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Some Preliminaries: Riemannian Metrics

Let M be a n-dimensional “surface” in RN

Geodesics on M are “straightest” lines or equivalently they (or
more precisely sufficiently small pieces of them) are shortest
(locally shortest) curves among all curves on M connecting
their endpoints.

More abstractly, a Riemannian structure (M, g) on a smooth
manifold is given by choosing an inner product gp on the
tangent space TpM for any p ∈ M smoothly on p.
⇒ one can define the length of a curve w.r.t g and the notion
of geodesics.
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Geodesic Equivalence

Two Riemannian Structures (M1, g1) and (M2, g2) are
geodesically equivalent if there is a diffeomorphism
F : M1 → M2 which sends any geodesic of (M1, g1) to a
geodesic on (M2, g2) as unparametrized curves

or, equivalently,
the Riemannian structure (M1, g1) is isometric to a
Riemannnian structure on M2 having the same geodesics, up to
a reparametrization, as (M2, g2).
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Geodesic Equivalence cont.

A trivial way to produce a metric, which is geodesically
equivalent to another given metric, is to multiply it by a
constant, i.e g1=Kg2 where K ∈ R

Example of non-trivially geodesically equivalent metrics: a
hemisphere and a plane via the stereographic projection from
the center of the hemisphere.

All pairs of locally geodesically equivalent Riemannian metrics
with regularity assumption -Levi-Civita (1896).
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Vector Distributuion

A rank k distribution D = {D(q)}q∈M on a manifold M is a
smooth field of k-dimensional subspaces D(q) of the tangent
spaces TqM

Completely non-holonomic distributions: there is no proper
submanifolds S of M such that D(q) belongs to TqM for any
q ∈ M:

Can be effectively described using the notion of Lie
brackets of vector fields;

Any two points of M can be connected by a curve tangent
to a distribution Rashevsky-Chow

Applications: Motion planning of car-like robots.
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Sub-Riemannian structure on a distribution D

A sub-Riemannian structure (M,D, g) is given if, in addition,
an inner product gp is given on each subspace D(p) depending
smoothly on p ⇒

by complete analogy with the Riemannian
case one can define the sub-Riemannian length of a curve
tangent to D w.r.t g , the notion of geodesics, and of geodesic
equivalence

Riemannian case: D(p) = TPM
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Transition operator and the Cauchy characteristics

Given two sub-Riemannian structures (M,D, g1) and (M,D, g1)
the transition operator Sp at the point p from one structure to
another is the linear operator Sp : D(p) 7→ D(p) satisfying

g2p(v1, v2) = g1p(Sqv1, v2), v1, v2 ∈ D(p).

Sp is self-adjoint w.r.t. the Euclidean structure given by g1.

A Cauchy characteristic subspace C (p) is the following
subspace of D(p): X ∈ Dp if for any vector field X̃ tangent to
D and with X̃ (p) = X we have [X̃ ,D](p) ⊂ D(p) . For
example, in the Riemannian case C = D = TM.
A point p0 is called regular if Sp has the same number of
distinct eigenvalues in a neighborhood of p and dim C (p) is
constant in the same neighborhood. In this case C is called the
Cauchy characteristic subdistribution of D.
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Conjecture

The general goal: To describe all pairs of locally geodesically
equivalent sub-Riemannian metrics in a neighborhood of
regular points.

Conjecture (A.C.-Zelenko)

Let (M,D, g1) and (M,D, g2) be sub-Riemannian structures
having the same geodesics up to reparametrization and p0 be a
regular point w.r.t these metrics. Let C⊥ be a subdistribution
of D obtained by taking the orthogonal complement of C with
respect to the inner product g1. Then the following statements
hold in a neighborhood of p0

The fiber C (p) the Cauchy characteristic distribution C is
an invariant subspace of the transition operator Sp for any
p in a neighborhood of p0.
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Conjecture (continued)

Conjecture (continued)

The fiber C⊥(p) belongs to one eigenspace of the
transition operator Sp

There is a natural number ` such that the distribution
(C⊥)`, spanned by all the iterative Lie brackets of the
length not greater than ` of the vector field tangent to
C⊥, is involutive and TM = (C⊥)` ⊕ C .
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Conjecture(continued)

Conjecture (continued)

Assume that k1, . . . , km are the multiplicities of the
eigenvalues of Sp, which are different from the eigenvalue
corresponding to C⊥ and let k0 = dim M −

∑m
i=1 ki . Then

there exists a local coordinate system x̄ = (x̄0, . . . , x̄m),
where x̄i = (x1

i , . . . , x
ki
i ) such that the quadratic forms of

the inner products g1 and g1 have the form

g1( ˙̄x , ˙̄x) =
k∑

s=0

γs(x̄)bs( ˙̄xs , ˙̄xs),

g2( ˙̄x , ˙̄x) =
k∑

s=0

λs(x̄)γs(x̄)bs( ˙̄xs , ˙̄xs)
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Conjecture [continued]

g1( ˙̄x , ˙̄x) =
k∑

s=0

γs(x̄)bs( ˙̄xs , ˙̄xs),

g2( ˙̄x , ˙̄x) =
k∑

s=0

λs(x̄)γs(x̄)bs( ˙̄xs , ˙̄xs),

where the velocities ˙̄x belong to D,

λs(x̄) = βs(x̄s)
k∏

l=0

βl(x̄l),

γs(x̄) =
∏
l 6=s

∣∣∣ 1

βl(x̄l)
− 1

βs(x̄s)

∣∣∣,
βs(p0) 6= βl(p0) for all s 6= l and βs is constant if ks > 1.
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Conjecture (continued) and known case where it is
valid

Conjecture (continued)

The sub-Riemannian structures as in the previous item
have the same sub-Riemannian geodesics up to
reparametrization.

The cases when the conjecture was validated before:

In the Riemannian case- exactly the Levi-Civita theorem;
The case of contact distributions, i.e. when
rankD = dim M − 1, dim M is odd, and rankC = 0 (I.
Zelenko, 2004). In this case the conjecture is equivalent to
the fact that the only pairs of sub-Riemannian structures
with the same geodesic are trivial.
The case of quasi-contact (even-contact) distributions, i.e.
when rankD = dim M − 1, dim M is even , and
rankC = 1 (I. Zelenko, 2004)
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The main result of the project

We validated the conjecture in the case when
rankD = dim M − 1, dim M is odd, and rankC = 2.

Now we are working on the validation of the conjecture in the
general case of corank 1 distributions, i.e. when
rankD = dim M − 1 and without restrictions on the rank of
the Cauchy characteristic sub-distribution C .
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The main steps of the proof

Using the Hamiltonian formalism of the Pontryagin
Maximum Principle of Optimal Control Theory we
reformulate the problem of geodesic equivalence in terms
of an orbital equivalence of the corresponding
sub-Riemannian Hamiltonian systems and we get an
overdetermined system of equation for the orbital
diffeomorphism.

Analyzing the algebraic part of this over-determined
system we obtained strong restrictions on the
sub-Riemannian metrics in terms of the divisibility of
certain polynomials on the fibers of the cotangent bundle
related to these sub-Riemannian structures.
Interpreting these divisibility conditions in geometric terms
by means of the classical Frobenius theorem (on
integrability of involutive distributions) and using the
separation of variables technique, we got the result.
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THANK YOU FOR YOUR ATTENTION

Please enjoy your day
and the rest of the presentations!!!


