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Abstract

Phosphorylation, the enzyme-mediated addition of a phosphate group to a
molecule, is a ubiquitous chemical mechanism in biology. Multisite phos-
phorylation, the addition of phosphate groups to multiple sites of a single
molecule, may be distributive or processive. Distributive systems, which re-
quire an enzyme and substrate to bind several times in order to add multiple
phosphate groups, can be bistable. Processive systems, in contrast, require
only one binding to add all phosphate groups, and were recently shown to
be globally stable. However, this global convergence result was proven only
for a specific mechanism of processive phosphorylation/dephosphorylation
(namely, all catalytic reactions are reversible). Accordingly, we generalize
this result to allow for processive phosphorylation networks in which each re-
action may be irreversible, and also to account for possible product inhibition.
We accomplish this by first defining an all-encompassing processive network
that encapsulates all of these schemes, and then appealing to recent results of
Marcondes de Freitas, Wiuf, and Feliu that assert global convergence by way
of monotone systems theory and network/graph reductions (corresponding
to removing intermediate complexes). Our results form a case study into
the question of when global convergence is preserved when reactions and/or
intermediate complexes are added to or removed from a network.
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stability, SR-graph, intermediate complex

1. Introduction1

We address the question of when global dynamics, such as global conver-2

gence to a unique equilibrium, are preserved when reactions and/or inter-3

mediate complexes are added to or removed from a biochemical network.4

Our work forms a case study into this question, by analyzing networks5

that describe the processive multisite phosphorylation/dephosphorylation of6

a molecule (a so-called “multiple futile cycle”). We now recall possible mech-7

anisms underlying such a network.8

1.1. Mechanisms of Processive Multisite Phosphorylation9

A biological process of great importance, phosphorylation is the enzyme-10

mediated addition of a phosphate group to a protein substrate. This process11

often modifies the function of the substrate. The reactions underlying this12

mechanism are: S0 + E � S0E → S1 + E, where Si is the substrate with i13

phosphate groups attached and E is the enzyme.14

Additionally, many substrates have more than one site at which phosphate15

groups can be attached. Such multisite phosphorylation may be distributive16

or processive, or somewhere in between [1, 2]. In distributive phosphorylation,17

each binding of an enzyme to a substrate results in at most one addition of18

a phosphate group. In contrast, in processive phosphorylation, when an19

enzyme catalyzes the addition of a phosphate group, phosphate groups are20

added to all sites before the enzyme and substrate dissociate.21

Most studies on the mathematics of multisite phosphorylation have fo-22

cused on phosphorylation under a sequential and fully distributive mecha-23

nism [3, 4, 5, 6, 7]. These systems admit bistability [8, 9] and oscillations [10],24

and the set of steady states is parametrized by monomials [11, 12, 13].25

As for processive phosphorylation, Conradi and Shiu [14] considered the26

following processive n-site phosphorylation/dephosphorylation network:27

S0 +K
k1 / S0Kk2
o

k3 / S1Kk4
o

k5 / . . .
k6
o

k2n−1
/ Sn−1Kk2n

o
k2n+1

// Sn +K

Sn + F
`2n+1

/ SnF`2n
o

`2n−1
/ . . .

`2n−2

o
`5 / S2F`4

o
`3 / S1F`2

o
`1 // S0 + F

(1)
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They proved that every resulting dynamical system (arising from mass-action28

kinetics), in contrast with distributive systems, does not admit bistability or29

oscillations, and, moreover, exhibits rigid dynamics. Specifically, each in-30

variant set (specified by conservation laws) contains a unique steady state,31

which is a global attractor [14]. Conradi and Shiu proved this result via32

monotone systems theory, by generalizing a result of Angeli and Sontag [15].33

Subsequently, using other means, Ali Al-Radhawi [16, §8.3], Rao [17], and34

Marcondes de Freitas, Wiuf, and Feliu [18] established the same global con-35

vergence result.36

However, in addition to (1), there are other mechanisms for processive37

phosphorylation, the following being the most common [19]:38

S0 +K
k1 / S0Kk2
o

k3 // S1K
k5 // . . .

k2n−1
// Sn−1K

k2n+1
// Sn +K

Sn + F
`2n+1

/ SnF`2n
o

`2n−1`2n−1
// . . .

`5 // S2F
`3 // S1F

`1 // S0 + F

(2)

Here, in contrast with network (1), the catalytic reactions are not reversible.39

Another possible mechanism incorporates product inhibition. Instead40

of detaching when the final phosphate group is attached or removed (e.g.,41

Sn−1K → Sn +K), the substrate and enzyme remain bound (e.g., Sn−1K →42

SnK), and then subsequently detach (e.g., SnK → Sn + K). Also, the final43

product (e.g., Sn) may rebind to the enzyme, thereby inhibiting its activity44

(e.g., SnK ← Sn +K). Thus, a processive realization of this scheme is:45

S0 +K / S0Ko // S1K // . . . // Sn−1K // SnK
/ Sn +Ko

Sn + F / SnFo // . . . // S2F // S1F // S0F
/ S0 + Fo

(3)

There are distributive systems with such product inhibition [9, Scheme 2].46

Can the global stability result for (1) be generalized to incorporate the47

other mechanisms (2–3)? Indeed, we accomplish this in this work:48

Theorem 1.1. For any mass-action kinetics1 system arising from network49

(1), (2), or (3) and any choice of rate constants, each invariant set P con-50

tains a unique positive steady state and it is the global attractor of P.51

1In fact, other kinetics besides mass-action also work (see Remark 5.1).
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The proof of Theorem 1.1 appears in Section 4. For now, we describe52

briefly the ideas behind the proof.53

1.2. Proving Global Stability via an All-Encompassing Network54

To prove Theorem 1.1, we construct an all-encompassing network that55

subsumes all three networks (1)–(3), and then prove the global convergence56

result for this network. In this all-encompassing network, each reaction may57

be reversible or irreversible, there are m reaction components rather than 2,58

and the number of binding sites in each component is allowed to differ.59

In addition to incorporating networks (1)–(3) as special cases, our all-60

encompassing network also specializes to 1-site phosphorylation networks61

(futile cycles) and certain cyclic networks introduced by Rao [17]. Hence,62

our global convergence result for the all-encompassing network generalizes63

prior global convergence results, including those of Angeli and Sontag [15]64

and Donnell and Banaji [20] (for the 1-site network), Conradi and Shiu [14]65

and Marcondes de Freitas, Wiuf, and Feliu [18] (network (1)), and Rao [17].66

To prove our global convergence result, we use monotone systems theory67

and network/graph reductions. Specifically, we use a graph-theoretic crite-68

rion for global convergence from monotone systems theory. This criterion,69

due to Angeli, De Leenheer, and Sontag [21], asserts that a given network is70

globally convergent if two graphs built from the network, the so-called R- and71

SR-graphs, satisfy certain properties. To apply this result efficiently, in light72

of the fact that our network has many intermediate complexes such as S0K73

and SnF , we additionally use recent results that allow us to remove many74

of these intermediate complexes before applying the global-convergence cri-75

terion. These results, due to Marcondes de Freitas, Wiuf, and Feliu [21, 18],76

state that if the convergence criterion holds after removing intermediate com-77

plexes, then the criterion also holds for the original network.78

1.3. Outline79

The outline of our work is as follows. Section 2 defines reaction net-80

works and their associated dynamical systems. Section 3 introduces the all-81

encompassing network, Section 4 states the main global convergence result,82

and Section 5 provides the proof. In Section 6, we mention other approaches83

to proving global stability, and, in Section 7, we comment on how the systems84

analyzed in this work compare to other related phosphorylation systems. A85

discussion appears in Section 8. Finally, Appendix A explains how we check86

a technical detail, namely, bounded-persistence.87
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Table 1: Notation used in this work.

Notation Definition
S species set
C complexes set
R reactions set
s number of species
r number of reactions
(S, C,R) reaction network
S stoichiometric subspace
P stoichiometric compatibility class
GSR = (VSR, ESR, LSR) directed SR-graph
GR = (VR, ER, LR) R-graph
K an orthant cone

1.4. Notation88

To aid the reader, we list in Table 1 the notation that we use, which will89

be defined beginning in the next section.90

2. Background91

This section describes how mass-action kinetics define a dynamical system92

from a chemical reaction network. Our setup is based on [14] and [18].93

2.1. Chemical Reaction Networks94

As an example, consider the chemical reaction95

A+B
κ // 3A+ C (4)

A chemical reaction network is a directed graph that comprises various re-96

actions, such as (4). The vertices A + B and 3A + C are complexes, which97

are linear combinations of individual species. The complex on the left side of98

a reaction is the reactant, and the complex on the right side is the product.99

A species in a reactant (respectively, product) complex is a reactant species100

(respectively, product species).101

An irreversible reaction is denoted by a unidirectional arrow (→). A102

reaction with a double arrow, such as X � Y denotes a forward reaction103

X → Y and a backward reaction Y → X. Together these reactions are called104

a reversible reaction. The parameter κ is known as a rate constant.105
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More formally, a chemical reaction network with s species is a triple G =106

(S, C,R), which consists of:107

1. a finite nonempty set of species S = {S1, . . . , Ss},108

2. a set of complexes C of the form y = (α1, . . . , αs) ∈ Zs≥0, representing109

the coefficients that form a linear combination of the species, and110

3. a set of reversible (y � y′) and irreversible (y → y′) reactions R.111

For a reaction y � y′ or y → y′, we call y′ − y the reaction vector, which112

describes the net change in species. For instance, the reaction vector of the113

example reaction shown earlier in (4) is y2 − y1 = (2,−1, 1), which means114

that with each occurrence of the reaction, two units of A and one of C are115

produced, while one unit of B is consumed.116

Example 2.1. Phosphorylation is a chemical mechanism that adds a phos-117

phate group to a molecule. The following network (called the “futile cycle”)118

describes 1-site phosphorylation/dephosphorylation; it is the n = 1 case of119

both networks (1) and (2):120

S0 +K
k1 / S0Kk2
o

k3 // S1 +K

S1 + F
`3 / S1F`2
o

`1 // S0 + F

(5)

The key players in this network are a kinase (K), a phosphatase (F ), and121

a substrate (S0). The substrate S1 is obtained from the unphosphorylated122

protein S0 by attaching a phosphate group to it via an enzymatic reaction123

catalyzed byK. Conversely, a reaction catalyzed by F removes the phosphate124

group from S1 to obtain S0. The intermediate complexes S0K and S1F are125

the bound enzyme-substrate complexes.126

2.2. Mass-Action Kinetics127

Recall the example reaction A+B −→ 3A+C from (4). Let xA, xB, and
xC be the concentrations of the species as functions of time. Assuming the
reaction follows mass-action kinetics, the species A and B react proportion-
ally to the product of their concentrations with constant of proportionality
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κ. Noting that the reaction yields a net change of two units in the amount
of A, we obtain the first differential equation in the following system:

d

dt
xA = 2κxAxB

d

dt
xB = − κxAxB

d

dt
xC = κxAxB .

The other equations follow similarly. The mass-action differential equations128

defined by a network are a sum of monomial contributions, each of which129

corresponds to the reactant of a chemical reaction in the network. These130

differential equations will be defined by equations (6–7).131

Letting r denote the number of reactions, where we count each pair of132

reversible reactions only once, the stoichiometric matrix Γ is the s×r matrix133

whose k-th column is the reaction vector of the k-th reaction (the forward134

reaction if the reaction is reversible), i.e., it is the reaction vector yj − yi if k135

indexes the (forward) reaction yi → yj.136

The choice of kinetics is encoded by a locally Lipschitz function R :
Rs
≥0 → Rr that lists the reaction rates of the r reactions as functions of the

s species concentrations (a pair of reversible reactions is counted only once
– if the k-th reaction is reversible, then Rk is the forward rate minus the
backward rate). The reaction kinetics system defined by a reaction network
G and reaction rate function R is given by the following system of ODEs:

dx

dt
= ΓR(x) . (6)

For mass-action kinetics, the setting of this paper, the coordinates of R are:137

Rk(x) =

{
κijx

yi if k indexes an irreversible reaction yi → yj
κijx

yi − κjixyj if k indexes a reversible reaction yi � yj
(7)

A chemical reaction system refers to the dynamical system (6) arising138

from a specific chemical reaction network G and a choice of rate parameters139

(κij) ∈ Rr
>0 (recall that r denotes the number of reactions) where the reaction140

rate function R is that of mass-action kinetics (7).141

The stoichiometric subspace is the vector subspace of Rs spanned by the142

reaction vectors yj − yi (where yi → yj is a reaction), and we denote this by:143

S := span{yj − yi | yi → yj is a reaction in G} . (8)
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Note that in the setting of (6), one has S = im(Γ). For example, the reaction144

vector (2,−1, 1) spans the stoichiometric subspace S for the network (4).145

In general, the vector
dx

dt
in (6) lies in S for all time t. In fact, a trajectory

x(t) beginning at a positive vector x(0) ∈ Rs
>0 remains in the stoichiometric

compatibility class, which we denote by

P := (x(0) + S ) ∩ Rs
≥0 , (9)

for all positive time. That is, P is forward-invariant with respect to the146

dynamics (6). A positive steady state of a kinetics system (6) is a positive147

concentration vector x∗ ∈ Rs
>0 at which the ODEs (6) vanish: ΓR(x∗) = 0.148

3. The All-Encompassing Network149

Here we introduce a network that encompasses each of the three networks150

in the Introduction, and also encompasses a network introduced recently by151

Rao [17]. Accordingly, our new network has m components rather than 2,152

each with its own enzyme Ei and substrate Pi. Also, each component has its153

own number of intermediate complexes and corresponding reactions.154

We let /o denote a reaction that may or may not be reversible: it is155

either → or 
. The all-encompassing reaction network is:156

P1 + E1

k11 / C11k−11

o
k12 / C12k−12

o
k13 / . . .
k−13

o
k1n1 / C1n1k−1n1

o
k1,n1+1

/ P2 + E1k−1,n1+1

o

P2 + E2

k21 / C21k−21

o
k22 / C22k−22

o
k23 / . . .
k−23

o
k2n2 / C2n2k−2n2

o
k2,n2+1

/ P3 + E2k−2,n2+1

o

...
...

...

Pm + Em
km1 / Cm1k−m1

o
km2 / Cm2k−m2

o
km3 / . . .
k−m3

o
kmnm / Cmnmk−mnm

o
km,nm+1

/ P1 + Emk−m,nm+1

o

(10)

where m ∈ Z≥2 and n1, . . . , nm ∈ Z>0. As indicated, we allow each reaction
to possibly be irreversible (in which case only the forward reaction takes
place), that is, we impose the following restrictions on the rate constants:

kij > 0 and k−ij ≥ 0 for all i = 1, . . . ,m and j = 1, . . . , ni.

This network has 2m+ (n1 + n2 + · · ·+ nm) species.157
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Remark 3.1. Technically, the all-encompassing network (10) is not one net-158

work, but many – one for each choice of m, ni’s, and whether each reaction is159

reversible or irreversible. Abusing notation, we nevertheless call it a network.160

Remark 3.2. The all-encompassing network (10) generalizes the network161

analyzed by Rao [17]. To obtain our network from Rao’s, each reaction is162

allowed to be irreversible and the final reaction in each component may be163

reversible. Accordingly, the notation in (10) is based on Rao’s [17], but with164

a few changes. Keeping with the convention that n denotes the number of165

phosphorylation sites, ni denotes the number of intermediate complexes in166

component i, whereas Rao used the notation mi [17]. Also, we use m to167

represent the number of components in the network.168

Network (10) generalizes not only Rao’s network, but also the three mech-169

anisms of processive phosphorylation/dephosphorylation in the Introduction:170

Proposition 3.3. The all-encompassing network (10) includes as special171

cases, the processive multisite phosphorylation networks (1), (2), and (3).172

Proof. The conditions displayed here show how the all-encompassing net-173

work (10) reduces to each of the three networks (1), (2), and (3):174

Network Conditions
(1) m = 2, n := n1 = n2, k−i,n+1 = 0 for i = 1, 2
(2) m = 2, n := n1 = n2, k−i,j = 0 for i = 1, 2 and j = 2, . . . , n
(3) m = 2, n+ 1 := n1 = n2, k−i,j = 0 for i = 1, 2 and j = 2, . . . , n

175

We end this section by showing that the all-encompassing network is176

conservative.177

Definition 3.4. A positive conservation law of a network G is some c ∈178

ker(ΓT )∩Rs
>0, where Γ is the stoichiometric matrix of G and s is the number179

of species. A network that has a positive conservation law is conservative.180

Lemma 3.5. The all-encompassing network (10) is conservative, and thus181

every one of its stoichiometric compatibility classes is compact.182

Proof. The vector c ∈ R2m+(n1+n2+···+nm)
>0 , defined by cPi

:= 1, cEi
:= 1,183

and cCij
:= 2 for all relevant i and j, is a positive conservation law. Every184

stoichiometric compatibility class is closed by construction and bounded due185

to the positive conservation law, and thus is compact.186
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4. Main Result: Global Convergence of All-Encompassing Network187

Our main result, which will be proven in Section 5.5, states that the188

all-encompassing network (10) is globally convergent:189

Theorem 4.1. For any chemical reaction system (6) arising from the all-190

encompassing network (10) and any choice of rate constants kij > 0 and191

k−ij ≥ 0,192

1. each compatibility class P contains a unique steady state η,193

2. η is a positive steady state, and194

3. η is the global attractor of P.195

As a special case of Theorem 4.1, the three processive multisite phospho-196

rylation networks from the Introduction are globally convergent:197

Proof of Theorem 1.1. Follows from Proposition 3.3 and Theorem 4.1.198

Another special case of Theorem 4.1 is Rao’s result [17] (recall Remark 3.2).199

However, our proof differs from his (see Remark 6.2).200

5. Proof of Main Result Using Reduced Networks/Graphs201

In this section, we prove Theorem 4.1. To do so, we must recall how to202

construct two graphs from a chemical reaction network: the SR-graph and203

the R-graph. These graphs appear in the global convergence criterion from204

[21] that we will use. Moreover, we will use a theorem from [18] that allows205

us to first remove intermediate complexes to produce a reduced network, and206

then check the same graph-theoretic conditions on this simpler network.207

We recall the relevant setup and definitions in Sections 5.1–5.3 and then208

state the relevant results from [18] in Section 5.4. Accordingly, much of Sec-209

tions 5.1–5.4 follow that in [21, 18]. Finally, our proof appears in Section 5.5.210

5.1. Assumptions211

In order for the results in [18] to apply, a reaction network (S, C,R) must212

satisfy the following assumptions2:213

2These assumptions do not limit the networks we can consider. Instead they clarify
how we represent networks.
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1. for each complex y ∈ C, there exists a reaction in C that has y as a214

reactant or a product, and215

2. each species is contained in at least one complex.216

Some theorems in [18] additionally require the following conditions:217

(G1) There are no auto-catalytic reactions, meaning that no species can be218

both a reactant species and a product species in any reaction.219

(G2) Each species in S takes part in at most two reactions in R.220

(G3) The network is conservative (recall Definition 3.4).221

Remark 5.1. The results in [18] require assumptions on the choice of kinet-222

ics. These assumptions, labeled (r1), (r2), and (r3), are satisfied by mass-223

action kinetics (such as our phosphorylation systems), power-law kinetics,224

and Hill kinetics [18, Remark 1], so they are omitted here.225

5.2. The SR-graph and R-graph of a Reaction Network226

Here we explain how to construct two graphs from a chemical reaction227

network: the directed SR-graph and R-graph. Notationally, we write a di-228

rected, labeled graph as G = (V,E, L), with vertex set V , edge set E, and229

labeling L : E → {+,−} (all edge labels here will be + or −). A directed230

edge from X to Y is denoted by
→
XY .231

A directed SR-graph, denoted by GSR = (VSR, ESR, LSR), is a directed232

graph constructed from a chemical reaction network (S, C,R) as follows.233

The vertex set VSR is the union of all species and reactions in the network234

(hence the name “SR”). The edges and their labels are defined here3:235

1. If a species S is a reactant species of a (reversible or irreversible) reac-236

tion R ∈ R or a product species of a reversible reaction R ∈ R, then237

→
SR ∈ ESR and

→
RS ∈ ESR.238

2. If S is a product species of an irreversible R ∈ R, then
→
RS ∈ ESR.239

3. Let S be a species and R a reaction. If S is a reactant species of R (of240

the forward reaction of R if R is reversible), then LSR(
→
SR) := + and241

3Our definitions for SR-graph and R-graph differ from those in [18], but are equivalent.
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LSR(
→
RS) := +. If S is a product species of R, then LSR(

→
RS) := −,242

and, if additionally
→
RS ∈ ESR, then LSR(

→
SR) := −.243

An R-graph is an undirected graph GR = (VR, ER, LR) created from a244

chemical reaction network (in fact, from its directed SR-graph) as follows:245

1. The vertex set VR is the set of reactions in the reaction network.246

2. An edge connects reactions Ri and Rj if there is a length-2 path con-247

necting Ri and Rj in the SR-graph. This edge is labeled with the248

opposite of the product of the two labels along the path. An edge may249

have more than one label, if there are multiple such paths.250

Example 5.2. Recall the 1-site phosphorylation system from Example 2.1.251

The directed SR-graph and R-graph for this network are shown in Figure 1.252

R1 R2

R3R4

S0

K

S0K
S1

S1F

F

+

+

-
-

-

+

+
-

+

-
+

-

(a) The directed SR-graph.

R1 R2

R3R4

+

+

+

+

(b) The R-graph.

Figure 1: The directed SR-graph and R-graph for the 1-site phosphorylation network.

Next we define a property of an R-graph that, in Section 5.4, will help253

establish the global stability of a system.254

Definition 5.3. An R-graph has the positive loop property if every simple255

loop has an even number of negative edges.256

Example 5.4. Consider again the SR-graph and R-graph in Figure 1. The257

R-graph has the positive loop property, because it has no negative labels.258

Notation 5.5. For a network whose R-graph has the positive loop property,259

we define an orthant cone (recall that r denotes the number of reactions):260

K := {(x1, . . . , xr) ∈ Rr | sign(xi) ∈ {0, σi} for all i = 1, . . . , r}, (11)
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by defining a sign pattern σ = (σ1, . . . , σr) ∈ {+,−}r as follows. If the R-261

graph is connected, set σ1 := +, and then for i ∈ {2, 3, . . . , r}, choose any262

simple path 1 = i0—i1— · · ·—ik = i in the R-graph from 1 to i, and define263

σi to be the product of the labels along the path:264

σi :=
k∏
d=1

LR({Rid−1
, Rid}). (12)

The R-graph has the positive loop property, so every simple loop has an even265

number of negative edges, and thus σi does not depend on the choice of path.266

If the R-graph has more than one connected component, we apply the267

same procedure to each component, starting with σi := + for the smallest268

index i ∈ {1, . . . ,m} such that Ri belongs to that component.269

5.3. Removing Intermediates270

As mentioned above, we will prove global stability via criteria on a net-271

work’s SR-graph and R-graph. These graphs are large in the case of the272

all-encompassing network, so we will use results in [18] (described in Sec-273

tion 5.4) that allow us to first simplify the network by removing intermediate274

complexes, before checking the required conditions on the simpler SR- and275

R-graphs. This removal procedure is described now.276

Condition 5.6 (Conditions for removing an intermediate). LetG = (S, C,R)
be a network with species set S = {S1, S2, . . . , Ss}. The support of a complex
y = (α1, . . . , αs) ∈ Rs

≥0 is the set of constituent species of the complex:

supp y := {Si ∈ S | αi > 0}.

For a complex Y ∈ C, we define two conditions:277

(l1) Y consists of exactly one species which appears with coefficient 1 (Y =278

Si for some i) and does not appear in any other complex in the network.279

(l2) There exist unique complexes y = α1S1 + · · · + αsSs and y′ = α′1S1 +280

· · ·+ α′sSs such that the following hold:281

(i) Either y → Y or y � Y is a reaction in R.282

(ii) Either Y → y′ or Y � y′ is a reaction in R.283
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(iii) Letting E := supp y ∩ supp y′ denote the set of common species284

of y and y′, then
∑
Si∈E

αiSi =
∑
Si∈E

α′iSi =: e.285

Definition 5.7. Given a network G = (S, C,R) and a complex Y ∈ C286

that satisfies conditions (l1) and (l2), the reduced reaction network G∗ =287

(S∗, C∗,R∗) obtained by removing the intermediate Y is as follows. First,288

R∗ := R∗c ∪ R∗Y , where R∗Y is the subset of reactions in R that do not have289

Y as a product or reactant, and290

R∗Y :=

{
{y − e� y′ − e}, if y � Y ∈ R and Y � y′ ∈ R
{y − e→ y′ − e}, if y → Y ∈ R or Y → y′ ∈ R

. (13)

Next, C∗ is the set of reactant and product complexes of the reactions in R∗.291

Finally, S∗ is the set of species that appear in at least one complex in C∗.292

This procedure removes one intermediate. Any number of intermediates293

may be removed successively if conditions (l1) and (l2) are met at each step.294

Example 5.8. Consider the 1-site phosphorylation network (5). Taking
S0 +K and S1 +K to be the unique complexes y and y′ required by (l2), we
can remove the intermediate S0K, producing the reduced network:

S0
// S1

S1 + F / S1Fo // S0 + F

Notice that K is also removed, because it is in both S0 +K and S1 +K.295

The next lemma uses successive removal of intermediates to simplify the296

all-encompassing network. Recall that /o denotes a reaction that may297

or may not be reversible.298

Lemma 5.9. The following network can be obtained from the all-encompassing299

network (10) by successive removal of intermediates:300

R∗1 : P1
/ Pmo

R∗2 : Pm + Em
/ Cmnm

o

R∗3 : Cmnm

/ P1 + Emo

(14)
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Proof. First, it is straightforward to check that for i = 1, 2, . . . ,m, we
can successively remove the intermediates Ci1, Ci2, . . . , Ci,ni−1 from the all-
encompassing network. The resulting network is:

P1 + E1
/ C1n1

o / P2 + E1
o

P2 + E2
/ C2n2

o / P3 + E2
o

...
...

Pm + Em
/ Cmnm

o / P1 + Emo

Next, the intermediates C1n1 , C2n2 , . . . , Cm−1,nm−1 can be removed (and at
each step the corresponding Ei as well, as per (13)), which results in:

P1
/ P2

o

...
...

Pm−1
/ Pmo

Pm + Em
/ Cmnm

o / P1 + Emo

Ifm = 2, we are done. Otherwise, we successively remove P2, P3, . . . , Pm−1.301

This results in the desired network (14).302

Remark 5.10. Network (14) in Lemma 5.9 can be reduced further, by re-
moving the last intermediate Cn,nm to obtain the network:

P1
/ Pmo

Pm
/ P1

o

However, when both of these reactions are reversible, then, following [18], we303

would need to view the network as having two copies of the same (reversible)304

reaction. To avoid this complication, we will use network (14).305

5.4. Stability Results From [21, 18]306

To state results from [21, 18] that we will use, we need some definitions:307

Definition 5.11.308

1. The ω-limit set of a trajectory σ(t, s0) of (6) with initial condition s0
is its set of limit points:

ω(s0) :=
⋂
τ�0

⋃
t�τ

{σ(t, s0)}.
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2. A network G with s species is bounded-persistent if for all chemical309

reaction systems arising from G and for all initial conditions s0 ∈ Rs
>0,310

the ω-limit set of the resulting trajectory does not meet the boundary311

of the nonnegative orthant: ω(s0) ∩ ∂Rs
≥0 = ∅.312

The following proposition follows directly from results of Marcondes de313

Freitas, Wiuf, and Feliu [18, Theorems 1–2] and (as summarized in [18,314

Proposition 3] and Remark 6) Angeli, De Leenheer, and Sontag [21].315

Proposition 5.12. f Let G be a reaction network satisfying (G1)–(G3), and316

let G∗ be a reaction network obtained from G by successive removal of inter-317

mediates. Let Γ∗ be the stoichiometric matrix of G∗. Assume that:318

1. G is bounded-persistent,319

2. the R-graph of G∗ is connected and has the positive loop property (so,320

from Notation 5.5, we can let K∗ be the orthant cone constructed from321

this R-graph), and322

3. ker(Γ∗) ∩ int(K∗) 6= ∅, where int(K∗) is the relative interior of K∗.323

Then for the chemical reaction system4 arising from G and any choice of324

rate constants, each compatibility class P contains a unique steady state η,325

this steady state η is a positive steady state, and η is the global attractor of326

P ∩ Rs
>0, where s is the number of species.327

Appendix A shows how bounded-persistence can be established with328

graph-theoretic criteria from [21]. Hence, each condition of Proposition 5.12329

is a graph-theoretic criterion (for the networks we are interested in).330

Also, note that Proposition 5.12 yields a global attractor of P ∩Rs
>0, not331

all of P , so Appendix A contains a result that we will use to circumvent this.332

5.5. Proof of Global Stability of the All-Encompassing Network333

Proof of Theorem 4.1. Fix rate constants and a stochiometric compatibility334

class P . For any initial condition x0 ∈ P , the ω-limit set ω(x0) is a nonempty335

subset of P (because P is compact by Lemma 3.5) that does not intersect336

the boundary ∂P (by Lemma A.3). Thus, it suffices to show that there is a337

positive steady state in P that is a global attractor of P ∩R2m+(n1+n2+···+nm)
>0 .338

4In fact, other kinetics besides mass-action also work (recall Remark 5.1).
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Accordingly, it is enough to show that the hypotheses of Proposition 5.12339

hold, where we take G to be the all-encompassing network (10) and G∗ to340

be the reduced network (14) from Lemma 5.9. We already know that G341

is bounded-persistent (Lemma A.3), so we must show that (1) G satisfies342

(G1)–(G3), (2) the R-graph of G∗ is connected, (3) the R-graph of G∗ has343

the positive loop property, and (4) ker(Γ∗) ∩ int(K∗) 6= ∅.344

By inspection, G satisfies (G1)–(G2). By Lemma 3.5, G satisfies (G3).345

Figure 2 displays the SR- and R-graphs of the reduced network G∗. The346

R-graph is connected, so property (2) holds.

R∗1

R∗2

R∗3

P1

Pm Cmnm

Em−

+

+ −

+

−

+

−

(a) directed SR-graph

R∗1

R∗2

R∗3

+ +

+

(b) R-graph.

Figure 2: The SR-graph and R-graph of the reduced network (14). A dashed edge in the
SR-graph is present if and only if every reaction in the corresponding component in the
original all-encompassing network (10) is reversible.

347

In the SR-graph, each length-two path connecting two reaction vertices348

consists of two edges with opposite signs. Thus, the R-graph has only edges349

with + labels, and so vacuously has the positive loop property (property (3)).350

Finally, because all edges of the R-graph are labeled by +, it follows that351

K∗ = R3
≥0. Also, each species in G∗ appears in exactly two reactions, once352

as a reactant and once as a product, and so the sum of each row of Γ∗ is 0.353

Thus, (1, 1, 1) ∈ ker(Γ∗) ∩ int(K∗), so property (4) holds.354

6. Relation to Other Approaches to Proving Global Stability355

Our method for proving global stability, via monotone systems theory,356

is only one of several approaches for proving stability of reaction systems357

(reviewed in [16, §2.2]). Here we note two alternate approaches.358
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Remark 6.1. For the processive network (1), Ali Al-Radwahi gave a Lya-359

punov function [16, §8.3]. As for the all-encompassing network, Ali Al-360

Radwahi and Angeli’s results again yield a Lyapunov function, which is361

piecewise linear in the reaction rate functions [22], thereby obtaining the362

same global convergence result as ours. Specifically, their Theorem 13 ap-363

plies to the fully irreversible version of the all-encompassing network, and364

then their Theorem 14 applies when any of the reactions are made reversible.365

Remark 6.2. As we noted in Remark 3.2, our Theorem 4.1 generalizes366

Rao’s recent stability result [17]. Like Ali Al-Radwahi and Angeli, Rao built367

a Lyapunov function that is piecewise linear in the reaction rate functions.368

It appears that Rao’s proof can be extended as another means to establish369

a version of Theorem 4.1 (S. Rao, personal communication). There are,370

however, two important caveats: Rao’s result applies only to mass-action371

kinetics, and the uniqueness of steady states in each compatibility class must372

be proven separately.373

7. Relation to Other Multisite Phosphorylation Systems374

Here we discuss how the phosphorylation networks analyzed in this work375

compare to others in the literature.376

Remark 7.1. There are examples in the literature of processive phosphory-
lation networks that have more reactions than those in our all-encompassing
network (10). For instance, Gunawardena proposed a processive 2-site phos-
phorylation network in which ES0 reacts to form E + S2, as follows [23]:

E + S2

E + S0
/ ES0

o

33

++

E + S1

Unfortunately, we can not extend our proof of Theorem 4.1 to establish377

stability of such networks because condition (G2) in Section 5.1 is violated.378

Remark 7.2. Feliu and Wiuf found that for small phosphorylation systems,379

including cascades, enzyme-sharing causes multistationarity [24]. Our results380

give a partial converse: as long as the enzymes Ei are not shared between rows381

of the all-encompassing network (10), then multistationarity is precluded.382
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Remark 7.3. Only recently have there been studies of mixed phosphory-383

lation mechanisms (partially distributive, partially processive) [25]. Suwan-384

majo and Krishnan proved that such a network, in which phosphorylation385

is distributive and dephosphorylation is processive (or, by symmetry, vice-386

versa), is not multistationary [19]. Thus, it always admits a unique steady387

state, via a standard application of the Brouwer fixed-point theorem. This388

proves half of a conjecture that Conradi and Shiu posed [14].389

Perhaps surprisingly, the other half of the conjecture was essentially5
390

disproven by Suwanmajo and Krishnan: in contrast with processive systems391

(§1.1), mixed systems need not be globally stable: they can be oscillatory [19]!392

8. Discussion393

Here we proved that a class of important biological networks – fully pro-394

cessive phosphorylation/dephosphorylation cycles – is globally convergent.395

We did this by constructing an all-encompassing network that subsumes an396

infinite family of networks (e.g., reactions may be reversible or irreversible).397

Not only did this construction allow us to prove global convergence for398

many networks at once, but it also allowed us to incorporate network uncer-399

tainty into our analyses. Indeed, one might not know whether specific reac-400

tions in a given biological network are reversible or irreversible, or whether401

one should incorporate product inhibition. We therefore hope that our ap-402

proach to handling network/model uncertainty may be useful in the future.403

To our knowledge, we are the first to introduce notation ( /o ) to accom-404

modate possibly reversible reactions.405

We now return to the question from the start of this work: when are406

global dynamics preserved after adding or removing reactions and/or in-407

termediate complexes from a network? For the processive phosphoryla-408

tion/dephosphorylation cycles in this work, we saw that the dynamics –409

namely, global convergence to a unique equilibrium – are preserved under410

these operations (where only the backward reaction may be added or re-411

moved in the context of /o ). Many of these ideas came from [18].412

5The conjecture was stated for networks in which the processive mechanism is as in (1),
whereas oscillations were found in the network in which the processive mechanism is as
in (2). These networks differ by only one reaction, when n = 2, so it would be interest-
ing to confirm whether adding this extra reaction, with small rate constant, also yields
oscillations.
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Does changing a reaction from reversible to irreversible always preserve413

global stability? No. For instance, the network A � B is globally stable414

(this can be checked by hand or by Proposition 5.12), but A→ B is not.415

What about the opposite: does changing a reaction from irreversible to416

reversible preserve global stability? We conjecture that this is false in general.417

Finally, as noted earlier, monotone systems theory is only one of several418

approaches to proving global stability in reaction systems. Which of these will419

allow us to prove more “all-encompassing” results? In other words, which420

ones accommodate network uncertainty in the form of possibly reversible421

reactions and/or removing or adding intermediate complexes?422
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A. Proving Bounded-Persistence via Siphons430

Here we show bounded-persistence using P-semiflows and siphons [26, 27].431

Definition A.1. Let G = (S, C,R) be a reaction network with s species and432

stoichiometric matrix Γ.433

1. A P-semiflow (or nonnegative conservation law) of G is any nonzero434

vector v ∈ Rs
≥0 such that ΓTv = 0.435

2. A nonempty subset of species Σ ⊆ S is a siphon of G if every reaction436

of G which has a product species in Σ also has a reactant species in Σ.437

3. G has the siphon/P-semiflow property if every siphon contains the438

support of a P-semiflow.439

Proposition A.2. Let G be a reaction network that has the siphon/P-440

semiflow property, and let P be a stoichiometric compatibility class. Then441

for all chemical reaction systems arising from G and for all initial condi-442

tions s0 ∈ P, the ω-limit set of the resulting trajectory does not intersect the443

boundary of P, i.e., ω(s0) ∩ ∂P = ∅. Consequently, G is bounded-persistent.444
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Proof. Let s be the number of species. The first part follows from [27, Propo-445

sition 5.4], which states that the set of zero-coordinates of any ω-limit point of446

a trajectory with initial condition in Rs
≥0 is a siphon (if nonempty), and [28,447

Lemma 3.4], which states that the siphon/P-semiflow property (labeled prop-448

erty (?) there) is equivalent to the condition that no point in any compati-449

bility class P has zero-coordinate set equal to a siphon. The “Consequently”450

part is immediate (we are considering initial conditions in Rs
≥0 vs. Rs

>0).451

Lemma A.3. The all-encompassing network (10) is bounded-persistent. More-452

over, for any stoichiometric compatibility class P, any chemical reaction sys-453

tem arising from the network, and any initial condition s0 ∈ P, the resulting454

ω-limit set does not intersect the boundary of P, i.e., ω(s0) ∩ ∂P = ∅.455

Proof. By Proposition A.2, we need only show that each siphon of net-456

work (10) contains the support of a nonnegative conservation law (P-semiflow).457

It is straightforward to check that each siphon contains the species (1) Ei,458

Ci1, Ci2, . . . , Cini
for some i, or (2) all Pi’s and all Cij’s (for all i, j). In459

the first case, the siphon contains the support of the conservation law for460

the total amount of free and bound enzyme Ei (namely, v ∈ R2m+(n1+···+nm)
461

defined by vPi
= vCi1

= · · · = vCini
= 1 and all others = 0). In the second462

case, the siphon contains the support of the conservation law for the total463

amount of free and bound substrate (vPi
= vCij

= 1 for all i, j and all others464

= 0).465
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