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Abstract

This paper introduces the class of strongly endotactic networks, a subclass of the
endotactic networks introduced by G. Craciun, F. Nazarov, and C. Pantea. The main
result states that the global attractor conjecture holds for complex-balanced systems
that are strongly endotactic: every trajectory with positive initial condition converges
to the unique positive equilibrium allowed by conservation laws. This extends a recent
result by D. F. Anderson for systems where the reaction diagram has only one linkage
class (connected component). The results here are proved using differential inclusions, a
setting that includes power-law systems. The key ideas include a perspective on reaction
kinetics in terms of combinatorial geometry of reaction diagrams, a projection argument
that enables analysis of a given system in terms of systems with lower dimension, and an
extension of Birch’s theorem, a well-known result about intersections of affine subspaces
with manifolds parameterized by monomials.
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1 Introduction

The general study of reaction systems with mass-action kinetics goes back at least to the
pioneering work of Feinberg, Horn, and Jackson in the 1970s [19, 27]. The class of systems
under consideration in this paper includes such mass-action systems, as well as power-law
systems and S-systems from biochemical systems theory [43].

Quite apart from the context of biochemistry, such systems appear to be objects of in-
trinsic interest for engineers and mathematicians. For instance, essentially identical models
have been investigated in genetic algorithms [41] and population dynamics [31]. Models
with similar mathematical structure have been studied in distributed systems [40] and al-
gebraic statistics [37]. Connections between these systems and binomial algebra and toric
geometry have been stressed by several authors [1, 13, 14, 20, 23, 33, 45].

The Global Attractor Conjecture (GAC) is the focus of this paper. Given a reaction
system, conservation laws induce a foliation of the concentration space (which is a positive
orthant) by polyhedra that are forward-invariant with respect to the dynamics. It is well-
known that when the dynamics of a reaction system admit a “pseudo-Helmholtz free energy
function” as a strict Lyapunov function, then each forward-invariant polyhedron contains a
special equilibrium point, sometimes called the “Birch point” due to a connection to Birch’s
theorem [27]. The GAC, which has resisted attempts at proof for four decades [25], asserts
that every trajectory asymptotically approaches the unique Birch point in its forward-
invariant polyhedron. A survey of literature relevant to the GAC appears in Section 4.

The GAC is usually stated for complex-balanced systems, which are generalizations of
the more well-known detailed-balanced systems. Complex-balanced systems are known to
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admit pseudo-Helmholtz free energy functions as Lyapunov functions. Specializing the GAC
to the case of networks in which every reaction has the form A → B (that is, every complex
is a species) yields the well-known Ergodic Theorem for continuous-time, discrete-space,
autonomous Markov chains [38]. From this perspective, the GAC may be viewed as an
ergodicity conjecture for chemical reaction networks evolving under mass-action kinetics.
Indeed, reaction systems theory may be viewed as a nonlinear generalization of the theory
of continuous-time discrete-space autonomous Markov chains.

A key idea in our work is that the combinatorial geometry of a reaction network in the
space of (chemical) complexes—the reactants and products of the reactions—informs the
dynamics in concentration space. This connection was anticipated to a certain extent by
the “extended permanence conjecture” (Conjecture 4.5) of Craciun, Nazarov, and Pantea,
which implies the GAC [15]. Their conjecture captures the intuitively appealing idea that if
a reaction network “points inwards”, in the sense of being endotactic (see Definition 3.14),
then the corresponding dynamics in concentration space must also roughly “point inwards”,
in the sense of being permanent (see Definition 4.1).

We develop the correspondence between geometry of a network in the space of complexes
and dynamics in concentration space by analyzing the contributions of each reaction to the
dynamics along “toric jets” (Definition 6.2.3). In doing so, we positively resolve the extended
permanence conjecture for a subclass of endotactic networks called “strongly endotactic”
networks (Definition 3.14), our first main result.

Theorem 1.1. Every strongly endotactic reaction network is permanent.

As stated above, the extended permanence conjecture implies the GAC.

Theorem 1.2. The GAC holds for strongly endotactic complex-balanced reaction systems.

The fact that weakly reversible networks with one linkage class (i.e., with strongly con-
nected reaction graph) are strongly endotactic (Corollary 3.20) yields an easy consequence.

Theorem 1.3. Every weakly reversible reaction network with exactly one linkage class is
permanent.

Theorem 1.3 strengthens a result in which Anderson proved persistence of weakly re-
versible systems with exactly one linkage class under the assumption that all trajectories
are bounded [4]. Our approach was significantly influenced by distillation of ideas from
Anderson’s result, combined with insights gained from [15].

The class of dynamical systems considered here includes those known as generalized
mass-action systems, or power-law systems, studied in biochemical systems theory [43].
More precisely, we prove our results here in the more general setting of mass-action dif-
ferential inclusions, which we introduced in earlier work [24]. The crucial result from [24]
applied here (in Section 8) concerns families of differential inclusions that are closed under
certain projections, allowing us to analyze a system in terms of systems of lower dimension.
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In the course of this work (Section 5), we prove two extensions of Birch’s theorem,
a well-known result in reaction network theory [27] and algebraic statistics [11] concern-
ing intersections of certain affine spaces and manifolds parametrized by monomials (Theo-
rems 5.12 and 5.14). We show that Birch’s theorem remains true under slight perturbation
(Theorem 5.17), and at infinity in suitable compactifications (Theorem 5.16).

To connect the combinatorial (polyhedral) geometry of a reaction diagram to the asymp-
totics of its dynamics (Section 6), we develop jets and toric jets (Definition 6.2), in parallel
with the notion of “jet frame” from work by Miller and Pak [34] on unfolding convex poly-
hedra. Jets capture motion the bulk of which proceeds in a fixed main direction, but is
perturbed to first order in an orthogonal direction, to second order in a third direction, and
so on. Jets coherently tease apart the contributions of various reactions to the gradient of
pseudo-Helmholtz free energy along infinite trajectories (Proposition 6.26).

Birch’s Theorem and jets come together (in Section 7) to show that for strongly en-
dotactic networks, within each stoichiometric compatibility class there exists a compact
set outside of which the pseudo-Helmholtz free energy function

∑
i∈S(xi log xi − xi) de-

creases along trajectories (Theorem 7.5). Our main results on persistence and permanence,
described earlier in this Introduction, follow in Section 8.

Examples in Section 9 illustrate our results and explain the limitations of our approach.
A further extended example in Section 2 serves to introduce the main ideas, after which
we give precise, general definitions concerning reaction networks and their accompanying
mass-action differential inclusions (Section 3). Various conjectures related to the GAC,
along with known partial results, are collected in Section 4.

2 An illustrative example

Consider the following reaction network with two species X and Y and three reactions:

2X
k1−→ X 0

k2−→ Y 2Y
k3−→ X + Y, (1)

where k1, k2, k3 ∈ R>0 denote the reaction rate constants. Network (1) is obtained by
reversing all the reactions in the well-known Lotka–Volterra reaction network. Letting x(t)
and y(t) denote concentrations of X and Y , respectively, at time t, network (1) defines the
following system of ordinary differential equations arising from mass-action kinetics:

(
ẋ
ẏ

)
= k1x

2

(
−1
0

)
+ k2

(
0
1

)
+ k3y

2

(
1
−1

)
. (2)

In this section, we introduce the main ideas of our work by explaining how to prove
that network (1) taken with mass-action kinetics is permanent : there exists a compact set
K ⊆ R

2
>0 such that every trajectory of the dynamical system (2) in R

2
>0 eventually remains

in K. We begin with the following assertion.
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Claim 2.1. There exists a compact set K ⊆ R
2
>0 (that depends on k1, k2, k3) such that

outside K, the function
g(x, y) = x log x − x + y log y − y

on R
2
>0 is strictly decreasing along trajectories

(
x(t), y(t)

)
of (2) except at an equilibrium.

By itself, Claim 2.1 does not imply that the dynamical system (2) is permanent. For
instance, consider the figure

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

in which level sets of g are indicated in red, with interior level sets correspond to lower values
of g. The function g decreases along the trajectory indicated in blue, but this trajectory
is not even persistent—that is, at least one coordinate (in this case, the y-coordinate)
approaches zero.

Nevertheless, Claim 2.1 is enough to establish that the origin (0, 0) is repelling (Defini-
tion 4.1.2) and that all trajectories of (2) are bounded. These two properties, along with
good behavior under projection, suffice to obtain our desired permanence result. This follows
from our earlier work [24], as explained in Sections 8.2–8.3, particularly Lemma 8.3. As a
consequence of permanence, the blue trajectory depicted here cannot be a trajectory of (2).

Our explanation of Claim 2.1 involves a “proof by picture”. Concentration space refers
to the space in which the trajectories of the dynamical system (2) evolve, excluding points
where X or Y has concentration zero; thus concentration space is R

2
>0. Energy space has

coordinates u = log x and v = log y, so energy space is (another) R
2. Concentration space

and energy space are diffeomorphic via the Lie group isomorphism (x, y) 7→ (log x, log y).
This map sends the identity (1, 1) to the origin (0, 0), and the curve parametrized by θ 7→
(θa, θb) in concentration space to the ray from the origin in direction (a, b) in energy space:

(1, 1)

(0, 0)

(θa, θb)

x

y

(log,log)
−−−−→

log x

log y

(a, b)

(0, 0)

toric ray in concentration space a vector in energy space
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Such curves in concentration space, obtained by exponentiating rays in energy space, are
central to our analysis. The curve parametrized by (θa, θb) is the toric ray in direction (a, b).

Remark 2.2. In Lie theory or differential geometry, the inverse map from energy space
to concentration space is the usual exponential map from the tangent space at the identity
(1, 1) to the group. Thus toric rays are the positive parts of 1-parameter subgroups of
concentration space, and they can also be thought of as geodesics.

For every point (x, y) ∈ R
2
>0, the gradient of g at (x, y) is parallel to the direction of the

toric ray that passes through that point. This is because ∇g(x, y) = (log x, log y), so that

∇g(θa, θb) = (log θ)(a, b). (3)

Combinatorial information about a reaction network is represented in the space of com-
plexes by the reaction diagram, which is a geometric representation of the reaction network.
The reaction diagram for network (1) is depicted here:

(0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0)

The reaction pX + qY
k−→ rX + sY , for example, is represented by the arrow from the

complex (p, q) to the complex (r, s). (Other authors have sometimes used the term “space
of complexes” to refer to a real vector space of dimension equal to the number of vertices
of the reaction graph. Readers should be aware that our usage is different. For us, the
dimension of the space of complexes equals the number of species.)

The right-hand side of the differential equations (2) consists of a sum in which the

summand arising from a reaction of the form pX + qY
k−→ rX + sY is:

kxpyq

(
r − p
s − q

)
. (4)

The relation between concentration space and the space of complexes depicted in Figure 1 is
central to our analysis. Specifically, along a toric ray parametrized by (θa, θb), the monomial

contribution xpyq of the reaction pX + qY
k−→ rX + sY equals θ〈(a,b),(p,q)〉. The exponent

〈(a, b), (p, q)〉 has a geometric interpretation in the space of complexes as the value of the
linear functional ax + by at the point (p, q). We now ask: as θ → +∞, which reactions are
dominant, that is, which reactions yield the largest-magnitude contribution (4)? The answer
is that the dominant reactions are the ones with maximal inner product 〈(a, b), (p, q)〉,
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(0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0)

(a, b)

space of complexes

Figure 1: “Proof by picture” for permanence of the reverse Lotka-Volterra system. The toric
ray corresponding to the depicted vector pulls hardest on the source of the vertical reaction.

because their monomial contributions grow the fastest as θ → +∞ and thus overwhelm the
lesser monomial contributions. The directions in which these reactions “pull” (that is, the
vector contributions to the differential equations (2)) remain unchanged along the toric ray

and are given by their reaction vectors

(
r − p
s − q

)
as in (4).

We emphasize this key point: along every toric ray, there exist some asymptotically
dominant reactions that determine the dynamics. These reactions can be determined purely
combinatorially: they are the reactions pX+qY → rX+sY whose reactant complexes (p, q)
attain the maximal inner product with the direction (a, b) of the toric ray.

Returning to Claim 2.1, the time derivative d
dtg(x(t), y(t)) of g at a trajectory point at

time t = t0 of the form (x(t0), y(t0)) = (θa, θb) is determined by the chain rule to be

d

dt
g(x(t), y(t))

∣∣∣
t=t0

=
〈
∇g(θa, θb), P (θa, θb)

〉
(5)

where P (x, y) denotes the right-hand side of the differential equations (2) evaluated at the
point (x, y). By linearity, we can analyze separately the contribution to the derivative (5) of

each reaction pX+qY
k−→ rX+sY . The contribution of such a reaction, from equations (3)

and (5), is

〈(a, b), (r − p, s − q)〉θ〈(a,b),(p,q)〉k log θ. (6)

So far, everything stated above holds for any reaction network with two species, and can
be appropriately generalized for more species. Now we appeal to the fact that the reactions
in the reaction diagram under consideration “point inward” (i.e., the network is strongly
endotactic; see Definition 3.14.4).

The term log θ in the contribution (6) is common to every reaction, so it is not significant
to the analysis of the sign of the derivative d

dtg(x(t), y(t)). On the other hand, the reaction
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rate constants k1, k2, k3 ∈ R>0 are significant. However, it turns out that we can ignore the
rate constants, and instead simply analyze

pull = 〈(a, b), (r − p, s − q)〉θ〈(a,b),(p,q)〉,

which we call the pull (see Definition 6.18) of the reaction along the toric ray in direction
(a, b). Details appear in Sections 7 and 8, particularly in the proof of Theorem 7.5.

Suppose we could verify by inspection of the reaction diagram that for every direction
(a, b), the inner products in the pulls of all dominant reactions along toric rays in direction
(a, b) satisfy the inequality 〈(a, b), (r − p, s − q)〉 < 0. By compactness of the unit circle,
whose points are thought of as directions, we could choose a uniform cutoff θ large enough so
that along every toric ray, past this cutoff the monomial contributions of dominant reactions
overwhelm the contributions of all other reactions. Indeed, we could ensure this even after
including the effects of reaction rate constants. Hence, outside the compact set

Kθ =
{
(θa

0 , θb
0) | (a, b) is a unit vector in energy space and θ0 ∈ [1, θ]

}
⊆ R

2
>0

in concentration space, the time derivative of g would be negative.
Indeed, in generic directions (a, b), the dominant reactions along the toric ray in direction

(a, b) do satisfy the required inequality. However, this fails in precisely three directions,
namely, (−1, 0), (0,−1), and (1, 1).

For instance, consider the direction (a, b) = (0,−1). There exist two dominant reactions:

one “sustaining” reaction 0
k2−→ Y with 〈(a, b), (r − p, s − q)〉 < 0, and another reaction

2X
k1−→ X with 〈(a, b), (r − p, s − q)〉 = 0. The reaction 2X

k1−→ X makes no contribution
to the derivative of g in direction (0,−1). However, consider a nearby direction (−ε,−1)

for some small ε > 0. In this direction, the reaction 2X
k1−→ X is now “draining”: its

pull is strictly greater than 0. It is true that if ε > 0 is fixed, then along the toric ray in
direction (−ε,−1), this reaction is eventually dominated by the sustaining reaction, because
its monomial term is now smaller. However, as ε gets smaller, the value of the cutoff θ after
which this domination of monomials occurs must become arbitrarily large.

This is problematic, because the compact set Kθ requires a single value of θ to work
as a cutoff for every direction (a, b). To accomplish this, we turn to a second observation:

for sufficiently small ε > 0, the inner product of the reaction vector of 2X
k1−→ X with

the direction (−ε,−1) of the toric ray is, although positive, near zero. A more detailed
analysis along these lines, using information from both the monomial and the inner product,
accomplishes Claim 2.1. This approach is developed in Section 6 via the technology of jets
and jet frames. These allow us to reduce the analysis of the sign of the time derivative of g
to a combinatorial calculation on the reaction diagram.

Returning to the example, the family of directions (−ε,−1) as ε → 0+ corresponds to the
jet frame

(
(0,−1), (−1, 0)

)
. Two reactions dominate along the toric ray in direction (0,−1),

namely 2X → X and 0 → Y . As for the second direction (−1, 0) of the jet frame, only the
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sustaining reaction 0 → Y is dominant in that direction. The pull of the draining reaction
2X → X is dominated by the pull of the sustaining reaction 0 → Y in a uniform manner
in all directions (−ε,−1) for small ε > 0, and that produces the required uniform cutoff θ.

In general, for strongly endotactic reaction networks, along every jet frame the pull
of each draining reaction is dominated by the pull of some sustaining reaction (Proposi-
tion 6.26). This result is key to obtaining a general version of Claim 2.1, which we then
apply to prove our main results.

3 Reaction network theory

In this section, we recall the definitions of reaction networks and their associated mass-action
differential inclusions, following the notation in our earlier work [24].

3.1 Reaction networks and reaction systems

Definition 3.1. A reaction network (S, C,R) is a triple of finite sets: a set S of species, a
set C ⊆ R

S of complexes, and a set R ⊆ C×C of reactions. The reaction graph is the directed
graph (C,R) whose vertices are the complexes and whose directed edges are the reactions.
A reaction r = (y, y′) ∈ R, also written y → y′, has reactant y = reactant(r) ∈ R

S , product
y′ = product(r) ∈ R

S , and reaction vector

flux(r) = product(r) − reactant(r) = y′ − y.

A linkage class is a connected component of the reaction graph. The reaction diagram
is the realization (C,R) → R

S of the reaction graph that takes each reaction r ∈ R
to the edge from reactant(r) to product(r). The reactant polytope is the convex hull
Conv{y ∈ R

S | y → y′ ∈ R} of the reactant complexes.

Beginning in the following example, we follow the usual conventions of depicting a
network by its reaction graph or reaction diagram and writing a complex as, for example,
2A + B rather than y = (2, 1).

Example 3.2. The following network has two species (A and B), five complexes, four
reactions (each indicated by a unidirectional arrow), and two linkage classes:

2A ⇋ A + B B → 0 → 2B.

The reaction polytope is the convex hull of the four reactant complexes (2, 0), (1, 1), (0, 1),
and (0, 0).

Remark 3.3. The chemical reaction network theory literature usually imposes the following
requirements for a reaction network.
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• Each complex takes part in some reaction: for all y ∈ C there exists y′ ∈ C such that
(y, y′) ∈ R or (y′, y) ∈ R; and

• no reaction is trivial: (y, y) /∈ R for all y ∈ C.

Definition 3.1 does not impose these conditions: our reaction graphs may include isolated
vertices or self-loops. In our earlier work, we dropped these conditions to ensure that
the projection of a network—obtained by removing certain species—remains a network
under our definition even if some reactions become trivial [24]. In addition, like Craciun,
Nazarov, and Pantea [15, §7], we allow arbitrary real complexes y ∈ R

S . Thus our setting is
more general than that of usual chemical reaction networks, whose complexes y ∈ Z

S
≥0 are

nonnegative integer combinations of species, as in the next definition. The ODE systems
defined in §3.3 that result from real complexes have been studied over the years and called
“power-law systems”.

Definition 3.4. A reaction network (S, C,R) is

1. chemical if C ⊆ Z
S
≥0;

2. reversible if the reaction graph of the network is undirected: a reaction (y, y′) lies in R
if and only if its reverse reaction (y′, y) also lies in R;

3. weakly reversible if every linkage class of the network is strongly connected.

Definition 3.5. The stoichiometric subspace H of a network is the span of its reaction
vectors. The dimension of a network is the dimension of its stoichiometric subspace H. For
a positive vector x0 ∈ R

S
>0, the invariant polyhedron of x0 is the polyhedron

P = (x0 + H) ∩ R
S
≥0.

This polyhedron is also referred to as the stoichiometric compatibility class in the chemical
reaction network theory literature [18].

Example 3.6. Recall the network from Example 3.2 with reactions 2A ⇋ A + B and
B → 0 → 2B. This is a two-dimensional chemical reaction network that is not weakly
reversible. For every choice of x0 ∈ R

2
>0, the corresponding invariant polyhedron is the

positive orthant: P = R
2
≥0.

Another polyhedron of interest appears in the next definition. For an introduction to
polyhedral geometry, we refer the reader to the book by Ziegler [51].

Definition 3.7. For a positive integer n ∈ Z>0, a polytope in R
n is the convex hull of a

finite set of points in R
n. The reactant polytope of reaction network (S, C,R) is the convex

hull of the reactant complexes reactant(R) ⊆ R
S .

We now turn to the concept of a reaction system.
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Definition 3.8. Write CmpctInt =
{
[a, b] | 0 < a ≤ b < ∞

}
for the set of compact

subintervals of R>0. Let (S, C,R) be a reaction network. A tempering is a map κ : R →
CmpctInt that assigns to each reaction a nonempty compact positive interval. A confined
reaction system consists of a reaction network (S, C,R), a tempering κ, and an invariant
polyhedron P of the network.

3.2 Strongly endotactic chemical reaction networks

Endotactic chemical reaction networks, a generalization of weakly reversible networks, were
introduced by Craciun, Nazarov, and Pantea [15, §4]. We introduced strongly endotactic
networks, a subclass of endotactic networks, in [24]. We now recall the definitions.

Definition 3.9. The standard basis of R
S indexed by S defines a canonical inner product

〈·, ·〉 on R
S with respect to which the standard basis is orthonormal. Let w ∈ R

S .

1. The vector w defines a preorder on R
S , denoted by ≤w, in which

y ≤w y′ ⇔ 〈w, y〉 ≤ 〈w, y′〉.

Write y <w y′ if 〈w, y〉 < 〈w, y′〉.

2. For a finite subset Y ⊆ R
S , denote by initw(Y ) the set of ≤w-maximal elements of Y :

initw(Y ) =
{
y ∈ Y | 〈w, y〉 ≥ 〈w, y′〉 for all y′ ∈ Y

}
.

3. For a reaction network (S, C,R), the set Rw ⊆ R of w-essential reactions consists of
those whose reaction vectors are not orthogonal to w:

Rw =
{
r ∈ R | 〈w, flux(r)〉 6= 0

}
.

4. The w-support suppw(S, C,R) of the network is the set of vectors that are ≤w-maximal
among reactants of w-essential reactions:

suppw(S, C,R) = initw(reactant(Rw)).

Remark 3.10. In order to simplify the computations in Section 6, we differ from the usual
convention [15, 39], by letting initw(Y ) denote the ≤w-maximal elements rather than the
≤w-minimal elements. Accordingly, the inequalities in Definition 3.14 are switched, so our
definition of endotactic is equivalent to the usual one.

Before presenting Definition 3.14, we provide some underlying geometric intuition, first
in terms of 1-dimensional projections (Remarks 3.11 and 3.12) and then via reactant poly-
topes (Remark 3.13). A third interpretation via jet frames appears later in our work
(Lemma 6.22 and Proposition 6.24).
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Remark 3.11. For a 1-dimensional network, whose reaction diagram (C,R) lies on a line
in R

S , let w ∈ R
S be a nonzero vector that generates the stoichiometric subspace. Every

nontrivial reaction y → y′ either points to the right (points along w) or points to the left
(points along −w).

1. (S, C,R) is endotactic if and only if each nontrivial reaction with a leftmost (≤w-
minimal) reactant points to the right, and each nontrivial reaction with a rightmost
(≤w-maximal) reactant points to the left (see the bottom of Figure 2).

2. A 1-dimensional endotactic network that lies on a line is strongly endotactic if and
only if there exists a nontrivial reaction y → y′ (which necessarily points to the right)
whose reactant y is a leftmost reactant and additionally there exists a nontrivial
reaction z → z′ whose reactant is rightmost. See the bottom of Figure 2.

Remark 3.12. We learned from Craciun and Pantea the following intuition behind Defini-
tion 3.14 in terms of 1-dimensional projections. Consider a reaction network (S, C,R) and
a line generated by a nonzero vector w ∈ R

S . The orthogonal projection of the reaction
diagram (C,R) onto the line is the reaction diagram of a dimension 0 or 1 network whose
complexes are the projections 〈w, y〉w for y ∈ C. The network (S, C,R) is endotactic (re-
spectively, strongly endotactic) if and only if for all vectors w ∈ R

S that are not orthogonal
to the stoichiometric subspace, the projection of the network onto the line generated by w
is endotactic (respectively, strongly endotactic). See Figure 2. The dual picture to these
ideas was explained in [15, Proposition 4.1] by way of the so-called “parallel sweep test.”

Remark 3.13. A second geometric interpretation of the strongly endotactic condition is in
terms of the reactant polytope Q, which we recall is the convex hull of reactant(R). We say
that a reaction y → y′ points out of a set P if the line segment from y to y′ intersects P only
at the point y. A network is strongly endotactic if and only if (1) no reaction with reactant
on the boundary of Q points out of Q, and (2) for all vectors w that are not orthogonal to
the stoichiometic subspace, the ≤w-maximal face of Q contains a reactant y such that there
exists a nontrivial reaction y → y′ that points out of the face (either along the boundary of
Q or into the relative interior of Q). See Examples 3.15 and 3.16.

Definition 3.14. Fix a reaction network (S, C,R).

1. The network (S, C,R) is w-endotactic for some w ∈ R
S if

〈w, flux(r)〉 < 0

for all w-essential reactions r ∈ Rw such that reactant(r) ∈ suppw(S, C,R).

2. The network (S, C,R) is W -endotactic for a subset W ⊆ R
S if (S, C,R) is w-endotactic

for all vectors w ∈ W .

12
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Figure 2: At the top, we depict a direction vector w = (1, 0) and the reaction diagram of a
reaction network G with three reactions yi → y′i. At the bottom is the reaction diagram of
the projection of G to the line generated by w. This 1-dimensional network N is endotactic
as explained in Remark 3.11: the leftmost reactant of the nontrivial reactions is ỹ2 and
ỹ2 → ỹ2

′ points to the right, and the rightmost reactant complex of the nontrivial reactions
is ỹ3 and ỹ3 → ỹ3

′ points to the left. So, G is w-endotactic (but not endotactic: consider
the vector w′ = (−1, 1)). G is not strongly endotactic because ỹ1 is the unique leftmost
reactant of N but ỹ1 → ỹ1

′ does not point to the right.

3. The network (S, C,R) is endotactic if it is R
S-endotactic.

4. (S, C,R) is strongly endotactic if it is endotactic and for every vector w not orthogonal
to the stoichiometric subspace of (S, C,R), there exists a reaction r = (y → y′) in R
such that

(i) y >w y′ (i.e., 〈w, flux(r)〉 < 0) and

(ii) y is ≤w-maximal among all reactants in (S, C,R): y ∈ initw(reactant(R)).

Example 3.15. For the network G in Figure 2, the reactant polytope Q is the convex hull
of the reactants y1, y2, y3 (labeled by •), and both reactions y1 → y′1 and y3 → y′3 point out
of the triangle Q. Thus G is not strongly endotactic.

Example 3.16. The network

0 → 3A + B 2A → B 2B → A + B

is strongly endotactic (thus, endotactic), but not weakly reversible. In light of Remark 3.13,
this can be seen from the reaction diagram and reactant polytope Q, which is the convex
hull of the reactants 0, 2A, 2B (marked by • in Figure 3). Indeed, no reaction points out
of the triangle Q, and each proper face of Q—an edge or a vertex—contains at least one
reactant in a reaction that points out of that face.

13



•0

3A + B

•2A

B

2B•

A + B

Q

44jjjjjjjjjjjjjjjjjjjjjjjjjj

ggOOOOOOOOOOOOOOOOOO

ÂÂ?
??

??
??

??
??

?

Figure 3: Reaction network from Example 3.16.

Example 3.17. The network from Examples 3.2 and 3.6, whose reactions are 2A ⇋ A+B
and B → 0 → 2B, is endotactic but not strongly endotactic.

The next lemma and the following two corollaries provide examples of strongly endotac-
tic reaction networks. For notation, a set of complexes of a network is a union of linkage
classes if it is the set of complexes in a union of linkage classes of the reaction graph.

Lemma 3.18. Let (S, C,R) be a weakly reversible reaction network. For a vector w ∈ R
S ,

let Tw = initw(reactant(R)) denote the set of ≤w-maximal reactants. Assume that w ∈ R
S

is orthogonal to the stoichiometric subspace of (S, C,R) whenever Tw is a union of linkage
classes. Then (S, C,R) is strongly endotactic.

Proof. Assume that w ∈ R
S is not orthogonal to the stoichiometric subspace of (S, C,R).

Every weakly reversible network is endotactic [15, Lemma 4.5], so it remains only to show
that there is a reaction going from Tw to the complement C \Tw. All complexes of a weakly
reversible network are reactants, so if y ∈ Tw, then y ≥w y′ holds for all complexes y′ in C.
Thus, by the hypothesis that Tw is not a union of linkage classes, there exists a reaction that
goes from Tw to the complement C\Tw or from C\Tw to Tw. In the former case, we are done;
in the latter case, weak reversibility of the network implies that there is some other reaction
that goes from Tw to the complement. Therefore (S, C,R) is strongly endotactic.

We obtain the following corollary for weakly reversible networks.

Corollary 3.19. If each linkage class of a weakly reversible network (S, C,R) has the same
stoichiometric subspace, namely that of (S, C,R) itself, then (S, C,R) is strongly endotactic.

Proof. Suppose each linkage class has the same stoichiometric subspace H. For w ∈ R
S

not orthogonal to H, let y be a ≤w-maximal complex, i.e., y ∈ Tw = initw(reactant(R)).
By Lemma 3.18, it suffices to show that Tw is not a union of linkage classes. Letting Gj

denote the linkage class of y, it follows that H is spanned by the vectors z − y, where z is a
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complex in Gj . Thus there exists z∗ in Gj such that y >w z∗, because otherwise w would be
orthogonal to H. So, z∗ /∈ Tw, which implies that Tw is not a union of linkage classes.

Corollary 3.19 implies that the networks Anderson treated [2, 4] are strongly endotactic.

Corollary 3.20. Every weakly reversible reaction network with exactly one linkage class is
strongly endotactic.

3.3 Mass-action differential inclusions

We now recall from [24] how a confined reaction system gives rise to a mass-action differential
inclusion. In what follows, we assume that all manifolds have finite dimension.

Definition 3.21. Let M be a smooth manifold with tangent bundle πM : TM → M .
A differential inclusion on M is a subset X ⊆ TM .

Definition 3.22. Let X be a differential inclusion on a smooth manifold M .

1. Let I ⊆ R≥0 be a nonempty interval (in particular, connected) containing its left
endpoint. A differentiable curve f : I → M is a trajectory of X if the tangent vectors
to the curve lie in X.

2. An unbounded interval is a ray. A trajectory f defined on a ray eventually has
property P if there exists T > 0 such that property P holds for f whenever t ≥ T .
The ω-limit set of a trajectory f defined on a ray is the set

ω(f) =
{
x ∈ M | f(tn) → x for some sequence tn ∈ I with tn → ∞

}

of accumulation points of f arising from a sequence of times tending to infinity.

The next definition makes use of the notation xy = xy1
1 · · ·xym

m , for x, y ∈ R
m.

Definition 3.23. The mass-action differential inclusion of a confined reaction system,
given by a reaction network (S, C,R) with tempering κ and invariant polyhedron P, is the
differential inclusion on R

S
>0 in which the fiber over a point x ∈ int(P) is

{ ∑

r∈R
krx

reactant(r) flux(r)
∣∣ kr ∈ κ(r) for all r ∈ R

}
⊆ R

S = TxR
S
>0,

and the fiber over all other points x ∈ R
S
>0 \ int(P) is empty.

Example 3.24. One possible tempering on the network from Example 3.16 is given by
κ(0 → 3A + B) = [1, 2], and κ(2A → B) = {3}, and κ(2B → A + B) = [4, 5]. Every
trajectory x(t) =

(
xA(t), xB(t)

)
of the resulting mass-action differential inclusion satisfies

ẋA = 3 · k1(t) − 6 · xA(t)2 + k3(t) · xB(t)2

ẋB = k1(t) + 3 · xA(t)2 − k3(t) · xB(t)2 ,

where k1(t) ∈ [1, 2] and k3(t) ∈ [4, 5] for all time t.
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4 Conjectures related to persistence and permanence

In this section, we recall several conjectures related to the persistence of reaction networks.
First, some definitions from [24, §2] are required; see [24, §2] for remarks on relations
between these various concepts and comparisons with similar notions in the literature.

Definition 4.1. Let M be a smooth manifold with corners whose interior is M = M \∂M ,
and let V ⊆ ∂M be a subset of the boundary. A differential inclusion X ⊆ TM is

1. persistent if the closure in M of every trajectory of X is disjoint from ∂M .

2. repelled by V if for every open set O1 ⊆ M with V ⊆ O1, there exists a smaller
open set O2 ⊆ O1 with V ⊆ O2 such that for every trajectory f : I → M of X, if
f(inf I) /∈ O1 then f(I)∩O2 is empty; in other words, if the trajectory begins outside
of O1, then the trajectory never enters O2.

If M is compact, then a differential inclusion X ⊆ TM is permanent if it is persistent and
there is a compact subset Ω ⊆ M such that for every ray I, every trajectory of X defined
on I is eventually contained in Ω.

Definition 4.2. A confined reaction system N , specified by a reaction network (S, C,R)
together with a tempering κ and an invariant polyhedron P, is persistent (respectively,
permanent) if the mass-action differential inclusion on M = R

S
>0 arising from the reaction

system N is persistent (respectively, permanent) when viewed with respect to the compact-
ification M = [0,∞]S . More generally, a network (S, C,R) is itself persistent or permanent
if for all choices of temperings κ and invariant polyhedra P, the resulting mass-action dif-
ferential inclusion has the corresponding property.

We now state three conjectures, in increasing level of strength, and then state a related
fourth conjecture. The first conjecture concerns so-called “complex-balanced” systems,
which form a well-studied subclass of weakly reversible mass-action ODE systems. More-
over, this class contains all so-called “detailed-balanced” systems and weakly reversible “de-
ficiency zero” systems. Many properties of complex-balanced systems (as well as detailed-
balanced systems and deficiency zero systems) were elucidated by Feinberg, Horn, and
Jackson in the 1970s, and we provide only an overview here. (A definition of complex-
balanced systems can be found in any of the following references: [13, 19, 26, 27].) For such
systems, it is known that a unique steady state resides within the interior of each invariant
polyhedron P. This steady state is called the Birch point in [13] due to the connection to
Birch’s Theorem (see Section 5). Moreover, a strict Lyapunov function exists for this Birch
point, so local asymptotic stability relative to P is guaranteed [27]. An open question is
whether all trajectories with initial condition interior to P converge to the unique Birch
point of P. The assertion that the answer is “yes” is the content of the following conjec-
ture, which was stated first by Horn in 1974 [25] and was given the name “Global Attractor
Conjecture” by Craciun et al. [13].
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Conjecture 4.3 (Global Attractor Conjecture). For every invariant polyhedron P of every
complex-balanced system, the Birch point x ∈ P is a global attractor of int(P).

Due to the strict Lyapunov function, the GAC is equivalent to the following: every
complex-balanced system is persistent. This suggests the following more general conjecture,
which was first stated by Feinberg in 1987 [18, Remark 6.1E].

Conjecture 4.4 (Persistence conjecture). Every weakly reversible mass-action kinetics
ODE system is persistent.

Conjecture 4.4 was generalized recently by Craciun, Nazarov, and Pantea in the following
three ways: the weakly reversible hypothesis is weakened to endotactic, fixed reaction rate
constants are allowed to vary within bounded intervals (i.e., they are tempered), and the
conclusion of persistence is strengthened to permanence [15, §4].

Conjecture 4.5 (Extended permanence conjecture). Every endotactic reaction network is
permanent.

Remark 4.6. Conjecture 4.5 captures the intuitively appealing idea that if a reaction dia-
gram “points inwards” then the corresponding dynamics in concentration space must also
roughly “point inwards.” We interpret this conjecture as a suggestion that the geometry
of the reaction diagram ought to be viewed literally as a combinatorial representation of
the dynamics. From this perspective, Conjecture 4.5 is a first step in a research program
to complete the details of this correspondence. In our previous work [24, Question 5.26],
we suggested a framework within which additional aspects of this correspondence might be
explored. In particular, we utilized the standard dynamical system notion of topological
equivalence to ask if the qualitative nature of the dynamics remains invariant under rea-
sonable transformations to the reaction diagram. This idea was most pithily expressed by
asking for the richest domain category (of reaction diagrams) from which the mass-action
differential inclusion remains a functor [24].

The following fourth conjecture was stated recently by Anderson [2, §1.1]. It would
follow from Conjecture 4.4 according to our definition of persistence for reaction networks
(which differs from some other definitions, cf. [24, Remark 2.10]).

Conjecture 4.7 (Boundedness conjecture). Every weakly reversible mass-action kinetics
ODE system has bounded trajectories.

Although all four conjectures remain open, some progress has been made in recent years.
Conjecture 4.7 is true for complex-balanced systems (due to the Lyapunov function: see [47,
Lemma 3.5] for details) and was resolved recently for mass-action ODE systems with only
one linkage class (under some additional mild hypotheses) by Anderson [2]. Conjecture 4.3
has been proved for systems of dimension at most three [3, 5, 13, 15, 39] and also when
the network contains only one linkage class [4]. Conjecture 4.5, and thus Conjectures 4.3
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and 4.4 as well, has been resolved in dimensions at most 2 by Craciun, Nazarov, and Pantea
for the systems for which Conjecture 4.7 holds [15, 39]. These results are due in part to the
analysis of steady states on the boundary of invariant polyhedra.

Indeed, it is known that in the case of complex-balanced systems, the ω-limit set is con-
tained in the set of steady states. In this setting, it has been proved that certain boundary
steady states are not ω-limit points. These include vertices of an invariant polyhedron,
according to Anderson and Craciun et al. [3, 13]; interior points of facets, according to
Anderson and Shiu [5]; and interior points of “weakly dynamically non-emptiable” faces,
according to Johnston and Siegel [29]. In fact, trajectories are repelled by such points.
Also, some networks have no boundary steady states; for example, Shinar and Feinberg
have proved that weakly reversible “concordant” networks have this property [44]. Addi-
tionally, the three-dimensional case was resolved by Pantea [39]. The remaining cases for
Conjecture 4.3 are systems of dimension 4 and higher in which steady states lie on faces of
dimension at least 1 and codimension at least 2.

There have been several other recent approaches to persistence-type results. First, Siegel
and Johnston proved that for a complex-balanced system, the positive orthant can be sub-
divided into strata in which trajectories must obey certain linear Lyapunov functions [46].
Second, Angeli, De Leenheer, and Sontag gave persistence criteria that allow for differential
inclusions and time-varying rate constants (i.e., with temperings) [7, 9]. For instance they
proved that ω-limit points arising from reaction systems must lie in the relative interior
of faces of the positive orthant defined by “critical siphons”; therefore, networks without
critical siphons are persistent. (A siphon is a subset of the species whose absence is forward-
invariant with respect to the dynamics; see [9, 45] for a precise definition of (critical) siphon.)
Another approach makes use of the theory of monotone systems; for instance, see the recent
works of Angeli, De Leenheer, and Sontag [8], Banaji and Mierczynski [10], and Donnell
and Banaji [17]. Related work has also used the theory of Petri nets [6, 9]. Additionally,
Gopalkrishnan proved that every network that violates Conjecture 4.4 must exhibit a cer-
tain catalytic property [23]. Finally, we refer the reader to work by Gnacadja [21, 22] that
considered a stronger version of persistence, called “vacuous persistence”, which allows for
trajectories with initial condition on the boundary of an invariant polyhedron as well as
in the relative interior; he showed that certain enzymatic networks are persistent in this
stronger sense.

For mass-action ODE systems in which persistence is difficult to prove directly, it is
possible that the system is dynamically equivalent to—that is, gives rise to the same ODE
system as—one that is more easily seen to be persistent. To this end, Szederkényi and Han-
gos gave a method for determining whether a given system is dynamically equivalent to a
complex-balanced or a detailed-balanced one [49]. Similarly, Johnston and Siegel gave algo-
rithms that determine whether a given system is dynamically equivalent—or more generally,
is linearly conjugate—to one from certain classes (such as weakly reversible systems) [28, 30].

The results in the current work are complementary to those described above: in Section 8
we resolve Conjectures 4.3–4.7 for strongly endotactic networks in the general setting of
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mass-action differential inclusions.

Remark 4.8. The class of complex-balanced systems can be extended in a straightforward
way to include some power-law systems, by relaxing the requirement of a complex-balanced
system that its complexes be nonnegative integer vectors. In this larger setting, our results
concerning the GAC remain valid.

We conclude this section by noting that non-endotactic networks can fail to be persistent;
for instance, the network A → B.

Example 4.9. A less trivial example of a non-endotactic non-persistent network is

S0 + F
κ1−→ S1 + E

κ2−→ S2 + F S2
κ3−→ S1

κ4−→ S0.

Write each concentration vector as x = (xS0 , xS1 , xS2 , xE , xF ). In [6, §IV.A], Angeli showed
that if the reaction rate constants satisfy κ2 < κ4, then for the resulting mass-action ODE
system, the boundary steady state x∗ = (1, 0, 0, 1, 0) is locally asymptotically stable relative
to its invariant polyhedron. Hence this non-endotactic network is not persistent.

5 Extensions of Birch’s theorem

This section extends Birch’s theorem in order to deduce Corollary 5.18, which later is used
together with Birch’s theorem to prove one of our key results, Theorem 7.5. The reader may
wish to skip this section on the first pass. The following notation is employed in this section.

Notation 5.1. For vectors α, β ∈ R
m
>0, a constant θ ∈ R>0, a positive vector Θ =

(Θ1, . . . ,Θm) ∈ R
m
>0, and w = (w1, . . . , wm) ∈ R

m, set

α ∗ β = (α1β1, . . . , αmβm) ∈ R
m
>0

α/β = (α1/β1, . . . , αm/βm) ∈ R
m
>0

θw = (θw1 , . . . , θwm) ∈ R
m
>0

Θw = Θw1
1 · · ·Θwm

m ∈ R>0

log(Θ) = (log Θ1, . . . , log Θm).

Also, Sm−1 denotes the unit sphere of dimension m − 1 in R
m.

Remark 5.2. The top two displayed notations express the group operations in the multi-
plicative group (“positive real algebraic torus”) R

m
>0, where α/β = α ∗ β−1.
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5.1 Toric rays

Definition 5.3. Let α ∈ R
m
>0.

1. Let w ∈ Sm−1. The toric ray from α in direction w is the curve

Toricα(w) = {α ∗ θw | 1 ≤ θ < +∞} ⊆ R
m
>0.

2. Let N ⊆ Sm−1. The toric pencil Toricα(N) from α in directions N is the union of
toric rays in directions w ∈ N .

Remark 5.4. The toric ray Toricα(w) is the coordinatewise exponential of the infinite ray
in R

m with direction w that originates at the point log(α).

Remark 5.5. For a given α ∈ R
m
>0, the open rays {log α + (log θ)w | 1 < θ < +∞}

partition the punctured space R
m \ {log α}. Indeed, when α is the multiplicative identity

vector (1, . . . , 1), so that log α is the origin, the coordinates w ∈ Sm−1 and log θ ≥ 0 may
be viewed as polar coordinates on R

m.

Definition 5.6. For α ∈ R
m
>0, the function gα : R

m
≥0 → R is given by

(x1, . . . , xm) 7−→
m∑

i=1

xi log
xi

αi
− xi,

where 0 log 0 is defined to be 0. Because lim
xi→0+

xi log xi = 0, this definition is the unique

choice that makes the function gα continuous on the closed nonnegative orthant R
m
≥0, in-

cluding the boundary.

The next lemma shows that the function gα captures the geometry of toric rays.

Lemma 5.7. Let α ∈ R
m
>0, and let w ∈ R

m be a unit vector. For every point x ∈ Toricα(w),

either x = α or gα(x) is nonzero and has gradient direction w; that is, ∇gα(x)
‖∇gα(x)‖ = w.

In words, the lemma says that along a toric ray from α, the direction of the gradient
of gα matches the direction of the toric ray.

Proof. Let α and w be as in the statement of the lemma, and let α 6= x ∈ Toricα(w), so
x = α ∗ θw for some θ ∈ (1,∞). A straightforward calculation shows that

∇gα(x) = log(x/α) = (log θ)w. (7)

Since θ ∈ (1,∞), the coefficient satisfies log θ > 0. Thus, the gradient of gα at x is in

direction w. Since w is a unit vector, the normalized gradient is ∇gα(x)
‖∇gα(x)‖ = w.

Remark 5.8. The function gα has a uniqueness property with respect to toric rays: if f
is a function on R

m
>0 whose gradient along every toric ray from α points in the direction of

that toric ray, then the level sets of f and gα form the same foliation.

20



5.2 Outer normal cones

Definition 5.9. Fix a point x of the compactification [0,∞]m of R
m
>0. Denote by

Σ0 =
{
i ∈ {1, . . . , m} | xi = 0

}
and Σ∞ =

{
i ∈ {1, . . . , m} | xi = ∞

}

the sets of zero and infinite coordinates of x, respectively. [0,∞]m has outer normal cone

Cx[0,∞]m = {u ∈ R
m | supp(u−) ⊆ Σ0 and supp(u+) ⊆ Σ∞}

at x, where u = u+−u− writes u as a difference of nonnegative vectors with disjoint support.

The following lemma states that if a sequence x(n) in R
m
>0 converges to a boundary

point x∗ ∈ ∂[0,∞]m, then the limiting direction of ∇gα(x(n)), if it exists, must lie in the
outer normal cone of the hypercube [0,∞]m at x∗. It also states a converse.

Lemma 5.10. Fix a point x∗ in the compactification [0,∞]m of R
m
>0. Let α ∈ R

m
>0 be any

positive vector. A unit vector u ∈ R
m lies in the outer normal cone of [0,∞]m at x∗ if and

only if there exists a sequence x(n) in R
m
>0 such that

x(n) → x∗ and
∇gα

(
x(n)

)

‖∇gα

(
x(n)

)
‖ → u. (8)

Proof. First suppose that the sequence x(n) for n ∈ Z>0 satisfies (8). Since ∇gα(x(n)) =
log(x(n)/α) by (7), the ith coordinate of ∇gα(x(n)) goes to −∞ whenever x∗

i = 0. Similarly,
the ith coordinate of ∇gα(x(n)) goes to ∞ whenever x∗

i = ∞. All other coordinates go to

a finite limit, namely log
(
x∗

i /αi

)
). Therefore, the limit u of the sequence ∇gα(x(n))

‖∇gα(x(n))‖ must

lie in the outer normal cone at x∗.
For the converse, let u ∈ R

m be a unit vector in the outer normal cone of [0,∞]m at x∗.
Define the point β ∈ R

m
>0 with coordinates

βi =

{
x∗

i if x∗
i ∈ (0,∞)

1 if x∗
i = 0 or x∗

i = ∞.

Fix a sequence θ(i) in R>1 with limit +∞. Consider the sequence of points x(n) = β ∗ θ(i)u

along the toric ray from β in direction u. For i = 1, . . . , m,

x(n)i =





x∗
i · θ(i)ui if 0 < x∗

i < ∞ (thus ui = 0)

1 · θ(i)ui if x∗
i = 0 (thus ui < 0)

1 · θ(i)ui if x∗
i = ∞ (thus ui > 0).

Hence, in the first case above, x(n)i = x∗
i for all n; in the second case, x(n)i → 0 = x∗

i ;
and in the third case, x(n)i → ∞ = x∗

i . So, to show (8), it remains only to prove that the
normalized gradient of gα at x(n) converges to u. It is straightforward to verify that

∇gα

(
x(n)

)
=

(
log θ(i)

)
u + c∗,
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where c∗ is the vector with coordinates ci = log(x∗
i /αi) if x∗

i ∈ (0,∞) and 0 if x∗
i = 0 or

x∗
i = ∞. Thus, as log θ(i) goes to ∞, the direction of ∇gα(x(n)) converges to u.

Lemma 5.11. Let H ⊆ R
m be a linear subspace. Let p ∈ R

m
>0. Consider the polyhedron

P = (p + H) ∩ R
m
≥0. Let x∗ ∈ ∂[0,∞]m. If x∗ ∈ P, where the closure is taken in [0,∞]m,

then the outer normal cone of [0,∞]m at x∗ meets H⊥ only at the origin.

The key geometric insight for the proof of Lemma 5.11 is that if a translate L′ of a
support hyperplane L intersects the interior of a polytope P , then L′ fails to intersect the
support face L∩P of the untranslated hyperplane, since 〈u, L′〉 6= 〈u, L∩P 〉 for any u ∈ L⊥.

Proof. Take a sequence x(n) in int(P) with lim
n→∞

x(n) = x∗, where the limit is taken in the

compactification [0,∞]m, and suppose that u is a unit vector in Cx∗ [0,∞]m. At least one
of u+ and u− is nonzero. If u+ 6= 0, then

〈u, x(n)〉 = 〈u+, x(n)〉 − 〈u−, x(n)〉 ≥ 〈u+, x(n)〉 → ∞

as n → ∞, because the support of u+ is contained in the set of ∞-coordinates Σ∞ of x∗ and
x(n) → x∗. But if v ∈ H⊥ then 〈v, x〉 takes a constant finite value for all x ∈ P; therefore
u ∈ Cx∗ [0,∞]m ⇒ u 6∈ H⊥. In the remaining case, when u+ = 0 and u− 6= 0,

〈u, x(n)〉 = −〈u−, x(n)〉 → 0

as n → ∞, because supp(u−) ⊆ Σ0. This also prevents u ∈ H⊥: the inner product 〈v, x(n)〉
maintains a constant value for all n when v ∈ H⊥, whereas 〈u, x(n)〉 is strictly negative and
increasing toward 0, because x(n) is a strictly positive vector.

5.3 Birch’s theorem

In Section 5.4, we prove two extensions to the following theorem.

Theorem 5.12 (Birch’s theorem). Let H ⊆ R
m be a linear subspace, and let α, p ∈ R

m
>0.

The relative interior of the polyhedron P = (p + H) ∩ R
m
≥0 intersects the toric pencil

Toricα(H⊥) at exactly one point.

Variants of Birch’s theorem appear across the mathematical sciences. In algebraic statis-
tics, toric pencils appear as log-linear statistical models, and in this setting, Theorem 5.12
was first proved by Birch in 1963 [11]. In dynamical systems, in the setting of chemical
reaction systems, the theorem was proved by Horn and Jackson [27, Lemma 4B].

In the setting of quasi-thermostatic chemical reaction systems (a class introduced by
Horn and Jackson that includes complex-balanced systems and therefore deficiency zero
systems as well [18, 27]), the toric pencil in Birch’s theorem is equal to the set of positive
steady states. In that context, the toric pencil usually is written as {c ∈ R

m
>0 | log c

α ∈ H⊥},
where α is a given steady state.

Theorem 5.12 prompts the following definition.
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Definition 5.13. Let H ⊆ R
m be a subspace, and let α, p ∈ R

m
>0. The α-Birch point of the

polyhedron P = (p + H) ∩ R
m
≥0 is the unique point in the intersection intP ∩ Toricα(H⊥).

We refer to the Birch point when the choice of α and P is clear from context. Horn [25]
conjectured that every Birch point of a complex-balanced system is a global attractor of
the corresponding invariant polyhedron intP (Conjecture 4.3).

The following is a conventional form of Birch’s theorem in the setting of algebraic statis-
tics, as stated in the book by Pachter and Sturmfels [37, Theorem 1.10].

Theorem 5.14 (Birch’s theorem, restated). Fix a d×m real matrix A with columns denoted
by a1, . . . , am and positive vectors α, p ∈ R

m
>0. The image of the monomial map

fA,α : R
d
>0 → R

m
>0

Θ 7→ α ∗ (Θa1 , . . . ,Θam)

intersects the polyhedron P = {q ∈ R
m
≥0 | Aq = Ap} in a single point.

Remark 5.15. To see why Theorems 5.12 and 5.14 are equivalent, first observe that the
two definitions of the polyhedron P coincide because H = ker A. It remains to show that

fA,α(Rd
>0) = Toricα(H⊥) = {α ∗ θw | θ ∈ R>0 and w ∈ H⊥}. (9)

Given a vector α ∗ (Θa1 , . . . ,Θam) in the image of fA,α, when θ = Θ1 and

w = a(1) +
(
logΘ1

(Θ2)
)
a(2) + · · · +

(
logΘ1

(Θd)
)
a(d),

where a(j) denotes the jth row of A, the point α ∗ (Θa1 , . . . ,Θam) = α ∗ θw lies in the
set on the right-hand side of (9). Conversely, given α ∗ θw where θ > 0 and w is a linear
combination of the rows of A: w = c1a(1) + · · · + cda(d), then for Θ =

(
θc1 , . . . , θcd

)
, it

follows that α ∗ θw = fA,α(Θ) lies in the image of the map fA,α. Thus (9) holds.

5.4 Extensions

We extend Birch’s theorem to the compactification [0,∞]m of the nonnegative orthant R
m
≥0.

Theorem 5.16 (Birch’s theorem at infinity). Fix a linear subspace H ⊆ R
m and α, p ∈ R

m
>0.

The α-Birch point of the polyhedron P = (p+H)∩R
m
≥0 is the unique point in the intersection

P ∩ Toricα(H⊥), (10)

where the two closures are taken in the compactification [0,∞]m.

We call this theorem “Birch’s theorem at infinity” because we are studying the same
intersection problem as in the original Birch’s theorem, but now the parameter θ along toric
rays is allowed to take the value +∞.
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Proof. The intersection (10) has just one point in R
m
>0, namely the α-Birch point of P; this

follows from the usual Birch’s theorem (Theorem 5.12). Therefore, we need only prove the

lack of boundary points x∗ in the intersection (10). To this end, let x∗ ∈ Toricα(H⊥) ∩ ∂P
and choose a sequence x(n) = α ∗ θ(i)w(i) → x∗, where θ(i) → ∞ and w(i) ∈ H⊥ ∩ Sm−1.
Taking a subsequence if necessary, assume that w(n) converges to some u ∈ H⊥ ∩ Sm−1.

By Lemma 5.7, ∇gα(x(n))
‖∇gα(x(n))‖ = w(n) → u. By Lemma 5.10, the direction u lies in the outer

normal cone of [0,∞]m at x∗. Therefore the outer normal cone intersects H⊥ nontrivially,
so by Lemma 5.11, the point x∗ does not lie in ∂P. Thus the intersection (10) is empty.

By Theorem 5.16, when w ∈ H⊥ the toric ray Toricα(w) either intersects P at the Birch
point or does not approach P, including its boundary. The following theorem considers
toric rays where w lies more generally in a neighborhood of H⊥ and states that these toric
rays do not approach P outside a compact neighborhood of the Birch point.

Theorem 5.17 (Perturbed Birch’s theorem). Fix a linear subspace H ⊆ R
m and vectors

α, p ∈ R
m
>0. Let q be the α-Birch point in the polyhedron P = (p + H) ∩ R

m
≥0, namely the

unique point in the intersection int(P)∩Toricα(H⊥). For every relatively open neighborhood
O of q in the relative interior of P, the set H⊥ ∩ Sm−1 of unit directions along H⊥ has a
relatively open neighborhood N in Sm−1 such that

(P \ O) ∩ Toricα(N) = ∅,
where the two closures are taken in the compactification [0,∞]m.

Proof. For positive integers n, let {Nn} denote a shrinking sequence of εn-neighborhoods
of H⊥ ∩ Sm−1 in Sm−1 with radius εn > 0 tending to 0. (For instance, take εn = 1/n.) It
suffices to show that the set

Qn = (P \ O) ∩ Toricα(Nn)

is empty for some n. The intersection of the sets Qn for all n is (P \O)∩Toricα(H), which
is empty by Theorem 5.16. Since the sets Qn are nested closed subsets of the compact space
[0,∞]m, a standard theorem of topology (see Theorem 26.9 and the ensuing discussion in
the book by Munkres [36]) implies that Qn is empty for large n.

Theorem 5.17 implies that if a toric ray Toricα(w) intersects P outside of a neighborhood
of the Birch point q, then w lies outside a neighborhood of H⊥, so the H⊥-component of
w is not too dominant. We quantify this via a lower bound on the H-component. For
notation, every vector w ∈ R

m is uniquely expressible as the sum wH + wH⊥ of a vector
wH ∈ H and a vector wH⊥ ∈ H⊥.

Corollary 5.18. Fix a linear subspace H ⊆ R
m and α, p ∈ R

m
>0. For every open subset O

of the interior of the polyhedron P = (p+H)∩R
m
≥0 such that O contains the α-Birch point,

there exists µ > 0 such that ‖wH‖ ≥ µ for all unit vectors w satisfying α ∗ θw ∈ int(P) \ O
for some θ > 1.
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Proof. By the proof of Theorem 5.17, there exists ε > 0 such that the ε-neighborhood N of
H⊥ ∩ Sm−1 in Sm−1 satisfies (P \ O) ∩ Toricα(N) = ∅. Now define

µ = inf
{
‖wH‖

∣∣ w ∈ Sm−1 \ N
}
.

Then µ > 0 because it is the infimum of a nonnegative continuous function on a compact
set that never takes the value 0 because wH = 0 ⇒ w ∈ H⊥ ⊆ N . If α ∗ θw ∈ int(P) \ O,
then w /∈ N by construction of N , so ‖wH‖ ≥ µ by definition of µ.

Remark 5.19. Corollary 5.18 can be extended so that it also considers the case when the
closure in [0,∞]m of a toric ray intersects P \ O. However, we do not need this extension
in the following section.

Remark 5.20. Müller and Regensburger gave an extension of Birch’s theorem [35, Proposi-
tion 3.9] that is different from those presented here (Theorems 5.16 and 5.17). Their result
was used to generalize results about complex-balanced systems to the setting of certain
generalized mass-action ODE systems.

6 Jets

This section introduces the technology of jets to relate the combinatorial geometry of reac-
tion diagrams to the dynamics. Using this connection, we prove that for strongly endotactic
reaction networks, the “draining” reactions—those that pose a threat to persistence—are
dominated by “sustaining” reactions (Proposition 6.26).

6.1 Jet frames, unit jets, and toric jets

Recall the meaning of θw = θw1 · · · θwn from Notation 5.1, where w ∈ R
n and θ ∈ R>0.

Recall also the geometric interpretation, from Remarks 5.4 and 5.5, of w and log θ together
comprising polar coordinates on R

n.
The following notations are standard.

Notation 6.1. The phrase “for large i” is shorthand for “for all i greater than some fixed
constant i0”. For two sequences (f(i)) and (g(i)) taking values in R,

1. f(i) = O(g(i)) if there exists c > 0 such that |f(i)| ≤ c|g(i)| for large i,

2. f(i) = Ω(g(i)) if there exists c > 0 such that |f(i)| ≥ c|g(i)| for large i, and

3. f(i) = Θ(g(i)) if there exist c1, c2 > 0 such that c1|g(i)| ≤ |f(i)| ≤ c2|g(i)| for large i.

Following standard practice, we allow the above notations to appear in expressions and
inequalities. For instance, f(i) ≥ g(i) + O(h(i)) means that f(i) ≥ g(i) + k(i) for some
k(i) = O(h(i)).
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Our next definition introduces jets and toric jets. We first fix an orthonormal basis, a
frame. Intuitively, a jet consists of a sequence of points that, to first order, are pointing
in the direction of the first basis vector, with a small perturbation in the second direction,
with an even smaller perturbation in the third direction, and so on. A toric jet is obtained
by coordinate-wise exponentiation of a jet.

Toric jets serve as test sequences that allow us to deduce persistence. To prove that
a certain function is Lyapunov-like, it is not enough to analyze the function along one
direction; perturbations around that direction require exploration, as well. It turns out
that the perturbations allowed in toric jets are general enough, while at the same time the
gradient of the function x log x − x along a toric jet is easy to analyze; see the proof of
Theorem 7.5.

Definition 6.2. Let n ∈ Z>0.

1. A frame is a list w = (w1, . . . , wℓ) of mutually orthogonal unit vectors in R
n.

2. A jet is a sequence (w(i))i∈Z>0 of vectors in R
n in the positive span of some frame

w in R
n (i.e., 〈w(i), wj〉 > 0 for all i and j) such that for j = 1, . . . , ℓ − 1, the limit

lim
i→∞

〈w(i),wj〉
〈w(i),wj+1〉 exists and equals +∞. A unit jet is a jet that consists of unit vectors.

3. A toric jet is a sequence
(
θ(i)w(i)

)
i∈Z>0

, where (w(i)) is a unit jet in R
n and (θ(i)) is

a sequence in R>1 with lim
i→∞

θ(i) = +∞.

The jet frame for the jet (w(i)) or toric jet
(
θ(i)w(i)

)
is w, and these jets are framed by w.

Remark 6.3. Toric jets have a geometric interpretation: the sequence

(
log θ(i)

)
w(i) = (log θ(i))

(
β1(n)w1 + · · · + βℓ(n)wℓ

)
(11)

is to first approximation a sequence going to infinity in direction w1 in R
n, which is viewed

as “energy space”; the second-order correction is in direction w2, and so on. Exponentiating
the sequence (11) yields the toric jet

(
θ(i)w(i)

)
in “concentration space” R

n
>0.

In the context of a reaction network, if the image of a toric jet lies in a given invariant
polyhedron P, then the toric jet necessarily approaches the boundary of P or is unbounded.
More precisely,

(
θ(i)w(i)

)
approaches the boundary of the closure P of P in the compacti-

fication [0,∞]S . Our approach to proving persistence is to demonstrate that no toric jet is
a sequence of points along a trajectory (see the proof of Theorem 7.5). This strategy is a
distillation of the argument employed by Anderson in [4].

Remark 6.4. The concepts of jet frame and unit jet were introduced by Miller and Pak
in [34, Definition 4.1] for the purpose of describing the interaction of an expanding wavefront
on the boundary of a convex polytope infinitesimally after the wavefront hits a new face.
Our definitions are related but not identical to theirs.
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Example 6.5. Every sequence of points θ(i)w along a toric ray with θ(i) → ∞ is a special
case of a toric jet. Here the jet frame is the singleton list containing only the direction w
of the toric ray.

We now give two lemmas concerning unit jets.

Lemma 6.6. If (w(i)) is a unit jet with frame w = (w1, . . . , wℓ), then w(i) → w1 as i → ∞.

Proof. Let w(i) =
∑ℓ

j=1 βj(i)wj , where βj(i) > 0. By definition,
βj(i)

βj+1(i) → ∞ for j =

1, . . . , ℓ − 1. As every w(i) and wj is a unit vector, it follows that β1(i) → 1, and all other
βj(i) → 0 (for j = 2, . . . , ℓ).

Lemma 6.7 (Unit jets are abundant). Let n ∈ Z>0. Every infinite sequence of unit vectors
in R

n has an infinite subsequence that is a unit jet.

Proof. Let (w(i)) be an infinite sequence of unit vectors in R
n. Throughout this proof,

subsequences of (w(i)) are denoted again by (w(i)) for ease of notation. We proceed by
induction on n.

For n = 1, if the sequence (w(i)) takes the value +1 infinitely often, then choose w1

to be +1. Otherwise w(i) takes the value −1 infinitely often, so choose w1 to be −1. The
required unit jet is the constant subsequence (w(i) = w1) with frame w = (w1).

Now assume that n ≥ 2. As the sequence w(i) lies in the unit sphere, which is compact,
the sequence must have an accumulation point, which we denote by w1. Restricting to a
subsequence if necessary, assume that lim

i→∞
w(i) = w1.

Let β1(i) = 〈w(i), w1〉. Then lim
i→∞

β1(i) = 〈w1, w1〉 = 1. Take a subsequence with

β1(i) > 0 for all i. Consider the sequence (w′(i) = w(i) − β1(i)w1).
Case 1. For large i, the sequence (w′(i)) is the zero vector. Then for large i, w(i) = β1(i)w1,
so this subsequence is a unit jet with frame w = (w1).
Case 2. The sequence (w′(i)) is nonzero infinitely often. Then restrict to a subse-
quence that is always nonzero. By induction, the sequence of unit vectors w′(i)/||w′(i)|| in
w⊥

1
∼= R

n−1 has a subsequence with frame (w2, . . . , wℓ) ⊆ w⊥
1 and corresponding positive

coefficients β̃j(i) for j = 2, . . . , ℓ such that w′(i)/||w′(i)|| =
∑ℓ

j=2 β̃j(i)wj is a unit jet.

For j = 2, . . . , ℓ, let βj(i) = β̃j(i)·||w′(i)||. We claim that the corresponding subsequence

defined by w(i) = β1(i)w1 +
∑ℓ

j=2 βj(i)wj is a unit jet framed by (w1, . . . , wℓ). We need
only check that the first coefficient dominates the second. To see that it does, note that
β2(i) = β̃2(i) · ‖w′(i)‖ converges to 0, because β̃2(i) → 1 by definition of jet frame and
||w′(i)|| → 0 by definition of w1 and β1. Hence β1(i)/β2(i) → ∞ because β1(i) → 1.

6.2 Geometry of jets

Theorem 6.11 in this subsection conveys an important geometric idea behind jets. Later we
use this result to prove a useful characterization of endotactic networks (Lemma 6.22). We
begin with some preliminaries.
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Definition 6.8. Fix a positive integer n ∈ Z>0, a finite set Q ⊆ R
n, and a list w =

(w1, . . . , wℓ) of vectors in R
n. Set Super0(Q,w) = Q, and inductively for j = 1, . . . , ℓ let

Superj(Q,w) denote the set of ≤wj
-maximal elements of Superj−1(Q,w).

Notation 6.9. When the set Q and the list w of vectors is clear from context, we write
Superj to denote Superj(Q,w).

Lemma 6.10. Fix a positive integer n ∈ Z>0, a frame w = (w1, . . . , wℓ) in R
n, a unit jet

(w(i) =
∑ℓ

j=1 βj(i)wj) framed by w, and a finite set Q ⊆ R
n. Let λ ∈ {1, . . . , ℓ}.

1. If x ∈ Superλ and y /∈ Superλ, then there exists k ∈ {1, . . . , λ} such that 〈wk, x−y〉 > 0
and 〈wj , x−y〉 = 0 for all j = 1, . . . , k−1. Consequently, 〈w(i), x−y〉 > 0 for large i,
and 〈w(i), x − y〉 = Ω(βk(i)).

2. If λ > 1 and x ∈ Superλ−1 and y ∈ Q, then for large i,

〈w(i), x − y〉 ≥
ℓ∑

j=λ

βj(i)〈wj , x − y〉. (12)

Proof. 1. Suppose x ∈ Superλ and y /∈ Superλ. Let k ∈ {1, . . . , λ} be the smallest positive
integer such that y /∈ Superk. It follows that 〈wk, x− y〉 > 0 because y ∈ Superk−1 \Superk

and x ∈ Superk. Further, 〈wj , x − y〉 = 0 for all j < k, since x, y ∈ Superj for j < k. Thus

〈w(i), x − y〉 =

ℓ∑

j=1

βj(i)〈wj , x − y〉 = βk(i)〈wk, x − y〉 + O(βk+1(i)),

where βℓ+1(i) is understood to be 0. Thus, 〈w(i), x−y〉 > 0 for large i because 〈wk, x−y〉 > 0
and, by definition of unit jet, βk(i) > 0 and βk+1(i)/βk(i) → 0 as i → ∞. Additionally, it
follows that 〈w(i), x − y〉 = Ω(βk(i)).

2. Suppose x ∈ Superλ−1. Set

φ(i) =
λ−1∑

j=1

βj(i)〈wj , x − y〉,

and rewrite inequality (12) as φ(i) ≥ 0. If y ∈ Superλ−1, then 〈wj , x − y〉 = 0 for j =
1, . . . , λ − 1, so in fact φ(i) = 0. If y /∈ Superλ−1, then consider the sequence defined by

v(i) =

∑λ−1
j=1 βj(i)wj

||∑λ−1
j=1 βj(i)wj ||

,
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which is a unit jet framed by (w1, . . . , wλ−1) by construction, using the fact that (w(i)) is
a unit jet. Then

φ(i) =
∥∥∥

λ−1∑

j=1

βj(i)wj

∥∥∥〈v(i), x − y〉. (13)

Of the terms in (13),
∑λ−1

j=1 βj(i)wj approaches w1 (by definition of unit jet), so its norm

||∑λ−1
j=1 βj(i)wj || approaches 1, and 〈v(i), x− y〉 > 0 for large i by part 1 of this lemma. So

φ(i) > 0 for large i, and inequality (12) holds.

The next result and Corollary 6.12 may be seen as generalizations of Proposition 2.3(iii)
in Ziegler’s Lectures on Polytopes [51]; with more careful accounting, we obtain our required
stronger result. An alternative, direct proof of Corollary 6.12 follows the same lines as the
proof in Ziegler’s book, without appealing to jets.

Theorem 6.11 (Fundamental theorem of jets). Fix a positive integer n ∈ Z>0, a frame
w = (w1, . . . , wℓ) in R

n, a unit jet
(
v(i) =

∑ℓ
j=1 βj(i)wj

)
framed by w, and a finite set

Q ⊆ R
n. Then for large i, the ≤v(i)-maximal subset of Q equals Superℓ.

Proof. The proof is by induction on ℓ. More precisely, for j = 1, . . . , ℓ, let (vj(i)) be the jet

vj(i) = β1(i)w1 + · · · + βj(i)wj .

We prove that for all j = 1, . . . , ℓ, the ≤vj(i)-maximal subset of Q equals Superj for large i.
The base case of the induction—that Super1 is the ≤v1(i)-maximal subset of Q for large i—is
true by definition of Super1 because v1(i) → w1.

Fix j < ℓ and assume that the ≤vj(i)-maximal subset of Q equals Superj for large i.
From now on, consider only such sufficiently large i. For x ∈ Superj , let c(i) = 〈vj(i), x〉
be the value of the inner product of vj(i) with every element in Superj ; informally, write
c(i) = 〈vj(i), Superj〉. Similarly, let c′ ∈ R denote the value of the inner product of wj+1

with every element in Superj+1; informally, write c′ = 〈wj+1, Superj+1〉. Next, define δ(i)
to be the reciprocal of left-hand side of the inequality

1

δ(i)
= max

y∈Q\Superj

max{0, 〈wj+1, y〉 − c′}
c(i) − 〈vj(i), y〉

≤
maxy∈Q\Superj

{0, 〈wj+1, y〉 − c′}
miny∈Q\Superj

(c(i) − 〈vj(i), y〉)
. (14)

If 1/δ(i) = 0, then declare δ(i) = +∞. Note that δ(i) > 0 for large i, because the
denominators in (14) are strictly positive by the inductive hypothesis, and the numerators
are nonnegative by construction. The numerator on the right-hand side of (14) has no
dependence on i, and hence is O(1). Also, using the identity 〈vj(i), x〉 = c(i) for x ∈ Superj ,
the denominator on the right-hand side of (14) satisfies

min
y∈Q\Superj

(
c(i) − 〈vj(i), y〉

)
= min

y∈Q\Superj

x∈Superj

〈vj(i), x − y〉 = Ω
(
βj(i)

)
,
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where the second equality follows from Lemma 6.10.1. Thus the inequality (14) yields

δ(i) ≥
miny∈Q\Superj

(
c(i) − 〈vj(i), y〉

)

maxy∈Q\Superj
{0, 〈wj+1, y〉 − c′} =

Ω
(
βj(i)

)

O(1)
= Ω

(
βj(i)

)
.

Hence, by the definition of jet, δ(i) > βj+1(i) for large i.
We now complete the proof by proving that for large i, the following inequality holds

for all y ∈ Q and achieves equality exactly on the set Superj+1:

〈vj+1(i), y〉 = 〈vj(i), y〉 + βj+1(i)〈wj+1, y〉 ≤ c(i) + βj+1(i)c
′. (15)

If y ∈ Superj , then 〈vj(i), y〉 = c(i) by definition and 〈wj+1, y〉 ≤ c′ by construction, with
equality holding precisely when y ∈ Superj+1; hence the desired (in)equality in (15) holds.
Now assume that y ∈ Q\Superj . There are two subcases based on the sign of 〈wj+1, y〉−c′.
First, if 〈wj+1, y〉 − c′ < 0, then the inequality in (15) is strict, noting that 〈vj(i), y〉 ≤ c(i)
because y ∈ Q. In the remaining case, when y ∈ Q \ Superj and 〈wj+1, y〉 − c′ ≥ 0, the
construction of δ(i) in (14) yields the first of the inequalities

c(i) − 〈vj(i), y〉 ≥ δ(i)
(
〈wj+1, y〉 − c′

)
> βj+1(i)

(
〈wj+1, y〉 − c′

)
, (16)

while the second inequality is due to the inequality δ(i) > βj+1(i) proven earlier. Rearrang-
ing (16) yields the desired strict inequality in (15).

Corollary 6.12. Fix a positive integer n ∈ Z>0, a frame w = (w1, . . . , wℓ) in R
n, and

a finite set Q ⊆ R
n. There exist β1, . . . , βℓ ∈ R>0 and a positive linear combination w̃ =

β1w1+· · ·+βℓwℓ such that the set of ≤ ew-maximal elements of Q equals Superℓ. Additionally,
if γ1, . . . , γℓ ∈ R>0, then β1, . . . , βℓ can be chosen so that βj < γjβj−1 for all j = 2, . . . , ℓ.

Proof. Use Theorem 6.11: first consider a jet (w(i)) in the frame w, and then define w̃ as
w(i0) for a sufficiently large value of i0, and use the definition of jet.

Remark 6.13. The hypotheses of Corollary 6.12 can be weakened. The corollary remains
true for any set Q whose convex hull is a polytope and for any list of vectors (w1, . . . , wℓ)
that need not be orthonormal. Indeed, this is the setting of the analogous result in Ziegler’s
book [51, Proposition 2.3(iii)]. We do not need this generality here.

Example 6.14. We illustrate Corollary 6.12 by considering the set Q consisting of the six
vertices of a hexagon:

Q

•
•Q2

•
•

•

• MMMMMMMM

qqqqqqqqMMMMMMMM

qqqqqqqq

Q1

w1

//

w2

OO

w1+εw2

99rrrrrrrrrr

w1+δw2

FF FF
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The set Q1 consists of the two vertices on the edge that is the ≤w1-maximal face of the
hexagon, and the vertex Q2 is the ≤w2-maximal subset of Q1. For 0 < ε < δ =

√
3, the

vertex Q2 is the ≤w1+εw2-maximal subset of Q. In other words, w1 + εw2 defines Q2 as long
as it lies between w1 and the dotted arrow depicted twice in the figure above.

6.3 Jets and reactions

One of our primary goals, carried out in Section 7, is to prove that given a strongly endotac-
tic network, there is a compact set outside of which the function g(x) =

∑
i∈S xi log xi − xi

decreases along trajectories; that is, its derivative along trajectories is negative (Theo-
rem 7.5). Intuitively, this derivative is a sum of contributions (“pulls”; Definition 6.18)
from each reaction (see the proof of Lemma 7.4). A “draining” reaction acts to hinder our
efforts (Definition 6.15) with a positive pull. The pull of a “sustaining” reaction is negative.
Proposition 6.26 shows that, after fixing a toric jet, each draining reaction is dominated by
some sustaining reaction, so negativity prevails overall and g(x) indeed decreases.

Definition 6.15. For a reaction network (S, C,R), let w = (w1, . . . , wℓ) be a frame in R
S .

1. A reaction y → y′ ∈ R is w-essential if 〈wj , y
′ − y〉 6= 0 for some j = 1, . . . , ℓ.

2. The level of a w-essential reaction y → y′ is the least j such that 〈wj , y
′ − y〉 6= 0.

3. A w-essential reaction y → y′ with level λ is

(a) w-sustaining if 〈wλ, y′ − y〉 < 0.

(b) w-draining if 〈wλ, y′ − y〉 > 0.

Remark 6.16. For a reaction network (S, C,R) and a nonzero vector w in R
S , a reaction

y → y′ ∈ R is (w)-essential (Definition 6.15.1) if and only if y → y′ is w-essential (Def-
inition 3.9.3). More generally, for a frame w = (w1, . . . , wℓ) in R

S , a reaction y → y′ is
w-essential if and only if y → y′ is wj-essential for some j = 1, . . . , ℓ.

Example 6.17. For network G of Figure 2 in Section 3, let w = (w1, w2) be a frame
with w1 = w, where w is depicted in Figure 2. Then reaction y2 → y′2 is w-draining,
and y3 → y′3 is w-sustaining. Whether y1 → y′1 is w-sustaining or w-draining depends on
whether 〈w2, y

′
1 − y1〉 is negative or positive.

Definition 6.18. Let G = (S, C,R) be a reaction network.

1. The pull of a reaction y → y′ ∈ R along a toric jet
(
θ(i)w(i)

)
in R

S is the function

pully→y′(i) = 〈w(i), y′ − y〉θ(i)〈w(i),y〉. (17)

2. A unit jet (w(i)) in R
S is adapted to G if for every reaction y → y′ ∈ R, either
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(a) 〈w(i), y′ − y〉 = 0 for all i; or

(b) 〈w(i), y′ − y〉 < 0 for all i, in which case y → y′ is sustaining along (w(i)); or

(c) 〈w(i), y′ − y〉 > 0 for all i, in which case y → y′ is draining along (w(i)).

A reaction y → y′ is essential along (w(i)) if it is sustaining or draining along (w(i)).

3. A toric jet
(
θ(i)w(i)

)
framed by (w1, . . . , wℓ) in R

S is adapted to G if its unit jet (w(i))

is adapted to G and, for all j = 1, . . . , ℓ, the limit lim
i→∞

θ(i)〈w(i),wj〉 exists in [1,∞].

4. A reaction r ∈ R dominates a reaction r′ ∈ R along a toric jet
(
θ(i)w(i)

)
in R

S if the

ratio of their pulls along
(
θ(i)w(i)

)
tends to infinity in absolute value: lim

i→∞

∣∣∣ pullr(i)
pullr′ (i)

∣∣∣
exists and equals +∞.

When the toric jet is clear from context, we simply say that reaction r dominates reaction r′.

Lemma 6.19. Fix a reaction network (S, C,R). Let w(i) be a unit jet in R
S and let(

θ(i)w(i)
)

be a toric jet in R
S .

1. There exists an infinite subsequence of w(i) that is adapted to (S, C,R).

2. There exists an infinite subsequence of
(
θ(i)w(i)

)
that is adapted to (S, C,R).

Proof. Repeatedly take subsequences, first so that for each reaction y → y′ ∈ R, the sign of
〈w(i), y′−y〉 is constant for all i, and then so that for all j = 1, . . . , ℓ, an accumulation point
of θ(i)〈w(i),wj〉 becomes a limit point. We can do this because θ(i) > 1 and 〈w(i), wj〉 > 0
for all i, whence θ(i)〈w(i),wj〉 lies in the compact set [1,∞].

It is equivalent for a reaction to be essential along a unit jet or with respect to its jet
frame, if the unit jet is adapted to the relevant network. Here is a more precise statement.

Proposition 6.20. Let G = (S, C,R) be a reaction network, and let (w(i)) be a unit jet
adapted to G and framed by w = (w1, . . . , wℓ). Let λ ∈ {1, . . . , ℓ}.

1. A reaction is w-sustaining (respectively, w-draining) if and only if it is sustaining
(respectively, draining) along (w(i)).

2. A w-essential reaction y → y′ ∈ R has level λ if and only if |〈w(i), y′ − y〉| =
Θ

(
〈w(i), wλ〉

)
.

Proof. Let w(i) =
∑ℓ

j=1 βj(i)wj . Consider a reaction y → y′ ∈ R.
If y → y′ is not w-essential then 〈wj , y

′−y〉 = 0 for all j, and in that case 〈w(i), y′−y〉 = 0
for all i, so y → y′ is not essential along (w(i)).

Next assume y → y′ is w-essential with level λ, so 〈wλ, y′ − y〉 = 0 for all j < λ whereas
〈wλ, y′ − y〉 6= 0, where the inequality is “<” in the sustaining case and “>” in the draining
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case. Thus 〈w(i), y′ − y〉 = βλ(i)〈wλ, y′ − y〉 + O(βλ+1(i)), so 〈w(i), y′ − y〉 is nonzero for
large i by the definition of unit jet—again, with < 0 in the sustaining case and > 0 in the
draining case. Hence y → y′ is essential along (w(i)) if it is w-sustaining and draining along
(w(i)) if it is w-draining, and in either case |〈w(i), y′ − y〉| = Θ(βλ(i)) = Θ(〈w(i), wλ〉).
That takes care of the “⇒” direction of part 2.

For the “⇐” direction of part 2, suppose that the reaction y → y′ is w-essential and that
|〈w(i), y′−y〉| = Θ(βλ(i)). It follows that 〈wj , y

′−y〉 = 0 for all j < λ, and 〈wλ, y′−y〉 6= 0,
so y → y′ has level λ.

6.4 Jets and endotactic networks

The next two results interpret endotactic and strongly endotactic networks in terms of jets.

Notation 6.21. For a reaction network (S, C,R) and jet frame w = {w1, . . . , wℓ}, denote
by Super1 the ≤w1-maximal subset of reactant(R), and for j ∈ {2, . . . , ℓ}, write Superj for
the ≤wj

-maximal subset of Superj−1.

In other words, the sets Superj coincide with those in Section 6.2, where Q = reactant(R).

Lemma 6.22. Let (S, C,R) be a reaction network.

1. (S, C,R) is endotactic if and only if for every singleton frame (w1) in R
S and for every

(w1)-draining reaction y → y′ in R, there exists a (w1)-sustaining reaction x → x′

such that 〈w1, x − y〉 > 0.

2. If (S, C,R) is endotactic, then for every frame w in R
S and every w-draining reaction

y → y′ in R with level λ, the reactant y lies outside of Superλ.

Proof. 1. The network (S, C,R) fails to be endotactic if and only if there is a unit vector w1

in R
S and a reaction y → y′ ∈ R with y ∈ suppw1

(S, C,R) such that 〈w1, y
′− y〉 > 0 (recall

Definition 3.14). Equivalently, (S, C,R) fails to be endotactic precisely when there is a unit
vector w1 in R

S and a (w1)-draining reaction y → y′ ∈ R such that every (w1)-sustaining
reaction x → x′ satisfies y ≤w x. Now use that y ≤w x ⇔ 〈w1, x − y〉 ≤ 0.

2. Suppose (S, C,R) is endotactic. Consider a frame w = (w1, . . . , wℓ) in R
S . Suppose

y → y′ is w-draining and has level λ. By Corollary 6.12, Superλ is the ≤w∗-maximal subset
of Super0 = reactant(R), where w∗ = w1 + ε1w2 + · · · + ελ−1wλ for some positive numbers
ε1, . . . , ελ−1. Corollary 6.12 allows us to choose all of ε1, . . . , ελ−1 to be arbitrarily small, so
we can ensure that 〈w∗, y′ − y〉 has the same sign as 〈w1, y

′ − y〉, which is positive. Then,
from the definition of w∗-endotactic, we conclude that y /∈ Superλ.

Example 6.23. The converse of Lemma 6.22.2 is false. For the 1-dimensional network

•y1 = y1
′
ª

y2
′ •y2 •y3y3

′oo oooo w ____ (18)
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the essential reactions (if any) corresponding to both (singleton) frames (w) and (−w) are
sustaining. More specifically, there are no (w)-essential reactions (although y1 is the ≤w-
maximal reactant, the reaction y1 → y′1 is not essential), and the unique (−w)-essential
reaction y3 → y′3 is (−w)-sustaining. However, network (18) is not endotactic: y2 → y′2 is
the leftmost reactant among all of the nontrivial reactions, but it points to the left.

Proposition 6.24. For an endotactic reaction network (S, C,R) with stoichiometric sub-
space H, the following are equivalent.

1. (S, C,R) is strongly endotactic.

2. For every singleton jet frame (w1) in R
S with w1 /∈ H⊥, there exists a (w1)-sustaining

reaction x → x′ such that x ∈ Super1.

3. For every frame w = (w1, . . . , wℓ) in R
S with w1 /∈ H⊥, there exists a w-sustaining

reaction x → x′ with x ∈ Superℓ.

Proof. The equivalence of items 1 and 2 is straightforward from the definition of strongly
endotactic, and item 2 is a special case of item 3. We therefore assume item 1, with the goal
of deducing item 3. Let w = (w1, . . . , wℓ) be a frame in R

S with w1 /∈ H⊥. Let (w(i)) be a
unit jet framed by w. Use Lemma 6.19.1 to pick a subsequence of (w(i)) adapted to (S, C,R).
Using the fundamental theorem of jets (Theorem 6.11), take i0 large enough so that the
≤w(i0)-maximal subset of reactant(R) equals Superℓ. Taking i0 even larger, if necessary,

assume that w(i0) /∈ H⊥, which is possible because w(i) → w1 /∈ H⊥. (S, C,R) is strongly
w(i0)-endotactic, so there exists a w(i0)-sustaining reaction x → x′ with x ∈ Superℓ. Since
(w(i)) is a unit jet adapted to (S, C,R), by definition x → x′ is sustaining along the unit
jet (w(i)). Proposition 6.20.1 implies that x → x′ is w-sustaining.

Remark 6.25. Proposition 6.24 can be proven directly, using only Corollary 6.12.

Here is the main result of this section.

Proposition 6.26. Fix a strongly endotactic reaction network G = (S, C,R) with stoichio-
metric subspace H. Let

(
θ(i)w(i)

)
be a toric jet adapted to G framed by w = (w1, . . . , wℓ)

in R
S . If w1 /∈ H⊥ then every draining reaction along (w(i)) is dominated by a sustaining

reaction along (w(i)).

Proof. Suppose w1 /∈ H⊥. Let w(i) =
∑ℓ

j=1 βj(i)wj . Let y → y′ ∈ R be a draining reaction
along (w(i)). We must find a sustaining reaction x → x′ that dominates y → y′; that is

∣∣∣∣
pullx→x′(i)

pully→y′(i)

∣∣∣∣ =

∣∣∣∣
〈w(i), x′ − x〉
〈w(i), y′ − y〉

∣∣∣∣θ(i)
〈w(i),x−y〉 → ∞. (19)
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For k = 1, . . . , ℓ, define a sequence (vk(i)) of unit vectors by

vk(i) =

∑k
j=1 βk(i)wj∥∥ ∑k
j=1 βk(i)wj

∥∥ . (20)

For k = 1, . . . , ℓ, the sequence (vk(i)) is a unit jet with frame (w1, . . . , wk); this is by
construction, starting with the fact that (w(i)) is a unit jet.

Let λ be the level of the draining reaction y → y′. By Definition 6.18.3, L = lim
i→∞

θ(i)βλ(i)

exists in [1,∞]. The proof now breaks into two cases based on whether L = ∞ or 1 ≤ L < ∞.

Case 1 (Monomial domination): lim
i→∞

θ(i)βλ(i) = ∞.

The network G is strongly endotactic, w1 /∈ H⊥ by hypothesis, and (w1, . . . , wλ) is a
frame in R

S , so by Proposition 6.24 there exists a reaction x → x′ in R that is (w1, . . . , wλ)-
sustaining with x ∈ Superλ. Hence the level of x → x′ (which exists by definition of
sustaining) is at most λ. Also, by Proposition 6.20.1, x → x′ is sustaining along the unit
jet (vλ(i)). Thus x → x′ is sustaining along (w(i)) because w(i) = ‖∑k

j=1 βk(i)wj‖vk(i) +
O(βk+1(i)). Thus it suffices to prove that the limit (19) holds for this reaction x → x′.

Proposition 6.20.2 and the definition of unit jet imply the following asymptotics:

|〈w(i), x′ − x〉|
βλ(i)

= Ω(1) and
βλ(i)

|〈w(i), y′ − y〉| = Θ(1).

Thus the ratio of inner products satisfies

∣∣∣∣
〈w(i), x′ − x〉
〈w(i), y′ − y〉

∣∣∣∣ = Ω(1). (21)

Since x ∈ Superλ and y ∈ reactant(R) \ Superλ (by Lemma 6.22.2), they satisfy the
hypotheses of Lemma 6.10.1, so we obtain an index k ≤ λ such that the following inequality
holds for the monomial term of interest (which also uses the fact that θ(i) > 1 for all i):

θ(i)〈w(i),x−y〉 ≥ θ(i)βk(i)〈wk,x−y〉+O(βk+1(i))

=
(
θ(i)βk(i)

)〈wk,x−y〉+O(βk+1(i)/βk(i))
.

This last quantity has limit ∞ as i grows because

• 〈wk, x − y〉 > 0 by definition of the index k that arose from Lemma 6.10.1;

• θ(i)βk(i) ≥ θ(i)βλ(i) → ∞ for large i by assumption in this Case 1; and

• 0 = O
(
βk+1(i)/βk(i)

)
.

Therefore, combining with equation (21), the desired limit (19) holds.
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Case 2 (Inner product domination): 1 ≤ lim
i→∞

θ(i)βλ(i) < ∞.

The level of y → y′ satisfies λ > 1 because otherwise lim
i→∞

θ(i)βλ(i) = lim
i→∞

θ(i) = ∞ by

Lemma 6.6 and the definition of toric jet. Consider, therefore, the unit jet (vλ−1(i)) defined
in (20) with frame (w1, . . . , wλ−1). The network G is strongly endotactic, so as in Case 1,
there exists a reaction x → x′ in R, with level ≤ λ− 1 and x ∈ Superλ−1, that is sustaining
along (vλ−1(i)) and hence also along (w(i)).

Again by Proposition 6.20.2,

lim
i→∞

|〈w(i), x′ − x〉|
βλ(i)

= ∞ and
βλ(i)

|〈w(i), y′ − y〉| = Θ(1),

the former because
|〈w(i), x′ − x〉|

βλ−1(i)
= Ω(1). Therefore

lim
i→∞

∣∣∣∣
〈w(i), x′ − x〉
〈w(i), y′ − y〉

∣∣∣∣ = ∞. (22)

As x ∈ Superλ−1 and y ∈ reactant(R), Lemma 6.10.2 implies the first inequality here:

θ(i)〈w(i),x−y〉 ≥ θ(i)βλ(i)〈wλ,x−y〉+O(βλ+1(i))

=
(
θ(i)βλ(i)

)〈wλ,x−y〉+O(βλ+1(i)/βλ(i))

→
(

lim
i→∞

θ(i)βλ(i)

)〈wλ,x−y〉+0

because βλ(i) dominates βλ+1(i)

≥ 1 because 1 ≤ lim
i→∞

θ(i)βλ(i) < ∞.

Therefore θ(i)〈w(i),x−y〉 = Ω(1). When combined with (22) this implies that the sustaining
reaction x → x′ dominates y → y′. Hence the required limit (19) holds for Case 2.

Example 6.27. Proposition 6.26 is false without the assumption that w1 /∈ H⊥. For exam-
ple, consider the network consisting of the single reversible reaction A ⇋ B. The direction
u = (1/

√
2, 1/

√
2) is perpendicular to the stoichiometric subspace, and v = (−1/

√
2, 1/

√
2)

lies in the subspace. Consider an adapted toric jet
(
θ(i)w(i)

)
framed by (u, v). Then the

reaction B → A is sustaining along (w(i)), while the reaction A → B is draining. The ratio
of their pulls is

∣∣∣∣
pullB→A(i)

pullA→B(i)

∣∣∣∣ = θ(i)〈β1(i)u+β2(i)v, (0,1)−(1,0)〉 = (θ(i)β2(i))〈v, (−1,1)〉 = (θ(i)β2(i))
√

2. (23)

In particular, if β2(i) approaches 0 much faster than θ(i) approaches ∞, then the limit of
θ(i)β2(i) does not diverge, so the limit of the ratio (23) is not ∞, whence the sustaining
reaction does not dominate the draining reaction.
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Remark 6.28. The idea of using a sustaining reaction to dominate draining reactions in
the proof of Proposition 6.26 is similar to arguments in the proof of Lemma 4.8 in the
work of Anderson [4]. Furthermore, Anderson’s result is similar to our Theorem 7.5, below:
essentially, both results show that a certain function decreases along trajectories outside
a compact set. Anderson’s concept of “partitioning vectors y ∈ C along a sequence of
trajectory points” focuses first on the question of which monomials θ〈w,y〉 dominate, and
then later in the analysis analyzes the inner product 〈w, y′ − y〉, whereas we consider the
entire product θ〈w,y〉〈w, y′ − y〉 in the definition of pull (17). Anderson’s concept fits into
ours in the following way. For a sequence of trajectory points, written as θ(i)w(i), that do
not remain in a compact set, consider the “top tier” defined by the monomial or the pull,
respectively. That is, the top tier is the set of reactions y → y′ such that the corresponding
monomials or, respectively, corresponding pulls dominate all others along the sequence. For
strongly endotactic networks, these two top tiers coincide, with the possible exception of
reactions orthogonal to a limiting direction of the vectors (w(i)).

Remark 6.29. Some ideas in the proof of Proposition 6.26 are cognate to ideas in Power
Geometry [12]. Specifically, in Power Geometry, to determine which terms in a polynomial
dominate (for instance, when certain coordinates go to zero of infinity) one works in the
log of the coordinates and examines which exponent vectors of the polynomial lie in the
relevant face of the Newton polytope of the polynomial.

7 A Lyapunov-like function for strongly endotactic networks

This section uses the results on jets from the previous section to show (Theorem 7.5) that for
strongly endotactic networks, outside a compact set the function g(x) =

∑
i∈S xi log xi − xi

from Definition 5.6 decreases along trajectories.

Definition 7.1. If N is a confined reaction system, specified by a reaction network (S, C,R),
a tempering κ, and an invariant polyhedron P, then g decreases along trajectories of the
mass-action differential inclusion (Definition 3.23) arising from N outside a compact set if
there exists a compact set K ⊆ int(P) such that for all trajectories x(t), the time derivative
satisfies d

dtg(x(t))|t=t∗ < 0 whenever x(t∗) ∈ int(P) \ K.

Remark 7.2. Every strict Lyapunov function decreases outside the compact set consisting
of the function’s unique minimum. Functions that decrease outside a compact set should
be compared with Foster–Lyapunov functions used in the analysis of Markov chains [32,
Appendix B.1]. Foster–Lyapunov functions are used, for instance, to prove that a Markov
chain always reaches a certain set, the analogue of our compact set K.

The next lemma states that our compact set of interest, K = Kθ, is a compact subset
of the positive orthant R

S
>0. In contrast, some of the sublevel sets of the function g are not

compact. Indeed, it is the fact that some level sets of g intersect the boundary of the positive
orthant that prevents us from using the sublevel sets as our sets K; see Remark 8.10.
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Lemma 7.3. Let P be an invariant polyhedron of a reaction network (S, C,R), and let
θ > 1. Then the set

Kθ =
{
θw
0

∣∣ 1 ≤ θ0 ≤ θ and w ∈ R
S with ||w|| = 1

}
∩ P

is a compact subset of int(P).

Proof. Kθ is compact because it is the intersection of a closed set P with a continuous image
(under coordinatewise exponential) of a compact set, namely, the closed ball of radius log θ
around the origin in R

S . The intersection is in int(P) because exponentials never vanish.

Lemma 7.4. Let N be a confined reaction system, specified by a network (S, C,R), a
tempering κ, and an invariant polyhedron P. Suppose there exists θ > 1 such that

∑

r=(y→y′)∈R
krθ

〈w,y〉
0 〈w, y′ − y〉 < 0 (24)

for all θ0 > θ and unit vectors w in R
S with θw

0 ∈ P \Kθ, and for all (kr)r∈R ∈ ∏
r∈R κ(r).

Then outside the set Kθ in Lemma 7.3, the function g(x) =
∑

i∈S xi log xi − xi decreases
along trajectories of the mass-action differential inclusion (Definition 3.23) arising from N .

Proof. We need d
dtg(x(t))|t=t∗ < 0 for any trajectory point x(t∗) ∈ int(P) \ Kθ. Such a

trajectory point can be written as x(t∗) = θw
0 where θ0 > θ and w is a unit vector in R

S , by
Lemma 7.3. Additionally, d

dtx(t)|t=t∗ has the form given in Definition 3.23 for some rates
kr ∈ κ(r). The following computation is straightforward, using of the gradient of g:

d

dt
g(x(t))|t=t∗ =

〈
∇g(θw

0 ),
∑

r∈R
kr(θ

w
0 )reactant(r) flux(r)

〉

=
〈
(log θ0)w,

∑

r∈R
krθ

〈w,reactant(r)〉
0 flux(r)

〉

= (log θ0)
∑

r=(y→y′)∈R
krθ

〈w,y〉
0 〈w, y′ − y〉.

As log θ0 > 0 because θ0 > 1, the desired inequality d
dtg(x(t))|t=t∗ < 0 follows from (24).

Theorem 7.5. If N is a confined strongly endotactic reaction system, specified by a reaction
network (S, C,R), a tempering κ, and an invariant polyhedron P, then outside a compact
set K ⊆ R

S
>0, the function g(x) =

∑
i∈S xi log xi − xi decreases along trajectories of the

mass-action differential inclusion (Definition 3.23) arising from N .

Proof. Begin by fixing a number 0 < ε < 1 such that ε is a lower bound for the tempering
κ and 1/ε is an upper bound: for all reactions r ∈ R, κ(r) ⊆ (ε, 1/ε). The goal is to
demonstrate the existence of a cutoff θ > 1 such that g decreases along trajectories outside
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of the compact subset Kθ ⊆ int(P) from Lemma 7.3. The proof proceeds by contradiction:
assuming that no such θ exists, construct an impossible toric jet.

To be precise, assume g(x) fails to decrease along trajectories outside of each set Kθ.
Pick a sequence θ(i) → ∞ of real numbers > 1, so Kθ(1) ⊆ Kθ(2) ⊆ · · · and

⋃
i Kθ(i) = R

S
>0.

Lemma 7.4 grants

• a sequence of points x(i) = θ(i)w(i) ∈ P, where w(i) is a unit vector in R
S , and

• for each reaction r ∈ R, a sequence kr(i) of rates in the interval κ(r)

such that for all i, ∑

r=(y→y′)∈R
kr(i)θ(i)

〈w(i),y〉〈w(i), y′ − y〉 ≥ 0. (25)

Lemma 6.7 produces a subsequence of (w(i)) that is a unit jet; call its jet frame (w1, . . . , wℓ)
in R

S and, as usual, denote the subsequence again by (w(i)), for ease of notation. The re-
sulting sequence

(
θ(i)w(i)

)
is a toric jet by construction. Lemma 6.7 affords a subsequence

that is adapted to (S, C,R), and it is this toric jet
(
θ(i)w(i)

)
whose impossibility we demon-

strate by appeal to Proposition 6.26, which leverages the strongly endotactic hypothesis on
(S, C,R) to deduce the opposite of the inequality (25).

Both kr(i) and θ(i)〈w(i),y〉 in (25) remain strictly positive. The only negative contribu-
tions to the sum in (25) are from reactions that are sustaining along (w(i)), whereas draining
reactions contribute positively. To contradict (25), it suffices to show that for any reaction
y → y′ that is draining along (w(i)), the contribution to the sum (25) of some sustaining
reaction x → x′ eventually dominates that of y → y′ by at least a factor of |R|, the number
of reactions of the network. In other words, for a fixed draining reaction r = (y → y′), it
suffices to exhibit a sustaining reaction rsus = (x → x′) such that the inequality

krsus(i)

kr(i)
θ(i)〈w(i),x−y〉 〈w(i), x′ − x〉

〈w(i), y − y′〉 > |R| (26)

holds for large i. The number ε was constructed early in the proof so that krsus(i) > ε and
kr(i) < 1/ε. Consequently, the desired inequality (26) follows from the inequality

∣∣∣∣
pullx→x′(i)

pully→y′(i)

∣∣∣∣ = θ(i)〈w(i), x−y〉 〈w(i), x′ − x〉
〈w(i), y − y′〉 >

|R|
ε2

.

It is sufficient (but not necessary) to prove that the left-hand side of this inequality has
limit ∞, i.e., the draining reaction is dominated by some sustaining reaction along this
adapted toric jet. This follows from Proposition 6.26, completing the proof, once w1 is
verified not to be orthogonal to the stoichiometric subspace H.

To prove that w1 /∈ H⊥, first express each vector wj of the jet frame uniquely as a
sum wj,H + wj,H⊥ of a vector wj,H ∈ H and a vector wj,H⊥ ∈ H⊥. Birch’s theorem (Theo-

rem 5.12) produces a unique point q in the intersection int(P)∩{θw | θ ∈ R>0 and w ∈ H⊥}.
Pick a neighborhood O in int(P) around q whose closure O is also contained in int(P). The
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sequence
(
θ(i)w(i)

)
eventually avoids O, because x(i) approaches the boundary of the clo-

sure P of P in the compactification [0,∞]S (see Remark 6.3). Thus, by Corollary 5.18,
there exists a number 0 < µ ≤ 1 such that the H-components wH(i) of the unit vectors
w(i) have norm at least µ, for large i:

‖wH(i)‖ = ‖β1(i)w1,H + · · · + βℓ(i)wℓ,H‖ ≥ µ.

Since the first coefficient β1(i) approaches 1 while all others approach 0, the left-hand side
of this inequality has limit ‖w1,H‖, so ‖w1,H‖ ≥ µ > 0. Thus w1,H 6= 0, as desired.

Remark 7.6. We wish to emphasize that our extensions of Birch’s Theorem (in particular,
Corollary 5.18) were used in the proof of Theorem 7.5 to show that w1 /∈ H⊥. This novel
use of Birch’s Theorem is one of our main contributions.

8 Main results: persistence and permanence

In this section, we prove that strongly endotactic networks have bounded trajectories (The-
orem 8.1), are persistent (Theorem 8.5), and are permanent (Theorem 1.1). Although the
permanence result is stronger than the first two, the two weaker results are applied in the
proof of permanence. In this section, we rely on two key prior results:

• the decrease of the pseudo-Helmholtz free energy function along trajectories outside a
compact set (Theorem 7.5), and

• a projection argument from our earlier work [24].

Additionally, we prove the existence of steady states for strongly endotactic networks in the
mass-action ODE setting.

Throughout this section, Notation 5.1 remains in effect, as does Definition 5.6, which

includes the special case g(x) = g(1,...,1)(x) =
∑|S|

i=1 xi log xi − xi from [19, 26, 27].

8.1 Boundedness of trajectories

Conjecture 4.7 holds for strongly endotactic networks.

Theorem 8.1. Strongly endotactic networks have bounded trajectories. More precisely,
the image of every trajectory of every mass-action differential inclusion (Definition 3.23)
arising from a confined strongly endotactic reaction system is bounded.

Proof. For a mass-action differential inclusion of a confined strongly endotactic reaction sys-
tem, specified by (S, C,R), a tempering κ, and an invariant polyhedron P, let x : I → int(P)
denote a trajectory. By Theorem 7.5, there exists a compact set K ⊆ int(P) such that
d
dtg(x(t))|t=t∗ < 0 for all trajectory points x(t∗) ∈ int(P) \ K. Let M1 = sup{g(x) | x ∈ K}
be the supremum of g on K, which is finite by compactness. Let M be the maximum of M1
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and g(inf I). Then x(t) remains in the bounded sublevel set Q = {x ∈ P | g(x) ≤ M}. In-
deed, the trajectory begins in Q by construction; when it is in Q\K, the value of g decreases;
and while it is in K, the value of g can not exceed M1 and thus can not exceed M .

8.2 Persistence

Our next main result is the persistence of strongly endotactic networks (Theorem 8.5). The
proof appeals to the following lemma, a special case of [3, Theorem 3.7] of Anderson or [13,
Proposition 20] of Craciun et al. It again concerns the function g(x) =

∑m
i=1 xi log xi − xi,

which extends continuously to the boundary of the nonnegative orthant.

Lemma 8.2. The function g(x) =
∑m

i=1 xi log xi −xi defined on R
m
≥0 has a local maximum

at the origin.

Another result crucial to our proof of Theorem 8.5 is the next lemma, which follows
from our earlier work on “vertexical” families of differential inclusions on hypercubes that
are well-behaved under maps [24].

Lemma 8.3. Let F be the class of all confined strongly endotactic reaction systems. If

1. every mass-action differential inclusion of every reaction system in F is repelled by
the origin (Definition 4.1), and

2. every trajectory of such a differential inclusion is bounded,

then every strongly endotactic reaction network is persistent.

Proof. This is a special case of Corollary 6.4 of [24].

To be useful, Lemma 8.3 requires the following auxiliary result.

Lemma 8.4. If the function g(x) =
∑

i∈S xi log xi − xi for a confined reaction system N
decreases along trajectories outside a compact set, then the mass-action differential inclusion
(Definition 3.23) arising from N is repelled by the origin.

Proof. Let O1 be a relatively open neighborhood of the origin 0 ∈ R
S
≥0, and let P be an

invariant polyhedron of (S, C,R). Let K ⊆ int(P) denote a compact set outside of which
g decreases along trajectories. If P does not contain 0, then all trajectories avoid a fixed
neighborhood of the origin because they remain in P. Therefore assume P contains 0. Let
Nε denote the intersection of the nonnegative orthant R

S
≥0 with an open ball of radius ε

around the origin. Let ε > 0 be sufficiently small so that

• O1 contains Nε,

• ε is less than the distance between the origin 0 and the compact set K, and

• the maximum of g on Nε is attained uniquely at the origin (cf. Lemma 8.2).
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As g(0) = 0, it follows that g is strictly negative on Nε. Define −M to be the maximum
value of g for nonnegative vectors of norm ε, which is attained by compactness:

−M = max
{
g(z)

∣∣ z ∈ R
S
≥0 with ‖z‖ = ε

}
. (27)

Thus, −M < g(0) = 0. Again by Lemma 8.2, there exists δ > 0 so that g(z) > −M/2 for
z ∈ Nδ. It is enough to show that any trajectory x : I → int(P) that begins outside O1, and
thus outside Nε as well, never enters Nδ. Indeed, if the trajectory ever enters the closure of
Nε at some point x(t∗), then g(x(t∗)) ≤ −M by (27). Thus, since g(x(t)) decreases while
x(t) is in Nε, because Nε ∩ K is empty, x(t) never reaches Nδ by definition of δ.

We can now prove that Conjecture 4.4 holds for strongly endotactic networks networks.

Theorem 8.5. Strongly endotactic networks are persistent.

Proof. Follows from Lemmas 8.3 and 8.4 and Theorems 7.5 and 8.1.

In addition, the GAC holds for strongly endotactic complex-balanced systems.

Proof of Theorem 1.2. Use Theorem 8.5 and the discussion before Conjecture 4.4.

Remark 8.6. Our reliance on the projection argument (Lemma 8.3) requires showing
that for strongly endotactic networks, the origin is repelling and trajectories are bounded.
Instead of Lemma 8.3, we could have appealed to a related result, Corollary 6.3 in [24],
which states that for a “vertexical” family of differential inclusions—such as the family
arising from strongly endotactic networks—if all vertices of [0,∞]S are repelling, then the
boundary of [0,∞]S is repelling and hence these networks are persistent. However, it is not
known whether non-origin vertices of [0,∞]S are repelling for strongly endotactic networks.

8.3 Permanence

Lemma 8.3 only records half of Corollary 6.4 of [24]. The other half deals with permanence.

Lemma 8.7. In Lemma 8.3, assume that 1 and 2 hold, and that X is such a differential
inclusion on R

S
>0. If K ⊆ R

S
>0 is a compact set for which there exists A ∈ R>0 such that

every trajectory of X that starts in K remains bounded above by A in each coordinate for all
time, then for some compact set K+ ⊆ R

S
>0, no trajectory of X that begins in K leaves K+.

Applying Lemma 8.7 requires an auxiliary result that makes use of the persistence result.

Lemma 8.8. Let X be the mass-action differential inclusion of a confined strongly endotac-
tic reaction system N , specified by a reaction network (S, C,R) together with a tempering κ
and an invariant polyhedron P. Then there exists a compact set K in int(P) such that the
image of every trajectory of X defined on a ray meets K.
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Proof. By Theorem 7.5, there exists a compact set K ⊆ int(P) outside of which g decreases
along trajectories. Enlarge K to a closed ε-neighborhood of K, denoted by K̃, so that
K̃ ⊆ int(P); thus K̃ is compact. Let x : I → int(P) be a trajectory of the mass-action
differential inclusion arising from (S, C,R) with κ and P, where I = [a,∞] is a ray. The
goal is to show that the image of x meets K̃. If x(a) ∈ K̃, then we are done. Otherwise,
there exists a nonempty maximal subinterval [a, b) ⊂ I on which g(x(t)) is decreasing. If
b < ∞, then x(b) ∈ K, so we are done. The remaining case has g(x(t)) decreasing for all
time t > a. The closure of the trajectory x(t) is a compact subset of int(P), because this
network has bounded trajectories (Theorem 8.1) and is persistent (Theorem 8.5).

Any trajectory x(t) that fails to intersect K̃ is bounded away from K. The time derivative
d
dtg(x(t)) of such a trajectory is therefore negative and bounded away from 0 (otherwise the

closure of the trajectory would meet K, forcing the trajectory itself to meet K̃), causing
g(x(t)) to have limit −∞ as t → ∞. But g is bounded below by −|S|, so we conclude that
every trajectory x(t) must visit the compact set K̃.

We now prove our main result, which states that strongly endotactic networks are per-
manent, thereby resolving Conjecture 4.5 in the strongly endotactic case.

Proof of Theorem 1.1. First, strongly endotactic networks are persistent by Theorem 8.5.
Next, by Lemma 8.8, for every mass-action differential inclusion X arising from a strongly
endotactic network, there exists a compact set K in the positive orthant that meets every
trajectory of X defined on a ray. For the purpose of studying eventual properties of tra-
jectories such as permanence, we therefore assume that each trajectory defined on a ray
begins in K. Lemma 8.7 applies for strongly endotactic networks by Lemma 8.4 along with
Theorems 7.5 and 8.1; it implies that there exists a compact set K+ in R

S
>0 such that every

such trajectory eventually remains in K+. Thus X is permanent.

As a corollary, certain weakly reversible networks are permanent.

Corollary 8.9. If each linkage class of a weakly reversible network (S, C,R) has the same
stoichiometric subspace, namely that of (S, C,R), then (S, C,R) is permanent.

Proof. Follows from Corollary 3.19 and Theorem 1.1.

Similarly, weakly reversible reaction networks with one linkage class are permanent.

Proof of Theorem 1.3. Follows from the Corollary 3.20 and Theorem 1.1.

Remark 8.10. Is an appeal to our earlier work (Lemmas 8.3 and 8.7) necessary to prove
permanence? Could the fact that g decreases along trajectories suffice to deduce Theo-
rem 1.1? Such an approach seems not to work. On one hand, we can prove that maximal
trajectories must approach a prescribed compact set in P, namely the smallest sublevel
set Q of g that contains K. On the other hand, Q may meet the boundary of P. Thus the
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union of all ω-limit sets of all possible trajectories lies in Q∩int(P), but its closure in P could
meet the boundary of int(P). Another approach to permanence is to determine whether
K is an attracting set. However, this also seems not to work: although persistence can be
used to prove that every trajectory outside K must enter a neighborhood of K (denoted by
K̃ in the proof of Lemma 8.8), the trajectory could exit and re-enter K̃ infinitely often.

8.4 Existence of positive steady states

In the setting of mass-action ODE systems, Deng et al. proved that for weakly reversible
networks, each invariant polyhedron contains a positive steady state [16]. As for two-
dimensional endotactic networks, Craciun, Nazarov, and Pantea [15, §6] explained that
their permanence result, together with the Brouwer fixed-point theorem [36, §55], implies
the existence of positive steady states. (Their result is complementary to that of Deng et al.,
because weakly reversible networks form a proper subset of endotactic networks.) This
standard application of the Brouwer fixed-point theorem to establish the existence of positive
steady states in the setting of reaction systems goes back at least to Wei in 1962 [50].

We too are able to prove the existence of positive steady states (Corollary 8.12). How-
ever, this is not accomplished via the Brouwer fixed-point theorem, because we do not
readily obtain a forward-invariant set U in R

S
>0 that is homeomorphic to a ball; in par-

ticular, the sets K and K+ in the proofs of Lemma 8.8 and Theorem 1.1 do not suffice.
Instead our proof relies on the following result concerning fixed points of dynamical systems,
a special case of [42, Theorem 3] first proven in a general setting by Srzednicki [48].

Lemma 8.11. Let X be a continuous ODE system on a polyhedron P in R
n such that every

trajectory of X defined on a ray meets a compact set K. Then X has a steady state.

Corollary 8.12. For a mass-action kinetics ODE system arising from a strongly endotactic
network, each invariant polyhedron contains a positive steady state.

Proof. Let X denote such a mass-action kinetics ODE system with invariant polyhedron P.
The proof of Lemma 8.8 shows that there exists a compact set K in int(P) such that the
image of every trajectory of X defined on a ray meets K. Thus, by Lemma 8.11, X has a
steady state in K, which is therefore in int(P).

9 Examples

The examples here illustrate our results as well as their limitations.

9.1 Strongly endotactic networks

Example 9.1. By Theorem 1.1, the strongly endotactic network from Example 3.16, com-
prised of the reactions 0 → 3A + B, 2A → B, and 2B → A + B, is permanent.
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Permanence of the network in Example 9.1 already was known by the results of Craciun,
Nazarov, and Pantea [15] and extensions by Pantea [39], which apply to endotactic networks
with stoichiometric subspace of dimension at most 2. For the following 3-dimensional ex-
ample, their results do not apply.

Example 9.2. The following network is strongly endotactic, so it is permanent:

0 → A → B → C → 0.

The weaker persistence result for the network in Example 9.2 follows from work of Angeli,
De Leenheer, and Sontag [9] because it has no siphons. In contrast, the following example
contains critical siphons, so the results of Angeli, De Leenheer, and Sontag do not apply.

Example 9.3. The following network is strongly endotactic, so it is permanent:

2A ⇋ B 2B ⇋ C 2C ⇋ A.

Combinatorially, the reactant polytope is a triangular prism; one triangle is formed by A,
B, and C, and the other is formed by 2A, 2B, and 2C. Each of the three pairs of reversible
reactions lies along a diagonal of one of the quadrilateral boundary faces of the polytope.

Persistence in Example 9.3 already was known by work of Johnston and Siegel [29],
which extends easily to the setting of mass-action differential inclusions, because the unique
critical siphon {A, B, C} can be shown to be weakly dynamically non-emptiable. In the next
example, however, no previous results apply to obtain persistence: it is a three-dimensional
network for which {A, B, C} is a critical siphon but not weakly dynamically non-emptiable.

Example 9.4. The following network is strongly endotactic and therefore permanent:

4A → A + B + C → 4B → 4C → 2A + 2C.

The reactant polytope is a tetrahedron with vertices A + B + C, 4A, 4B, and 4C. Each of
the four reactions lies on or is a subset of one of the six edges of the tetrahedron.

9.2 Limitations of the geometric approach

The geometric approach presented in this work has some limitations in its ability to resolve
Conjectures 4.3–4.7 in full generality. We explain these limitations via a simple example.

Example 9.5. The following network G is endotactic but not strongly endotactic:

0 ⇋ A B ⇋ 2B.

Define a toric jet adapted to G in the following way: take any sequence (θ(i)) of numbers
greater than 1 that limits to infinity, and let w(i) = −( 1

θ(i) , 1)/‖( 1
θ(i) , 1)‖. It is straight-

forward to verify that the conclusion of Proposition 6.26 fails for every subsequence of the
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resulting toric jet
(
θ(i)w(i)

)
. Namely, the pull of the draining reaction 0 ← A with respect

to the toric jet cannot be dominated by either of the two sustaining reactions 0 → A or
B → 2B. Although results of Craciun, Nazarov, and Pantea [15, 39] can prove that this
two-dimensional system is permanent, higher-dimensional generalizations of this network
can not be proved to be permanent or even persistent.

The limiting direction of the unit jet here is lim
n→∞

w(n) = (0,−1), and this direction

(0,−1) witnesses the fact that the network fails to be strongly endotactic. Namely, there is
no reaction with reactant among the ≤(0,−1)-maximal reactants {0, A} and product outside
of that set. Our results for strongly endotactic networks rely on the existence of such a
sustaining reaction, so they are unable to prove permanence or even persistence of this
network or similar networks by way of toric jets.

In our final example, the question of persistence is as yet unresolved.

Example 9.6. The following 3-dimensional network is weakly reversible—and therefore
endotactic—but not strongly endotactic:

A → B → C → A 2A ⇋ 3B.

The reactant polytope is a pyramid whose base has vertices A, 2A, B, and 3B. Three
of the reactions form a triangle along edges of the pyramid, while the remaining pair of
reversible reactions lies on the edge of the pyramid nonadjacent to the triangle. The network
has a unique critical siphon, {A, B, C}, which is not weakly dynamically non-emptiable.
Persistence and permanence (Conjectures 4.4 and 4.5) remain open for this network.
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