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Introduction

@ Compressive Sensing is a relatively young area of Signal Processing
that deals with compressing and reconstructing linearly-modeled
signals.
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Introduction

@ Compressive Sensing is a relatively young area of Signal Processing
that deals with compressing and reconstructing linearly-modeled

signals.
@ The field was pioneered by Candés, Romberg, Tao [1][2][3][4] and
Donoho [5].

@ Compressive Sensing works in a 'naive’ manner, requiring no prior
knowledge of the signal and instead relying on the structure that are
often found in linearly-modeled signals.
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Basic Idea

Suppose x € R” is our signal that we are interested in compressing. We
perform the compression by multiplying x by ®, an m x n-matrix, where
m < n.

y = dx (1)
Thus y represents our compressed signal.
By imposing conditions on x and ®, we can recover our signal.
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The Restricted Isometry Property

A signal can be recovered if there exists a dx € (0, 1), where the ® matrix
satisfies

(1= 3k)lx]2 < |ex][3 < (1 + k) x3- (2)
where x € X = {x : [|x][o < K}, || - || denoting the sparisty of the vector,

the number of nonzero entires. This property is known as the Restricted
Isometry Property (RIP).
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The Restricted Isometry Property Cont.

If ® is an m x n-matrix, then here are some ways we can choose ¢:
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e Restricted Isometry Property Cont.

If ® is an m x n-matrix, then here are some ways we can choose ¢:

@ Construct Phi by choosing the entries from a Normal distribution
with zero mean and a standard deviation of m™1.
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The Restricted Isometry Property Cont.

If ® is an m x n-matrix, then here are some ways we can choose ¢:

@ Construct Phi by choosing the entries from a Normal distribution
with zero mean and a standard deviation of m™1.

@ Construct Phi by randomly choosing m distinct rows of a wavelet
matrix.
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Related Theorems

Theorem

[6] Let ® be an m x n-matrix that satisfies the RIP of order 2K with

constant § € (0, 4. Then
N
> Cl —
m> Clog () )

where C = (2log(v/24 +1)7L.
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Related Theorems Cont.

[6] If
1/ 1 B 65,65
<3 (” u(‘b)) where ju(®) =\ 002X Tollole D

then for each measurement vectory € R™ there exists at most one signal
X € X i such that y = dx.
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Reconstruction

@ To recover our original signal, we solve the convex optimization
problem

min|ly — ®x||2 + [|x[|y (5)
X
@ Algorithms such as linear programming and gradient descent can be

used.

@ The algorithm we use is called the Multihypothesis Block-based
Compressive Sensing.
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Donoho-Tanner Phase Transition [7]

stepwise with FDR threshold, z~N (0,16),
normalized L, error, p = 200
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Design of our Algorithm: The Compression

@ A satellite takes a picture while in flight.
@ The image is then separated into a red, green, and blue channels.
@ Each Channel is then taken and multiplied by a different ® Matrix.
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Design of our Algorithm: The Reconstruction

@ The picture is then received on Earth.

@ Each individual channel is reconstructed by parallel computing using a
cluster of computers.

@ After each channel is reconstructed the channels are combined back
into one picture.
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Reconstructed Images

320x320
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Reconstructed Images Cont.

320x320

Nathan LaFerney & Carlos Munoz Student Research Week Spring 2015 March 26, 2015 13 /21



Reconstructed Images Cont.

600x600
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Reconstructed Images Cont.

1024 x1024
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Reconstructed Images Cont.

1024 x1024
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Reconstructed Images Cont.

1920 x1920
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Design of our Algorithm: Video

@ The video is taken and broken up into frames.

@ Each frame is treated as image and compressed then reconstructed
using the same procedure as in the previous two slides.

@ The main difference is that in this code, after the 15t frame, the
previous frame is used as an initial guess.
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