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Motivation

» Quantum graph provides useful models for complex systems in the fields of
natural science, engineering and social sciences

» |n the long term, our project is to find a more efficient algorithm of
computing eigenvalues of quantum graphs

®» we conjectured that the secular determinants of quantum graphs are
relatively monotonic




Background

DEFINITION: Quantum graph I'(V,E) ,where V is the set of vertices and E
is the set of edges, is a metric graph equipped with a Hamiltonian

operator H (1) , accompanied by “appropriate” vertex conditions (2).

®» cigenvalue equation for the Schrodinger operator:

1) Ve @ =k

» (2) Vertex condifions:

= Neumann condition:
. : af
f(x) is continuous on I and at each vertex v one has ZeEEv e (v) =0
e

» Dirichlet conditfion:

f(x) is continuous on I' and f(v) =0




A trivial example: interval

; (1) V(x) = 0;
A ° Solution for —f" = k*f on L:
A B (2) f(x) = C; cos(kx) + C,sin(kx)

Apply vertex conditions:

, , (3) f'(0) =0
Figure 1. interval [0,L],

Neumann condition on endpoints (4) —f'(L) =0
A,B, and 0 corresponding A ;

we can solve eigenvalues:

(5) k*=(9? ,n€N




Example: Lasso graph

Solution for —f" = k?f onlLy,L,:

2
1 e (6) fi =a; - e™ 4+ ag - el
= Q L, (7) fo =ay-e™* + gz . ez
Ly B
1 S~ . _
2 Apply vertex condition:

Figure 2. I'(V,E) Lasso graph (8) —f{ (L) = —ika,e™ 1 + ikaz = 0
V={A.B} ; E={[0,L,],[0,L,]} where 0

corresponding connected point ; (9) f1(0) + f2(0) — f(Ly) =0
Neumann condition on vertices

(]O) f1(0) =f2(0) = f2(L>)




Example: Lasso graph

We get the system

1 - 2 - 2 -
(11)  a; = —gaie‘k’“l +§aze‘kL2 +§a§e"‘L2
(12) a7 = ajels

. N 2 ikL; 4 2 ikL, _ 1 _ikL,

Figure 2. I'(V,E) Lasso graph (13) Ay = 5 LT + = P e

V={A.B} ; E={[0,L,],[0, L]}

where 0 corresponding 2 : 1 : 2 :

connected point ; Neumann (14) a; = o aielkL1 e azelkL2 + - age‘“2

condition on vertices



Figure 2. I'(V,E) Lasso graph
V={A,B} ; E={[0,L4],[0, L]}
where 0 corresponding
connected point ; Neumann
condition on vertices

Example: Lasso graph
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Notation: [ |

The system can be written as:
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k%(k # 0) is the eigenvalue of the graph iff
det(I — SD(k)) = 0, we call the determinant
secvular determinant.




Secular determinant (Neumann condition graph)

For the general Neumann condition graph I'(V,E), first consider the single vertex in
r'(V.E), which has d edges attach to it. Denote the length of j-th edge is L;

the solution on j-th edge:

(16) f] =aq; - eltkx 4 a; - eik(Lj—x)

Apply the vertex condition:

Neumann condifion ¢
(18) a; + a]—eika =q; +aje*, forvik e N and Lk <d
By (16)&(17)&(18) we solving a, for1 <n < d:

_ ' 2 vd KL j
(19) a, = —azetn + =~ Y=g gt




Secular determinant (Neumann condition graph)

Then we consider the whole graph I'(V, E)
> b
@ -

— &
<

b
In the 2 | E| -dimensional complex space, with dimensions indexed by the
directed edges. we get 2|E| x 2|E| matrix S and D(k)for I'(V,E) :

(20) D(k)pp = etkLo
2 1 ifp'=b
(21) d
2 _
Sp'p = = if b’ follows b and b’ # b
L 0 otherwise

The secular determinant is det(I — SD(k))




Proposal

» Change a vertex condition (Neumann condition to Dirichlet condition )

e.g.
——
/
T T
Conjecture:

Define a guantum graph T with Neumann condition on its vertices, obtained
the quantum graph T’ by changing one of the vertices condition to Dirichlet

condition. Define f(k) =

det(I-S,Dy(k))

det(I-S_D_1(k)) ' and f(k) has negative

derivatives except the location where k2 is eigenvalue of T' .




Application
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Graph 1. part of the graph for f(k)

_det(] — S;D;(k))
flk) = det(I — S;+Dy(k))

There is only one eigenvalue lies
between two poles and the
derivative is always negative.
Using Secant Algorithm can easily
solve this eigenvalue



Application
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To find the eigenvalues of a complicated quantum graph, we can always
“break it down” into trivial intervals, and iteratively we solve the
eigenvalues.
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An analogous result In the case of matrix

Theorem:

Define a vector V € C™, obtained matrix B by B = V-VT, for any real

Hermitian matrix A € C™", we have the function f(1) = dzte(éz;g” has
negative derivatives except for the locations A is the eigenvalue for A.




Secular Determinant
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b; Sb’,b =0

Sb’,bz__l ifb,=B

b
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if b’ follows band b’ # b




