Relative monotonicity of secular determinants of quantum graphs

Present by Yaqi Dai

Supervisor: Professor Berkolaiko

Motivation

- Quantum graph provides useful models for complex systems in the fields of natural science, engineering and social sciences
- In the long term, our project is to find a more efficient algorithm of computing eigenvalues of quantum graphs
- we conjectured that the secular determinants of quantum graphs are relatively monotonic

Background

DEFINITION: Quantum graph $\Gamma(V,E)$, where V is the set of vertices and E is the set of edges, is a metric graph equipped with a Hamiltonian operator H (1), accompanied by "appropriate" vertex conditions (2).

eigenvalue equation for the Schrödinger operator:

$$(1) \qquad -\frac{d^2f}{dx^2} + V(x) \cdot f(x) = k^2 \cdot f(x)$$

- (2) Vertex conditions:
 - Neumann condition:

$$f(x)$$
 is continuous on Γ and at each vertex v one has $\sum_{e \in E_v} \frac{df}{dx_e}(v) = 0$

Dirichlet condition:

$$f(x)$$
 is continuous on Γ and $f(v) = 0$

A trivial example: interval

Figure 1. interval [0,L],
Neumann condition on endpoints
A,B, and 0 corresponding A;

$$(1) V(x) \equiv 0;$$

Solution for $-f'' = k^2 f$ on L:

(2)
$$f(x) = C_1 \cos(kx) + C_2 \sin(kx)$$

Apply vertex conditions:

$$(3) f'(0) = 0$$

$$(4) -f'(L) = 0$$

we can solve eigenvalues:

$$(5) k^2 = (\frac{\pi n}{L})^2 \quad , n \in \mathbb{N}$$

Example: Lasso graph

Figure 2. $\Gamma(V,E)$ Lasso graph $V=\{A,B\}$; $E=\{[0,L_1],[0,L_2]\}$ where 0 corresponding connected point; Neumann condition on vertices

Solution for $-f'' = k^2 f$ on L_1, L_2 :

(6)
$$f_1 = a_1 \cdot e^{ikx} + a_{\overline{1}} \cdot e^{ik(L_1 - x)}$$

(7)
$$f_2 = a_2 \cdot e^{ikx} + a_{\overline{2}} \cdot e^{ik(L_2 - x)}$$

Apply vertex condition:

(8)
$$-f_1'(L_1) = -ika_1e^{ikL_1} + ika_{\overline{1}} = 0$$

(9)
$$f_1'(0) + f_2'(0) - f_2'(L_2) = 0$$

(10)
$$f_1(0) = f_2(0) = f_2(L_2)$$

Example: Lasso graph

Figure 2. $\Gamma(V,E)$ Lasso graph $V=\{A,B\}$; $E=\{[0,L_1],[0,L_2]\}$ where 0 corresponding connected point; Neumann condition on vertices

We get the system

(11)
$$a_1 = -\frac{1}{3}a_{\overline{1}}e^{ikL_1} + \frac{2}{3}a_2e^{ikL_2} + \frac{2}{3}a_{\overline{2}}e^{ikL_2}$$

$$(12) a_{\overline{1}} = a_1 e^{ikL_1}$$

(13)
$$a_2 = \frac{2}{3}a_{\overline{1}}e^{ikL_1} + \frac{2}{3}a_2e^{ikL_2} - \frac{1}{3}a_{\overline{2}}e^{ikL_2}$$

(14)
$$a_{\overline{2}} = \frac{2}{3} a_{\overline{1}} e^{ikL_1} - \frac{1}{3} a_2 e^{ikL_2} + \frac{2}{3} a_{\overline{2}} e^{ikL_2}$$

Example: Lasso graph

Figure 2. $\Gamma(V,E)$ Lasso graph $V=\{A,B\}$; $E=\{[0,L_1],[0,L_2]\}$ where 0 corresponding connected point; Neumann condition on vertices

The system can be written as:

$$\begin{bmatrix}
a_1 \\
a_{\bar{1}} \\
a_2 \\
a_{\bar{2}}
\end{bmatrix} = \begin{bmatrix}
0 & -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
1 & 0 & 0 & 0 \\
0 & \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\
0 & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3}
\end{bmatrix} \begin{bmatrix}
e^{ikL_1} & 0 & 0 & 0 \\
0 & e^{ikL_1} & 0 & 0 \\
0 & 0 & e^{ikL_2} & 0 \\
0 & 0 & 0 & e^{ikL_2}
\end{bmatrix} \begin{bmatrix}
a_1 \\
a_{\bar{1}} \\
a_2 \\
a_2
\end{bmatrix}$$

Notation:

 $k^2(k \neq 0)$ is the eigenvalue of the graph iff det(I - SD(k)) = 0, we call the determinant secular determinant.

Secular determinant (Neumann condition graph)

For the general Neumann condition graph $\Gamma(V,E)$, first consider the single vertex in $\Gamma(V,E)$, which has d edges attach to it. Denote the length of j-th edge is L_j

the solution on j-th edge:

$$(16) f_j = a_j \cdot e^{ikx} + a_{\bar{j}} \cdot e^{ik(L_j - x)}$$

Apply the vertex condition:

(17)
$$\sum_{j=1}^{d} a_j - \sum_{j=1}^{d} a_{\bar{j}} e^{ikL_j} = 0$$

Figure 3. a vertex with Neumann condition c

(18)
$$a_j + a_{\bar{l}}e^{ikL_j} = a_l + a_{\bar{l}}e^{ikL_l}, \quad \text{for } \forall l, k \in N^* \text{ and } l, k \le d$$

By (16)&(17)&(18) we solving a_n for $1 \le n \le d$:

(19)
$$a_n = -a_{\bar{n}}e^{ikL_n} + \frac{2}{d}\sum_{j=1}^d a_{\bar{j}}e^{ikL_j}$$

Secular determinant (Neumann condition graph)

Then we consider the whole graph $\Gamma(V, E)$

In the 2|E|-dimensional complex space, with dimensions indexed by the directed edges. we get $2|E| \times 2|E|$ matrix S and D(k) for $\Gamma(V, E)$:

$$(20) D(k)_{b,b} = e^{ikL_b}$$

(21)
$$S_{b',b} = \begin{cases} \frac{2}{d} - 1 & \text{if } b' = \overline{b} \\ \frac{2}{d} & \text{if } b' \text{ follows } b \text{ and } b' \neq \overline{b} \\ 0 & \text{otherwise} \end{cases}$$

The secular determinant is $\det(I - SD(k))$

Proposal

Change a vertex condition (Neumann condition to Dirichlet condition)
 e.g.

Conjecture:

Define a quantum graph τ with Neumann condition on its vertices, obtained the quantum graph τ' by changing one of the vertices condition to Dirichlet condition. Define $f(k) = \frac{\det(I - S_{\tau} D_{\tau}(k))}{\det(I - S_{\tau'} D_{\tau'}(k))}$, and f(k) has negative derivatives except the location where k^2 is eigenvalue of τ' .

Application

Graph 1. part of the graph for f(k)

$$f(k) = \frac{\det(I - S_{\tau}D_{\tau}(k))}{\det(I - S_{\tau'}D_{\tau'}(k))}$$

There is only one eigenvalue lies between two poles and the derivative is always negative. Using Secant Algorithm can easily solve this eigenvalue

Application

To find the eigenvalues of a complicated quantum graph, we can always "break it down" into trivial intervals, and iteratively we solve the eigenvalues.

Acknowledgement

Supervisor: Professor Berkolaiko

An analogous result in the case of matrix

Theorem:

Define a vector $\vec{V} \in C^n$, obtained matrix B by $B = \vec{V} \cdot \vec{V}^T$, for any real Hermitian matrix $A \in C^{n \times n}$, we have the function $f(\lambda) = \frac{\det(A+B-\lambda I)}{\det(A-\lambda I)}$ has negative derivatives except for the locations λ is the eigenvalue for A.

Secular Determinant

$$S_{b',b} = 0$$

$$S_{b',b} = \frac{2}{d} - 1 \quad \text{if } b' = \overline{b}$$

$$S_{b',b} = \frac{2}{d}$$

if b' follows b and $b' \neq \bar{b}$