15485863	3	5.08 s
$-40 x^{90}-10 x^{81}+67 x^{69}-40 x^{41}-82 x^{36}-82 x^{6}$	104395301	3	41.49 s
$-80 x^{87}-72 x^{70}+36 x^{60}+71 x^{52}+54 x^{38}+84 x^{12}$	179424673	3	92.51 s

Table 4: Run times for the randomized algorithm when p has ≥ 4 digits

We expect the randomized algorithm to take the longest when a polynomial has many degenerate roots because a polynomial of this type will require many recursive calls. Polynomials with many degenerate roots do take longer than a random polynomial, but overall the randomized algorithm still outperforms other methods. For instance, counting roots of the 55 degree polynomial $(x-1)(x-2)^{2} \cdots(x-10)^{10}$ in $\mathbb{Z} /\left(31^{10}\right)$ took 6.4 seconds using the randomized algorithm, while counting roots in the same ring with a random polynomial of the same degree took only 1 millisecond. Despite this slowdown for polynomials with very degenerate roots, the randomized algorithm still outperforms other methods; counting roots of a polynomial in just $\mathbb{Z} /\left(31^{6}\right)$ using brute force took 2.7 hours.

4 Bound on Number of Roots

Lemma 4.1. If a root ζ of the $\bmod p$ reduction of f has multiplicity j, then $s_{\zeta} \leq j$, where s_{ζ} is the greatest integer such that $p^{s_{\zeta}}$ divides each of $f(\zeta), \ldots, \frac{f^{(k-1)}(\zeta)}{(k-1)!} p^{k-1} \varepsilon^{k-1}$.

Proof. If ζ has multiplicity j, then $f(\zeta)=\cdots=f^{j-1}(\zeta)=0(\bmod p)$, but $f^{(j)}(\zeta) \neq 0(\bmod p)$. So $\frac{f^{j}(\zeta)}{j!} p^{j}$ is divisible by p^{j} but not p^{j+1} and therefore $s_{\zeta} \leq j$.

Theorem 4.2. Let p be a prime, $f \in \mathbb{Z}[x]$ a polynomial of degree d, and $k \in \mathbb{N}$ such that $d \geq k \geq 2$. Then $N_{f}(p, d, k) \leq \min \{d, p\} p^{k-1}$, where $N_{f}(p, d, k)$ denotes the number of roots of f in $\mathbb{Z} /\left(p^{k}\right)$.

Proof. Let $\zeta_{i} \in\{0, \ldots, p-1\}$ be any root of the $\bmod p$ reduction of f, and let $s\left(i, \zeta_{i}\right)$ be the greatest integer such that $p^{s\left(i, \zeta_{i}\right)}$ divides each of $f\left(\zeta_{i}\right), \ldots, \frac{f^{\min (d, k-1)}\left(\zeta_{i}\right)}{\min (d, k-1)!} p^{k-1}$. Set $f_{\zeta_{i}}(x)=$ $\frac{1}{p^{s\left(i, \zeta_{i}\right.}} f\left(\zeta_{i}+p x\right)$. Clearly, we have that $N_{f}(p, d, 1) \leq \min \{d, p\}$. We know from Lemma 4.1 that if $\zeta_{i} \in \mathbb{Z} /(p)$ is a root of multiplicity J, then $J \leq s$. Let δ_{1} denote the number of non-degenerate roots of $f \bmod p$. From this, we see that

$$
\begin{gathered}
N_{f}(p, d, k) \leq \\
\delta_{1}+\sum_{J=2}^{\min (d, k-1)} \sum_{\zeta_{i} \text { with } s\left(i, \zeta_{i}\right)=J} p^{s\left(i, \zeta_{i}\right)-1} \cdot N_{\zeta_{\zeta_{i}}}\left(p, k-1, k-s\left(i, \zeta_{i}\right)\right)+\sum_{\zeta_{i} \text { with } s\left(i, \zeta_{i}\right)=k} p^{k-1} .
\end{gathered}
$$

Considering that $N_{f_{\zeta_{i}}}\left(p, k-1, k-s\left(i, \zeta_{i}\right)\right) \leq p^{k-s\left(i, \zeta_{i}\right)}$, we get
$N_{f}(p, d, k) \leq \sum_{J=1}^{\min (d, k-1)} \sum_{\zeta_{i} \text { with } s\left(i, \zeta_{i}\right)=J} p^{s\left(i, \zeta_{i}\right)-1} \cdot p^{k-s\left(i, \zeta_{i}\right)}+\sum_{\zeta_{i} \text { with } s\left(i, \zeta_{i}\right)=k} p^{k-1}$,
$N_{f}(p, d, k) \leq \sum_{J=1}^{\min (d, k-1)} \sum_{\zeta_{i} \text { with } s\left(i, \zeta_{i}\right)=J} p^{k-1}+\sum_{\zeta_{i} \text { with } s\left(i, \zeta_{i}\right)=k} p^{k-1}$,
$N_{f}(p, d, k) \leq \sum_{J=1}^{k} \sum_{\zeta_{i} \text { with } s\left(i, \zeta_{i}\right)=J} p^{k-1}$.
Since the number of distinct roots of the $\bmod p$ reduction of f is less than $\min \{d, p\}$, we get that $N_{f}(p, d, k) \leq \min \{d, p\} p^{k-1}$, as desired.

Examples of polynomials with more than $\left\lfloor\frac{d}{k}\right\rfloor p^{k-1}$ roots are given below. These examples show that our bound is within a factor of k of optimality when $d \leq p$.

Example 4.3. $(x-2)^{7}(x-1)^{3}$ with $p=17, k=7$ has $24,221,090$ roots, which is greater than $\left\lfloor\frac{d}{k}\right\rfloor p^{k-1}=24,137,569$.
Example 4.4. $(x-1)^{k} x$ has $p^{k-1}+1$ roots when $d=k+1 \leq p$.
The following examples show that we can have p^{k} roots when $d \geq p$.
Example 4.5. $\left(x^{p}-x\right)^{k}$ is a polynomial of degree $p k$ with p^{k} roots in $\mathbb{Z} /\left(p^{k}\right)$.
Example 4.6. $\left(x^{p^{k}-p^{k-1}}-1\right) x^{k}$ has degree $p^{k}-p^{k-1}+k$ and also vanishes on all of $\mathbb{Z} /\left(p^{k}\right)$.

Theorem 4.7. Let p be a prime and $f \in \mathbb{Z}[x]$ a polynomial of degree d such that $d \geq 2$. Then the number of roots of f in $\mathbb{Z} /\left(p^{2}\right)$ is less than or equal to $\min \left\{\left\lfloor\frac{d}{2}\right\rfloor, p\right\} p+(d \bmod k)$, and this bound is sharp.

Proof. Let $\zeta_{i} \in\{0, \ldots, p-1\}$ be any root of the $\bmod p$ reduction of f, and let $s\left(i, \zeta_{i}\right)$ be the greatest integer such that $p^{s\left(i, \zeta_{i}\right)}$ divides each of $f\left(\zeta_{i}\right), \ldots, \frac{f^{\min (d, k-1)}\left(\zeta_{i}\right)}{\min (d, k-1)!} p^{k-1}$. Let δ_{1} denote the number of roots of f in $\mathbb{Z} /(p)$ with $s\left(i, \zeta_{i}\right)=1$, and let δ_{2} denote the number of roots of f in $\mathbb{Z} /(p)$ with $s\left(i, \zeta_{i}\right)=2$. We know that $\delta_{1}+2 \delta_{2} \leq d$ and that $\delta_{2} \leq\left\lfloor\frac{d}{2}\right\rfloor$ by Lemma 4.1. Using this,
$N_{f}(p, d, 2) \leq \delta_{1}+p \delta_{2}$,
$N_{f}(p, d, 2) \leq\left(d-2 \delta_{2}\right)+p \delta_{2}$,
$N_{f}(p, d, 2) \leq\left(d-2\left\lfloor\frac{d}{2}\right\rfloor\right)+\left\lfloor\frac{d}{2}\right\rfloor p$,
$N_{f}(p, d, 2) \leq\left\lfloor\frac{d}{2}\right\rfloor p+(d \bmod 2)$.
To show that this bound is sharp, we give several examples below for which this bound equals the number of roots of f in $\mathbb{Z} /\left(p^{2}\right)$.

Example 4.8. With $p=5$, the degree 3 polynomial $(x-1)^{2} x$ has $\left\lfloor\frac{3}{2}\right\rfloor \cdot 5+(3 \bmod 2)=6$ roots in $\mathbb{Z} /\left(p^{2}\right)$.

Example 4.9. In general, for $i, j \in \mathbb{Z} /(p)$ such that $i \neq j$, the polynomial $(x-i)^{2}(x-j)$ has $\left\lfloor\frac{d}{2}\right\rfloor p+(d \bmod 2)$ roots in $\mathbb{Z} /\left(p^{2}\right)$ when $d \geq 2$ and $\left\lfloor\frac{d}{2}\right\rfloor \leq p$.

5 Acknowledgements

We would like to thank our advisor, Dr. J. Maurice Rojas, for his assistance and guidance; we would also like to thank Yuyu Zhu for all the suggestions and advice she gave us. We also thank Texas A\&M University for hosting and the National Science Foundation (NSF) for funding this program.

References

[1] Eric Bach and Jeff Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
[2] Qi Cheng; Shuhong Gao; J. Maurice Rojas; and Daqing Wan, "Counting Roots for Polynomials Modulo Prime Powers," Proceedings of ANTS XIII (Algorithmic Number Theory Symposium, July 1620, 2018, University of Wisconsin, Madison), to appear.
[3] Kiran Kedlaya and Christopher Umans, "Fast polynomial factorization and modular composition," SIAM J. Comput., 40 (2011), no. 6, pp. 17671802.
[4] Qi Cheng, "Primality Proving via One Round in ECPP and One Iteration in AKS," Journal of Cryptology, July 2007, Volume 20, Issue 3, pp. 375387
[5] Ivan Niven; Herbert S. Zuckerman; and Hugh L. Montgomery, An Introduction to the Theory of Numbers. John Wily \& Sons, Inc., 1991.

