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Introduction

Compressive Sensing is a relatively young area of Signal Processing
that deals with compressing and reconstructing linearly-modeled
signals.

The field was pioneered by Candés, Romberg, Tao [1][2][3][4] and
Donoho [5].

Compressive Sensing works in a ’naive’ manner, requiring no prior
knowledge of the signal and instead relying on the structure that are
often found in linearly-modeled signals.
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Basic Idea

Suppose x ∈ Rn is our signal that we are interested in compressing. We
perform the compression by multiplying x by Φ, an m × n-matrix, where
m� n.

y = Φx (1)

Thus y represents our compressed signal.
By imposing conditions on x and Φ, we can recover our signal.
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The Restricted Isometry Property

A signal can be recovered if there exists a δK ∈ (0, 1), where the Φ matrix
satisfies

(1− δK )‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK )‖x‖22. (2)

where x ∈ ΣK = {x : ‖x‖0 ≤ K}, ‖ · ‖ denoting the sparisty of the vector,
the number of nonzero entires. This property is known as the Restricted
Isometry Property (RIP).

Nathan LaFerney & Carlos Munoz Student Research Week Spring 2015 March 26, 2015 4 / 21



The Restricted Isometry Property Cont.

If Φ is an m × n-matrix, then here are some ways we can choose Φ:

Construct Phi by choosing the entries from a Normal distribution
with zero mean and a standard deviation of m−1.

Construct Phi by randomly choosing m distinct rows of a wavelet
matrix.
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Related Theorems

Theorem

[6] Let Φ be an m × n-matrix that satisfies the RIP of order 2K with
constant δ ∈ (0, 12 . Then

m ≥ C log

(
N

K

)
(3)

where C = (2 log(
√

24 + 1)−1.
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Related Theorems Cont.

Theorem

[6] If

K <
1

2

(
1 +

1

µ(Φ)

)
where µ(Φ) = max

1≤i<j≤n

|〈φi , φj〉|
‖φi‖2‖φj‖2

(4)

then for each measurement vector y ∈ Rm there exists at most one signal
x ∈ ΣK such that y = Φx.

Nathan LaFerney & Carlos Munoz Student Research Week Spring 2015 March 26, 2015 7 / 21



Reconstruction

To recover our original signal, we solve the convex optimization
problem

min
x
‖y− Φx‖2 + ‖x‖1 (5)

Algorithms such as linear programming and gradient descent can be
used.

The algorithm we use is called the Multihypothesis Block-based
Compressive Sensing.
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Donoho-Tanner Phase Transition [7]
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Design of our Algorithm: The Compression

A satellite takes a picture while in flight.

The image is then separated into a red, green, and blue channels.

Each Channel is then taken and multiplied by a different Φ Matrix.
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Design of our Algorithm: The Reconstruction

The picture is then received on Earth.

Each individual channel is reconstructed by parallel computing using a
cluster of computers.

After each channel is reconstructed the channels are combined back
into one picture.
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Reconstructed Images

320x320
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Reconstructed Images Cont.

320x320
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Reconstructed Images Cont.

600x600
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Reconstructed Images Cont.

1024 x1024
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Reconstructed Images Cont.

1024 x1024
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Reconstructed Images Cont.

1920 x1920
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Design of our Algorithm: Video

The video is taken and broken up into frames.

Each frame is treated as image and compressed then reconstructed
using the same procedure as in the previous two slides.

The main difference is that in this code, after the 1st frame, the
previous frame is used as an initial guess.
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