Convergence Preserving Permutations and Divergent Fourier Series

Angel Castillo - Texas A&M University

Fourier Series: Introduction

The Fourier series of a continuous function $f(\theta)$ on the interval $[-\pi,\pi]$ is

$$\widetilde{f}(\theta) \sim \sum_{n=-\infty}^{\infty} a_n e^{in\theta},$$

where

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta.$$

Fejér's Example

$$F(x) = \sum_{k=1}^{\infty} \alpha_k Q_{N_k},$$

where $\alpha_k = k^{-2}$, $N_k = 2^{k^3}$, and

$$Q_N(x) = e^{2iNx} \sum_{\substack{j=-N\\j\neq 0}}^N \frac{e^{ijx}}{j}.$$

Is there any way we can fix this divergent behavior?

Question

Is there any way we can fix this divergent behavior?

Yes!

A Classical Approach

Definition (Cesáro Means)

The Cesáro means of a sequence $\{a_n\}$ are the terms of the sequence $\{c_n\}$, where

$$c_n = \frac{1}{n} \sum_{i=1}^n a_i.$$

In other words, the arithmetic mean of of the first n elements of $\{a_n\}$.

A New Approach

Another useful tool to fix these divergence issues are λ -permutations.

λ -Permutations

Definition

A permutation σ of \mathbb{N} is said to be a λ -permutation

- 1.) if $\sum_{i=1}^{\infty} a_i$ converges, then so does $\sum_{i=1}^{\infty} a_{\sigma(i)}$;
- 2.) there exists a divergent series $\sum_{j=1}^{\infty} b_j$ such that $\sum_{j=1}^{\infty} b_{\sigma(j)}$ converges.

We denote the set of all such permutations as Λ .

A block consists of consecutive integers

$$[c,d]_N = \{x \in \mathbb{Z}^+ : c \le x \le d\},\$$

where N is the block number of the union of disjoint blocks for a sequence. For example,

$$\{\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_8\} = \{2, 3, 5, 9, 1, 6, 10, 11\}$$

= $[1, 3]_N \bigcup [5, 6]_N \bigcup [9, 11]_N$

Then we say that the block number sequence for σ in this case is 3.

The Block Condition

Vellman furthered the conditions in [Vel06] for σ to be considered a λ -permutation.

Theorem (Velleman, 2006)

3.) For a λ -permutation σ , the block number sequence for σ is bounded.

An Example

We have mentioned how some Fourier series may diverge, and two ways in which they may be fixed to converge. Now we present a specific example of a function F that has the following properties:

1.) F(x) is continuous at x = 0.

An Example

We have mentioned how some Fourier series may diverge, and two ways in which they may be fixed to converge. Now we present a specific example of a function F that has the following properties:

- 1.) F(x) is continuous at x = 0.
- 2.) The partial sums of the Fourier series of F(x) diverges at x = 0.

Fejér's Idea

Construction:

$$F(x) = \sum_{k=1}^{\infty} \alpha_k Q_{N_k},$$

where $\alpha_k = k(\log(k))^{2.1}$, $N_k = \left\lceil (1.1)^{k(\log(k))^{2.1}} \right\rceil$, and

$$Q_N(x) = e^{2iNx} \sum_{\substack{j=-N\\j\neq 0}}^N \frac{e^{ijx}}{j}.$$

Visualization

The graph shows 5 partial sums of |F(x)| and $|S_{N_k}(F,x)|$

There Is Hope

Theorem (McNeal-Zeytuncu, 2005)

There exists a λ -permutation, σ , such that

$$\lim_{n\to\infty} S_{\sigma(n)}(F,x)$$

exists for all $x \in [-\pi, \pi]$.

Can we fix any divergent Fourier series with a λ -permutation?

Main Question

Can we fix any divergent Fourier series with a λ -permutation?

No.

Our focus was on constructing a function G(x) such that

Our focus was on constructing a function G(x) such that 1.) G(x) is continuous on $[-\pi, \pi]$.

Our focus was on constructing a function G(x) such that

- 1.) G(x) is continuous on $[-\pi, \pi]$.
- 2.) The partial sums of the Fourier series of G(x) diverge at x = 0.

Our focus was on constructing a function G(x) such that

- 1.) G(x) is continuous on $[-\pi, \pi]$.
- 2.) The partial sums of the Fourier series of G(x) diverge at x = 0.
- 3.) However, there exists no λ -permutation σ that fixes its divergence issue.

Theorem

There exists a continuous function G(x) such that

- 1.) $\limsup_{n\to\infty} S_n(G,0) = \infty$, and
- 2.) $\lim_{n\to\infty} S_{\sigma(n)}(G,x)$ does not exist for all $\sigma\in\Lambda$.

Series

For any $\emph{N} \in \mathbb{N}$, permute the integers $\{1,2,\cdots,2\emph{N}\}$ as

$$\{2\textit{N}, 1, 2\textit{N}-1, 2, 2\textit{N}-2, 3, \cdots, \textit{N}+2, \textit{N}-1, \textit{N}+1, \textit{N}\}$$

we label this permutation by $\eta. \\$

Construction:

Let $\beta_k = \frac{1}{k^2}$ and $N_k = 2^{k^3}$ now

$$G(x) = \sum_{k=1}^{\infty} \beta_k \widetilde{Q}_{N_k}$$

For any even positive integer \mathbb{N} , define

$$\widetilde{Q}_N(x) = \left(\sum_{j=1}^N \frac{\exp(i(N+j-1)x)}{j} - \sum_{j=1}^N \frac{\exp(i(2N+j)x)}{\eta(j)}\right)$$

Future Work

Cesaro Means vs. λ -Permutations, in terms of computational efficiency.

References

- [Kör83] T. W. Körner. The behavior of power series on their circle of convergence. In Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981), volume 995 of Lecture Notes in Math., pages 56-94. Springer, Berlin, 1983.
- [MZ06] Jeffery D. McNeal and Yunus E. Zeytuncu. A note on rearrangement of Fourier series. J. Math. Anal. Appl., 323(2):1348–1353, 2006.
- [Vel06] Daniel J. Velleman. A note on λ -permutations. Amer. Math. Monthly, 113(2):173–178, 2006.

Texas A&M University, Department of Mathematics, College Station, TX 77843

TEXAS TECH UNIVERSITY, LUBBOCK, TX

University of Michigan-Dearborn, Department of Mathematics and Statistics, Dearborn, MI $48128\,$

E-mail address: khyejin@umich.edu

University of Michigan-Dearborn, Department of Mathematics and Statistics, Dearborn, MI 48128

 $E ext{-}mail\ address: zeytuncu@umich.edu}$

