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Abstract. Many dynamical systems arising in biology and other areas exhibit multistationarity
(two or more positive steady states with the same conserved quantities). Although deciding multi-
stationarity for a polynomial dynamical system is an effective question in real algebraic geometry,
it is in general difficult to determine whether a given network can give rise to a multistationary
system, and if so, to identify witnesses to multistationarity, that is, specific parameter values for
which the system exhibits multiple steady states. Here we investigate both problems. First, we
build on work of Conradi, Feliu, Mincheva, and Wiuf, who showed that for certain reaction networks
whose steady states admit a positive parametrization, multistationarity is characterized by whether
a certain “critical function” changes sign. Here, we allow for more general parametrizations, which
make it much easier to determine the existence of a sign change. This is particularly simple when
the steady-state equations are linearly equivalent to binomials; we give necessary conditions for this
to happen, which hold for many networks studied in the literature. We also give a sufficient condi-
tion for multistationarity of networks whose steady-state equations can be replaced by equivalent
triangular-form equations. Finally, we present methods for finding witnesses to multistationarity,
which we show work well for certain structured reaction networks, including those common to bi-
ological signaling pathways. Our work relies on results from degree theory, on the existence of
explicit rational parametrizations of the steady states, and on the specialization of Gröbner bases.
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1. Introduction

An important problem in many applications is to determine whether a given dynamical system
is multistationary, and if so to find witnesses to multistationarity (parameter values for which
the system exhibits two or more steady states with the same conserved quantities). Here we
resolve these problems for dynamical systems arising under mass-action kinetics from reaction
networks with certain structure. Specifically, our main results are criteria for multistationarity and
procedures for obtaining witnesses for networks with the following properties:

(A) networks that admit a rational parametrization of the steady states and where the resulting
critical function changes sign (Theorem 3.12), and

(B) networks for which the steady-state equations are linearly equivalent to binomial equations
(Theorems 4.6 and 5.3) or triangular-form equations (Theorem 6.5).

The critical function in (A) refers to the composition of the steady-state parametrization with the
determinant of the Jacobian matrix. Theorem 3.12 therefore generalizes recent results, which rely on
degree theory, due to Conradi, Feliu, Mincheva, and Wiuf [4]. Specifically, we consider more general
steady-state parametrizations since we allow the rate-constant parameters to depend on the steady-
state concentrations, and we replace the parameters with “effective parameters”, which are usually
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fewer. We show that the resulting critical functions can be much simpler to analyze than those
in [4]. In particular, for “linearly binomial networks” (see Definition 3.4), deciding multistationarity
from the critical function can be done by inspection (Theorem 4.6). We give sufficient conditions for
a “MESSI network” (see [35]) to be a linearly binomial network, and moreover this transformation
of the steady-state equations is explicit (Theorem 5.3). Such networks include many biological
signaling pathways. Additionally, we explain how critical functions are related to discriminants
(Proposition 3.21), and give conditions that guarantee that triangular-form equations, as in (B)
above, exist (Corollary 6.12). This last result relies on prior work on the specialization of Gröbner
bases. Finally, we illustrate our results on a number of reaction networks arising in biology. Indeed,
our results allow us to investigate multistationarity in biological networks systematically, where
previously only ad-hoc methods could be applied.

Our results fit in the context of recent progress on the problems of deciding multistationarity
(reviewed in [27]; see also [1, 11]), obtaining witnesses for multistationarity (e.g., [35, 36]), and char-
acterizing parameter regions for multistationarity (e.g., [3, 4, 19, 24, 40, 45]). Indeed, we give new
criteria for multistationarity and methods for witnesses, and also show that the multistationary pa-
rameter regions arising from degree theory that we describe are open sets and thus full-dimensional
(Theorem 4.10).

As mentioned above, one of our criteria for multistationarity involves examining the determi-
nant of the Jacobian matrix. The first such criterion (without composing with a steady-state
parametrization) was given by Craciun and Feinberg [8] in the absence of conservation relations,
and then was extended by many researchers (e.g., [1, 9, 32, 39, 46]). One version of such a result,
a so-called injectivity criterion, says: If every term in the determinant of the Jacobian matrix has
the same sign, then the network is not multistationary for any choice of parameters. Also, under
some hypotheses, the converse holds [1, 4, 8, 13]; see also the recent paper [33]. Here we prove
analogous results, after using steady-state parametrizations.

Steady-state parametrizations have already been shown to be useful in analyzing reaction net-
works [4, 5, 30, 35, 36, 43], and we build on those prior works. Similarly, like many before us, we
use degree theory to decide multistationarity (see e.g. [4, 10, 12]) and develop theory attuned to
networks with certain structure [13, 22, 35], including binomials [25, 32, 36].

Given that our work harnesses several techniques that have already been used for analyzing
reaction networks – steady-state parametrizations, degree theory, and structured reaction networks
– we emphasize that our final results rely on new techniques. Specifically, we introduce the notion
of effective parameters (Definition 3.2) to simplify previous approaches for a common class of
structured networks, and we use results on specialization of Gröbner bases [29].

Finally, our work is related to the following open question: If a network G admits a positive
steady state that is degenerate, does this guarantee that G admits multiple positive steady states?
(This question is related to the Nondegeneracy Conjecture [28].) One might hope that perturbing
the parameters, i.e., rate constants and conservation-law values, would break apart the degenerate
steady state into two or more steady states. Several prior results answered the above question,
under some hypotheses, in the affirmative [4, 8, 13, 17, 41]. Some of these results also yield
procedures for generating a witness to multistationarity. Here, we add new results to this list in
Theorems 3.12, 4.6, and 6.5; see also Procedure 4.7 for linearly binomial networks.

The outline of our work is as follows. In Section 2, we introduce mass-action kinetics systems
and recall a well-known result about Newton polytopes. In Sections 3 and 4, we consider networks
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that admit steady-state parametrizations. We show that for linearly binomial networks the effective
parameters are recovered from the steady states and there are only s of them, where s is the number
of species variables, which is a number typically much smaller than the number of parameters. We
prove that multistationarity is guaranteed (by degree theory) when the critical function changes
sign. In Section 5, we consider MESSI networks [35], which include many biological signaling
networks. We give sufficient conditions for such networks to be linearly binomial, which generalize
Example 2.1 (continued along the paper) and Example 4.8. In Section 6, we consider networks
whose steady-state equations can be replaced by equivalent triangular-form equations. We give
sufficient conditions for a degenerate steady state of such a network to break into multiple steady
states and we show that triangular-form equations exist under general conditions. We end with
a Discussion in Section 7. Finally, we include, in three Appendices, proofs of those results which
require further background.

2. Background

In this section, we introduce reaction networks and their mass-action kinetics systems (Sec-
tion 2.1), and then recall a useful result pertaining to Newton polytopes (Section 2.2).

2.1. Reaction networks. Here we largely follow the notation of Conradi, Feliu, Mincheva, and
Wiuf [4]. A reaction network G consists of a set of s species {X1, X2, . . . , Xs} and a set of m
reactions:

s∑
i=1

αijXi →
s∑
i=1

βijXi, j = 1, 2, . . . ,m ,

where αij and βij are non-negative integers. The stoichiometric matrix of G, denoted by N , is the

s×m matrix with (i, j)-entry equal to βij−αij . Let im(N)⊥ denote the orthogonal complement of
the image of the stoichiometric matrix N , and let d = s− rank(N). A conservation-law matrix of
G, denoted by W , is any row-reduced d×s-matrix whose rows form a basis of im(N)⊥. If all entries
of W are nonnegative and every column of W contains at least one nonzero entry, that is, every
species occurs with a positive coefficient in at least one conservation law, then G is conservative.

The concentrations of the species X1, X2, . . . , Xs are denoted by x1, x2, . . . , xs, respectively. The
evolution of the concentrations with respect to time is given by a system of ordinary differential
equations:

(1) ẋ = f(x) := N · v(x) ,

where x = (x1, x2, . . . , xs) and v : Rs≥0 → Rm≥0 is a reaction rate function. This function, in the case
of mass-action kinetics, is given by:

vj(x) = κj x
α1j

1 x
α2j

2 · · ·xαsjs , j = 1, 2, . . . ,m,

where κj ∈ R>0 is called a reaction rate constant. We can consider the reaction rate constants as
parameters κ = (κ1, . . . , κm) and view the polynomials fκ,i ∈ Q[κ, x], for i = 1, . . . , s. For ease of
notation we will sometimes simply write fi in place of fκ,i, for i = 1, . . . , s.

Our system (1) satisfies Wẋ = Wfκ(x) = 0, and both the positive orthant Rs>0 and its closure
R≥0 are forward-invariant for the dynamics. Thus, a trajectory x(t) beginning at a nonnegative
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vector x(0) = x0 ∈ Rs>0 remains, for all positive time, in the following stoichiometric compatibility

class with respect to the total-constant vector c := Wx0 ∈ Rd>0:

Sc := {x ∈ Rs≥0 |Wx = c} ,
that is, Sc is also forward-invariant with respect to the dynamics (1). A steady state of (1) is a
nonnegative concentration vector x∗ ∈ Rs≥0 at which the ODEs (1) vanish: fκ(x∗) = f(x∗) = 0.

We distinguish between positive steady states x∗ ∈ Rs>0 and boundary steady states x∗ ∈ Rs≥0\Rs>0.
In order to analyze steady states within a stoichiometric compatibility class, we use the conserva-

tion laws in place of redundant steady-state equations, as follows. Recall that the conservation-law
matrix W is row-reduced. Let I = {i1, . . . , id} be the indices of the first nonzero coordinate of the
rows of W , and assume that i1 < i2 < · · · < id. Define the function fc,κ : Rs≥0 → Rs by

(2) fc,κ,i = fc,κ(x)i =

{
fκ,i(x) if i 6∈ I,
(Wx− c)k if i = ik ∈ I.

This particular choice is needed for the validity of Theorem 3.12 below. We refer to system (2)
as the system (1) augmented by conservation laws. For a rate-constant vector κ ∈ Rm>0 and a

total-constant vector c ∈ Rd>0, we say x∗ ∈ Rs≥0 is a steady state of the network for κ and c if it is a

root of the augmented system fc,κ(x∗) = 0. Such a steady state x∗ is nondegenerate if the Jacobian
matrix of fc,κ at x∗ has full rank (namely, equal to s).

A multistationary network admits two or more positive steady states for some rate-constant
vector κ and total-constant vector c. Non-multistationary networks are monostationary.

Example 2.1 (Phosphorylation/dephosphorylation of two substrates). Consider the following net-
work, which is from [4, §6.1 in Supplementary Information]:

A + K
κ1−−⇀↽−−
κ2

AK
κ3−→ Ap + K, Ap + F

κ4−−⇀↽−−
κ5

ApF
κ6−→ A + F,

B + K
κ7−−⇀↽−−
κ8

BK
κ9−→ Bp + K, Bp + F

κ10−−⇀↽−−
κ11

BpF
κ12−−→ B + F.

In this network, “phosphorylation” and “dephosphorylation” of two substrates A and B are cat-
alyzed by a kinase K and a phosphatase F , respectively.

Following [4], let

X1=K, X3=A, X5=B, X7=AK, X9=ApF,
X2=F, X4=Ap, X6=Bp, X8=BK, X10=BpF.

The system evolves according to the ODEs ẋ = fκ(x), where the function fκ = (f1, . . . , f10) arising
from mass-action kinetics is as follows:
f1 = −κ1x1x3 + κ2x7 + κ3x7 − κ7x1x5 + κ8x8 + κ9x8,
f2 = −κ4x2x4 + κ5x9 + κ6x9 − κ10x2x6 + κ11x10 + κ12x10,
f3 = −κ1x1x3 + κ2x7 + κ6x9, f4 = −κ4x2x4 + κ3x7 + κ5x9,
f5 = −κ7x1x5 + κ8x8 + κ12x10, f6 = −κ10x2x6 + κ9x8 + κ11x10,
f7 = κ1x1x3 − κ2x7 − κ3x7, f8 = κ7x1x5 − κ8x8 − κ9x8,
f9 = κ4x2x4 − κ5x9 − κ6x9, f10 = κ10x2x6 − κ11x10 − κ12x10.

Letting c1, c2, c3, c4 denote the total amounts of K, F , A, and B, respectively, then the conservation
laws are:

x1 +x7 +x8 = c1 , x2 +x9 +x10 = c2 , x3 +x4 +x7 +x9 = c3 , x5 +x6 +x8 +x10 = c4 .
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Every xi appears in at least one conservation law and all have nonnegative coefficients, so the
network is conservative. The resulting conservation-law matrix W is:

1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 0 1 0 1

 ,

which is already in row-reduced form, and the indices of the first nonzero coordinate of the rows
are 1, 2, 3, and 5. So, by (2), the function fc,κ = fc,κ(x) is as follows:

fc,κ,1 = x1 + x7 + x8 − c1, fc,κ,2 = x2 + x9 + x10 − c2,
fc,κ,3 = x3 + x4 + x7 + x9 − c3, fc,κ,4 = −κ4x2x4 + κ3x7 + κ5x9,
fc,κ,5 = x5 + x6 + x8 + x10 − c4, fc,κ,6 = −κ10x2x6 + κ9x8 + κ11x10,
fc,κ,7 = κ1x1x3 − κ2x7 − κ3x7, fc,κ,8 = κ7x1x5 − κ8x8 − κ9x8,
fc,κ,9 = κ4x2x4 − κ5x9 − κ6x9, fc,κ,10 = κ10x2x6 − κ11x10 − κ12x10.

2.2. Newton polytopes. Consider a real, multivariate polynomial

f = a1x
σ1 + a2x

σ2 + · · ·+ a`x
σ` ∈ R[x1, x2, . . . , xs] ,(3)

where the σi’s are distinct and, for all i, we have ai 6= 0 and σi ∈ Zs. The Newton polytope of f is
the convex hull of its exponent vectors:

NP(f) := conv{σ1, σ2, . . . , σ`} ⊆ Rs .

We will use the following well-known lemma.

Lemma 2.2. For a real, multivariate polynomial f as in (3), if σi is a vertex of NP(f), then there
exists x∗ ∈ Rs>0 such that f(x∗) and ai have the same sign.

Indeed, as σi is a vertex of NP(f), there exists an integer vector η ∈ Zs such that the inner product
η·x is maximized over NP(f) only at σi. Consider the univariate polynomial g(λ) = f(λη1 , . . . , ληs).
The degree of g equals η · σi and thus it is clear that when λ tends to +∞, the sign of g agrees
with the sign of its leading coefficient ai. This result is not true for non-vertex exponents, as the
univariate polynomial λ2 − 2λ+ 1 shows.

3. Establishing multistationarity using degree theory

In this section we show that determining whether certain networks are multistationary is equiv-
alent to checking whether their “critical functions” change sign (Theorem 3.12). Such critical
functions arise from steady-state parametrizations (Definition 3.6), which generalize those consid-
ered by Conradi, Feliu, Mincheva, and Wiuf [4]. Another way we generalize the approach in [4]
is by working in terms of certain “effective parameters” rather than the original rate constants.
Accordingly, our statements extend results in [4] and our proofs rely heavily on their arguments
(which use degree theory). We show in Examples 3.18 and 3.19, that our critical functions can be
simpler and easier to analyze than those from [4].
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3.1. Parametrizations and critical functions. We will consider simplified versions of fc,κ ob-
tained by linear operations. To motivate these “simplified versions”, consider from Example 2.1
one coordinate of fc,κ(x):

f7 = κ1 x1x3 − (κ2 + κ3)x7 .

We will replace f7 by 1
κ1
f7 = x1x3 −

(
κ2+κ3
κ1

)
x7, and then view a1 = κ2+κ3

κ1
as a new “effective

parameter”. So we will consider the rational function a1 = a1(κ) instead of the three original
parameters κ1, κ2, κ3

1. We must require that any resulting reparametrization, which replaces the
parameters κi, for i = 1, . . . ,m, by new parameters aj , for j = 1, . . . , m̄, which are rational functions
of them, is surjective (from Rm>0 to Rm̄>0).

Next we present an important example to further motivate and clarify the notions of effective
parameters and effective steady-state function (which will be defined in Definition 3.2). The network
below in Example 3.1 underlies ERK regulation by dual-site phosphorylation by the kinase MEK
(denoted by E) and dephosphorylation by the phosphatase MKP3 (F ). Rubinstein, Mattingly,
Berezhkovskii, and Shvartsman showed that this network is multistationary, and found witnesses
to multistationarity by sampling parameters [37]. In this paper we take a more systematic approach
to deciding multistationary and to finding a witness to multistationarity, via a simplified system
hc,a(x) (see Definition 3.2 and Theorem 3.12).

Example 3.1 (ERK network). Consider the following network from [37]:

S00 + E
κ1−−⇀↽−−
κ2

S00E
κ3−→ S01E

kcat−−→ S11 + E, S11 + F
l1−⇀↽−
l2

S11F
l3−→ S10F

lcat−−→ S00 + F,

S01E
koff−−−⇀↽−−−
kon

S01 + E, S10F
loff−−−⇀↽−−−
lon

S10 + F,

S10 + E
m2−−⇀↽−−
m1

S10E
m3−−→ S11 + E, S01 + F

n1−−⇀↽−−
n2

S01F
n3−→ S00 + F.

The rate constants of the network are as follows:

κ = (κ1, κ2, κ3, kcat, kon, koff ,m1,m2,m3, l1, l2, l3, lcat, lon, loff , n1, n2, n3) ∈ R18
>0 .

Also, we have s = 12 species:

X1 = S00, X3=F, X5=S10F, X7= S01E, X9=S01, X11=S00E,
X2=E, X4=S11F, X6=S01F, X8=S10E, X10=S10, X12 = S11.

From the d = 3 conservation laws, which arise from the total amounts of substrate S, kinase E,
and phosphatase F , respectively:

x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 = c1 ,

x2 + x7 + x8 + x11 = c2 ,(4)

x3 + x4 + x5 + x6 = c3 ,

we obtain fc,κ(x):

fc,κ,1 = x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 − c1, fc,κ,2 = x2 + x7 + x8 + x11 − c2,
fc,κ,3 = x3 + x4 + x5 + x6 − c3, fc,κ,4 = l1x3x12 − l2x4 − l3x4,
fc,κ,5 = lonx3x10 + l3x4 − lcatx5 − loffx5, fc,κ,6 = n1x3x9 − n2x6 − n3x6,
fc,κ,7 = konx2x9 + κ3x11 − kcatx7 − koffx7, fc,κ,8 = m2x2x10 −m1x8 −m3x8,

1In this example, κ2+κ3
κ1

is what is called a Km-value.
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fc,κ,9 = −konx2x9 − n1x3x9 + koffx7 + n2x6,
fc,κ,10 = −lonx3x10 −m2x2x10 +m1x8 + loffx5,
fc,κ,11 = κ1x2x1 − κ2x11 − κ3x11,
fc,κ,12 = −l1x3x12 + kcatx7 +m3x8 + l2x4.

We introduce the following 13 effective parameters:
(5)

ā1 = lcat
kcat

, ā2 = m3
lcat

, ā3 = l3
lcat

, ā4 = n3
kcat

, ā5 = κ3
kcat

, ā6 = m3
lon

, ā7 =
loff
lon

,

ā8 = n3
kon

, ā9 =
koff
kon

, ā10 = κ1
κ2+κ3

, ā11 = m2
m1+m3

, ā12 = l1
l2+l3

, ā13 = n1
n2+n3

.

Note that the resulting map ā : R18
>0 → R13

>0 given by κ 7→ ā(κ) is surjective.

Definition 3.2. Let G be a network with m reactions and s species, let ẋ = fκ(x) denote the
resulting mass-action system. Denote by W a row-reduced conservation-law matrix and by I the
set of indices of the first nonzero coordinates of its rows, as in §2.1. Enumerate the complement of
I:

(6) [s] \ I = {j1 < j2 < · · · < js−d} .

We say that ā1(κ), ā2(κ), . . . , ām̄(κ) ∈ Q(κ) form a set of effective parameters for G if the following
hold:

(i) āi(κ
∗) is defined and, moreover, āi(κ

∗) > 0 for every i = 1, 2, . . . , m̄ and for all κ∗ ∈ Rm>0,
(ii) the following reparametrization map is surjective:

ā : Rm>0 → Rm̄>0(7)

κ 7→ (ā1(κ), ā2(κ), . . . , ām̄(κ)) ,

(iii) there exists an (s−d)× (s−d) matrix M(κ) with entries in Q(κ) := Q(κ1, κ2, . . . , κm) such
that:
(a) for all κ∗ ∈ Rm>0, the matrix M(κ∗) is defined and, moreover, detM(κ∗) > 0, and
(b) letting (h̄j`) denote the functions obtained from (fj`) via the linear operations defined

by M(κ), as follows:

(8) (h̄j1 , h̄j2 , . . . , h̄js−d)
> := M(κ) (fj1 , fj2 , . . . , fjs−d)

> ,

every nonconstant coefficient in every h̄j` is equal to a rational-number multiple of
some āi(κ). In particular, h̄j` in Q(κ)[x].

Given such an effective parametrization, we consider for ` = 1, 2, . . . , s − d, polynomials hj` =
hj`(a, x) ∈ Q[a1, a2, . . . , am̄][x] (here, the ai’s are indeterminates) such that:

h̄j` = hj` |a1=ā1(κ), ... , am̄=ām̄(κ) .(9)

For i = 1, 2, . . . , s and any choice of c ∈ Rd>0 and a ∈ Rm̄>0, set

(10) hc,a,i = hc,a(x)i :=

{
hi(a, x) if i /∈ I
(Wx− c)k if i = ik ∈ I.

We say that the function hc,a : Rs>0 → Rs is an effective steady-state function of G.
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Remark 3.3. We can simply choose the effective parameters to be the κi’s (that is, āi(κ
∗) := κ∗i

for all i), but in our examples we will instead choose the nonconstant coefficients (or Q-multiples
of them) of the h̄j` ’s. Indeed, there are usually fewer such coefficients than κi’s (see e.g. Examples
3.19, 3.1, and 4.8).

Definition 3.4. A network is linearly binomial if there exist binomials h̄j1 , h̄j2 , . . . , h̄js−d and a
matrix M(κ) as in Definition 3.2, such that equality (8) holds.

The networks in Examples 3.19 and 4.8 are linearly binomial. We will abstract the features that
imply this property in Theorem 5.3.

Remark 3.5. Every linearly binomial network is a “binomial network” as defined by Sadeghi-
manesh and Feliu [38].

Definition 3.6. Let G be a network with m reactions, s species, and row-reduced conservation-law
matrix W . Let fc,κ arise from G and W as in (2). Suppose that hc,a is an effective steady-state
function of G, as in (10), arising from a matrix M(κ), as in (8), a reparametrization map ā, as
in (7), and polynomials hj` ’s as in (9) as in Definition 3.2.

We say that the positive steady states of G admit a positive parametrization with respect to hc,a
if there exists a function:

φ : Rm̂>0 × Rŝ>0 → Rm̄>0 × Rs>0(11)

(â, x̂) 7→ φ(â, x̂) ,

for some m̂ ≤ m̄ and ŝ ≤ s, such that:

(i) φ(â, x̂) extends the vector (â, x̂). More precisely, there exists a natural projection π :
Rm̄>0 × Rs>0 → Rm̂>0 × Rŝ>0 such that π ◦ φ is equal to the identity map.

(ii) Consider any (a, x) ∈ Rm̄>0 × Rs>0. Then, the equality hi(a, x) = 0 holds for every i /∈ I if

and only if there exists (â∗, x̂∗) ∈ Rm̂>0 × Rŝ>0 such that (a, x) = φ(â∗, x̂∗).

Note that given any (a, x) ∈ Rm̄>0 × Rs>0, with (a, x) = φ(â, x̂), if we set

c = W x,

then hc,a(x) = 0, where hc,a is the effective steady state function in Definition 3.2.
Moreover, we can summarize the information in Definition 3.6 by asking that the diagram below

commutes, where the maps µ(κ, x) := (ā(κ), x) and φ are surjective:{
(κ∗, x∗) ∈ Rm>0 × Rs>0 : fi|κ=κ∗, x=x∗ = 0 for all i /∈ I

}

Rm̂>0 × Rŝ>0 Rm̄>0 × Rs>0

µπ ◦ µ

φ
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Example 3.7 (ERK network, continued). Let

M(κ) =



1
l2+l3

0 0 0 0 0 0 0 0

0 1
lcat

0 0 1
lcat

0 1
lcat

0 0

0 0 1
n2+n3

0 0 0 0 0 0

0 0 1
kcat

1
kcat

0 1
kcat

0 0 0

0 0 0 0 1
m1+m3

0 0 0 0

0 0 1
kon

0 0 1
kon

0 0 0

0 0 0 0 1
lon

0 1
lon

0 0

0 0 0 0 0 0 0 1
κ2+κ3

0
1

kcat

1
kcat

0 0 1
kcat

0 1
kcat

0 1
kcat


,

It is straightforward to check that detM(κ) > 0 for all κ ∈ R18
>0. From the effective parameters (5)

and equations (8)–(10), the resulting system hc,a(x) is:

hc,a,1 = x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 − c1, hc,a,2 = x2 + x7 + x8 + x11 − c2,
hc,a,3 = x3 + x4 + x5 + x6 − c3, hc,a,4 = a12x3x12 − x4,
hc,a,5 = a3x4 − x5 − a2x8, hc,a,6 = a13x3x9 − x6,
hc,a,7 = a5x11 − a4x6 − x7, hc,a,8 = a11x2x10 − x8,
hc,a,9 = a9x7 − x2x9 − a8x6, hc,a,10 = a7x5 − x3x10 − a6x8,

hc,a,11 = a10x1x2 − x11,
hc,a,12 = x7 − a1x5.

Let â = (a2, a4, a6, a8) and x̂ = x. By solving the non-conservation-law equations hc,a(x)i = 0 (for
i = 4, . . . , 12), for the underlined unknowns a1, a3, a5, a7, a9, a10, a11, a12, a13, we obtain the positive
parametrization φ : R16

>0 → R13
>0×R12

>0 with respect to the effective steady-state function hc,a, where
φ(â, x̂) (= φ(a2, a4, a6, a8;x)) is defined as(
x7

x5
, a2,

a2x8 + x5

x4
, a4,

a4x6 + x7

x11
, a6,

a6x8 + x3x10

x5
, a8,

a8x6 + x2x9

x7
,
x11

x1x2
,
x8

x2x10
,
x4

x3x12
,
x6

x3x9
; x

)
.

We will use this information in Example 3.18 below.

We need one more definition in order to state Theorem 3.12.

Definition 3.8. Under the notation and hypotheses of Definition 3.6, assume that the steady states
of G admit a positive parametrization with respect to hc,a. For such a positive parametrization φ,

the critical function C : Rm̂>0 × Rŝ>0 → R is given by:

C(â, x̂) = (det Jac(hc,a)) |(a,x)=φ(â,x̂) ,

where Jac(hc,a) denotes the Jacobian matrix of hc,a with respect to x.

Remark 3.9. Assume (a∗, x∗) = φ(â∗, x̂∗). It follows that C(â∗, x̂∗) = 0 if and only if x∗ is
a degenerate steady state of any mass-action system defined by network G for the total-constant
vector c∗ = Wx∗ and a choice of rate-constant vector κ∗ for which a∗ = ā(κ∗). Here, ā(κ∗) refers
to the map (7).

Remark 3.10 (Comparison with [4]). The parametrizations considered by Conradi, Feliu,
Mincheva, and Wiuf did not allow the reaction rates κi to depend on the xi’s [4]. Specifically,
their parametrizations have the form (κ, x̂) 7→ (κ, (x̂,Φ(κ, x̂)). The resulting critical functions are
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denoted by “a(x̂)” in their work (notice that “a(x̂)” also depends on κ, and the “a” is a differ-
ent notion from our a in hc,a); see Examples 3.18 and 3.19. Additionally, the critical functions
in [4] simply arise from the case when the matrix M(κ) in (8) is the identity matrix (and the
“reparametrization” map ā, in (7), is the identity map). In summary, we allow for more gen-
eral positive parametrizations and critical functions than in [4], and hence Theorem 3.12 below
generalizes [4, Theorem 1]; our proof is just a translation of their arguments to our setting.

Remark 3.11 (Existence of steady-state parametrizations). Steady-state parametrizations exist
for many biological signaling networks [16, 35, 43]. They can be computed by following one of the
procedures in the references above, or, as suggested in [4, 5], by using computer-algebra software
to solve the steady-state equations for all but d variables (see, e.g., Example 3.19), eliminating if
possible all intermediates. (Here d is the number of conservation laws.)

A network is dissipative if for all choices of rate constants and stoichiometric compatibility classes
Sc, there exists a compact subset of Sc which every trajectory beginning in Sc eventually enters.
Every conservative network is dissipative [4, pg. 6].

Theorem 3.12. Under the notation and hypotheses of Definitions 3.6 and 3.8, assume also that
G is a dissipative network without boundary steady states in any compatibility class.

(A) Multistationarity. G is multistationary if there exists (â∗, x̂∗) ∈ Rm̂>0 × Rŝ>0 such that

sign(C(â∗, x̂∗)) = (−1)rank(N)+1 ,

where N denotes the stoichiometric matrix of G.
(B) Witness to multistationarity. Every (â∗, x̂∗) ∈ Rm̂>0 × Rŝ>0 with sign(C(â∗, x̂∗)) =

(−1)rank(N)+1 yields a witness to multistationarity (κ∗, c∗) as follows. Let (a∗, x∗) =
φ(â∗, x̂∗). Let c∗ = Wx∗ (so, c∗ is the total-constant vector defined by x∗, where W is
the conservation-law matrix), and let κ∗ ∈ Rm>0 be such that ā(κ∗) = a∗.

(C) Monostationarity. G is monostationary if sign(C(â, x̂)) = (−1)rank(N) for all (â∗, x̂∗) ∈
Rm̂>0 × Rŝ>0.

Proof. We begin with (A) and (B). Assume that (â∗, x̂∗) ∈ Rm̂>0 × Rŝ>0 satisfies sign(C(â∗, x̂∗)) =

(−1)rank(N)+1. That is, sign (det Jac(hc,a)) |(a,x)=φ(â∗,x̂∗) = (−1)rank(N)+1.
By [4, Theorem 1], G is multistationary if there exist κ∗ ∈ Rm>0 and x∗ ∈ Rs>0 such that

(i) fi|κ=κ∗, x=x∗ = 0 for all i /∈ I, and

(ii) sign (det Jac(fc,κ)) |κ=κ∗,x=x∗ = (−1)rank(N)+1.

Moreover, in this case, [4, Theorem 1] gives the following witness to multistationarity: c∗ = Wx∗

and κ∗. To use this result, let (a∗, x∗) = φ(â∗, x̂∗), and then define c∗ = Wx∗ and pick κ∗ ∈ Rm>0

such that ā(κ∗) = a∗. Then we only need to show that conditions (i) and (ii) above hold.
To see (i), recall that the positive-determinant matrix M(κ) transforms the fi’s, for i /∈ I, to the

h̄i’s, as in (8). So, we need to show that h̄i|x=x∗,κ=κ∗ = 0 if i /∈ I. Indeed:

h̄i|x=x∗,κ=κ∗ = hi|x=x∗,a=ā(κ∗) = hi|(a,x)=φ(â∗,x̂∗) = 0 ,

where the final equality comes from requirement (ii) for a positive parametrization (in Defini-
tion 3.6).
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For (ii), we first note that (8) implies the following:

(hc,a,1, hc,a,2, . . . , hc,a,s)
>|a=ā = M̃(κ) (fc,κ,1, fc,κ,2, . . . , fc,κ,s)

> ,(12)

where M̃(κ) is the (s × s)-matrix obtained from M(κ), in (8), by inserting rows and columns
corresponding to the indices i1, i2, . . . , id such that row ik and column ik are both the canonical

basis vector eik , for k = 1, 2, . . . , d. Thus, det M̃(κ) = detM(κ) > 0 for any κ ∈ Rm>0, and so (12)
yields:

sign (det Jac(fc,κ)) |κ=κ∗,x=x∗ = sign (det Jac(hc,a)) |(a,x)=(ā(κ∗),x∗)=φ(â∗,x̂∗)

= sign(C(â∗, x̂∗))

= (−1)rank(N)+1 ,

where the final equality is by hypothesis. Thus, (ii) holds.

For (C), assume that sign(C(â, x̂)) = (−1)rank(N) for all (â∗, x̂∗) ∈ Rm̂>0 × Rŝ>0. Suppose that
κ∗ ∈ Rm>0 and x∗ ∈ Rs>0 are such that fi|κ=κ∗,x=x∗ = 0 for all i /∈ I. By [4, Theorem 1], we only
need to show the following:

sign (det Jac(fc,κ)) |κ=κ∗,x=x∗ = (−1)rank(N) .(13)

To this end, let (â∗, x̂∗) = π ◦ µ(κ∗, x∗), so that (using the commutative diagram following Defini-
tion 3.6) we have φ(â∗, x̂∗) = (ā(κ∗), x∗). We now verify equality (13):

sign (det Jac(fc,κ)) |κ=κ∗,x=x∗ = sign (det Jac(hc,a)) |(a,x)=(ā(κ∗),x∗)=φ(â∗,x̂∗)

= sign(C(â∗, x̂∗))

= (−1)rank(N).

�

Remark 3.13. Theorem 3.12(B) suggests a procedure for finding a witness to multistationarity,

which relies on picking some (â∗, x̂∗) with sign(C(â∗, x̂∗)) = (−1)rank(N)+1. There is no general
method for picking such a vector (â∗, x̂∗), but we can sometimes accomplish this via the Newton
polytope of C(â, x̂), namely, when one of the vertices corresponds to a coefficient of C(â, x̂) with the

desired sign (−1)rank(N)+1 (recall Lemma 2.2). Indeed, we will see in Section 4 that this approach
always succeeds for linearly binomial networks.

Remark 3.14. Theorem 3.12 can guarantee multiple steady states, but does not say anything
about whether they are stable [4].

Remark 3.15. We use M(κ) to denote, as in (8), the matrix transforming the fi’s to the h̄i’s, while
the authors of [4] use “M(x)” to denote the matrix Jac(fc,κ), after substituting the parametrization.

Remark 3.16. Our strategy for constructing a useful matrix M(κ) as in (8), is to perform linear
operations on the fi(x)’s to obtain as many binomials as possible (see, e.g., Example 3.1). Addi-
tionally, we will show in Theorem 5.3 that for many biological signaling networks, a suitable M(κ)
exists so that in the resulting system hc,a, every non-conservation-law equation is a binomial.

Remark 3.17. Theorem 3.12 relies on degree theory, which is why two key hypotheses are required:
being dissipative and having no boundary steady states. A discussion on how to verify these two
hypotheses is in [4, pp. 11-12]. In the examples below, the networks are conservative and thus
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dissipative, and checking that there are no boundary steady states can be done using, for instance,
results from [42] or [35, Theorem 3.13].

3.2. Examples. We present two examples. In the first one, we will see that the critical func-
tion arising from hc,a in Example 3.7 is simpler than that allowed by Conradi, Feliu, Mincheva,
and Wiuf [4]. We will also see in this example how to use Theorem 3.12 to obtain a witness to
multistationarity.

Example 3.18 (ERK network, continued). The critical function C(â, x̂) derived by the positive
parametrization in Example 3.7 (recall that (â, x̂) = (a2, a4, a6, a8, x)) is a rational function, where
the denominator is the monomial x1x2x3x5x9x10x12, and the numerator has total degree 11 and
704 terms.

This network is conservative (see (4)) and hence dissipative. It is straightforward to check (for
instance, using criteria in [42]) that it has no boundary steady states. In fact, the ERK network
is a MESSI network (see the definition in Section 5) and the absence of boundary steady states
is a direct and easy consequence of Theorem 3.13 in [35]. So we can apply Theorem 3.12 to find
a witness to multistationarity. Accordingly, we compute rank(N) = s − d = 12 − 3 = 9, so the

sign of interest is (−1)rank(N)+1 = 1. Thus, we must find (â∗, x̂∗) for which C(â∗, x̂∗) > 0. We
find the following such point by using a vertex of the Newton polytope of the numerator of C that
corresponds to a monomial with positive coefficient (recall Remark 3.13), for instance:

(â∗, x̂∗) = (a∗2, a
∗
4, a
∗
6, a
∗
8, x
∗) =

(
1

10
, 10, 10,

1

10
,

1

10
, 10,

1

10
, 10, 10, 10,

1

10
, 10, 10, 10, 10,

1

10

)
.

Letting (a∗, x∗) = φ(â∗, x̂∗), we have

a∗ =

(
1

100
,

1

10
,
11

10
, 10,

1001

100
, 10,

101

10
,

1

10
, 1010, 10,

1

10
, 1000, 10

)
,

and

c∗ := Wx∗ =

(
703

10
,

301

10
,

301

10

)
.

Thus, by Theorem 3.12, we obtain a witness to multistationarity via any choice of κ∗ for which
ā(κ∗) = a∗, where ā is defined in equation (5). One such κ∗ is as follows:

κ∗ =

(
1001

10
,

1001

100
,

1001

100
, 1, 100, 101000,

1

1000
,

1

10000
,

1

1000
, 11,

11

1000
,

11

1000
,

1

100
,

1

10000
,

101

100000
, 200, 1010

)
.

To confirm this witness, using a∗ and c∗ above, we approximately solve the polynomial system
hc,a|(a,c)=(a∗,c∗) = 0 and find seven real solutions for x. Three of these are positive steady states:

x(1) ≈ (1.18, 2.25, 0.46, 1.54, 1.56, 26.55, 0.016, 1.31, 5.81, 5.81, 26.52, 0.0034) ,

x(2) = (0.1, 10, 0.1, 10, 10, 10, 0.1, 10, 10, 10, 10, 0.1) , and

x(3) ≈ (0.0027, 14.56, 0.0037, 14.87, 14.85, 0.38, 0.15, 15.00, 10.30, 10.30, 0.39, 4.06) .

With an eye toward comparing our approach to that of [4], we now obtain another critical function,
using the procedures in [4]. Recall from Remark 3.10 that the parametrization in [4] has the form
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C C̃

Numerator

total degree 11 47

number of terms 704 246,232

Denominator

total degree 7 33

number of terms 1 1750

Table 1. Comparison for Example 3.1 of the critical functions C and C̃. We see
that C is simpler and hence easier to analyze. In particular, its denominator is a
monomial and thus is easily seen to be positive on the positive orthant.

(κ, x̂) 7→ (κ, (x̂,Φ(κ, x̂)). Applying their method here, we first solve for 9 of the variables xi (namely,
those with i = 4, . . . , 12) in the 9 non-conservation-law equations fc,κ,i = 0, for i = 4, . . . , 12. This
yields a steady-state parametrization:

ψ : R21
>0 → R18

>0 × R12
>0 ,

of the form ψ(κ, x1, x2, x3) = (κ, x). Substituting this parametrization into det Jac(fc,κ) gives a

critical function which we denote by C̃(v) (here we are writing v = (κ, x1, x2, x3)). The denominator

of C̃(v) is a polynomial in Q[v] that is positive for every κ ∈ R18
>0 and every (x1, x2, x3) ∈ R3

>0, and
has total degree 33 and 1750 terms. The numerator, also a polynomial in Q[v], has total degree 47
and 246232 terms.

As seen in Table 1, which compares the critical functions C and C̃, our critical function C is
simpler (fewer variables, with both numerator and denominator having lower degree and fewer
terms). Moreover, the fact that the denominator of C is a monomial makes it apparent that this

denominator is positive on the positive orthant. In contrast, the denominator of C̃ has 1750 terms
(which nonetheless are all positive).

Example 3.19 (Phosphorylation of two substrates, continued). Revisiting the network in Exam-

ple 2.1, we exhibit two critical functions C and C̃: one that arises from a simplification hc,a, and
then the one that Conradi, Feliu, Mincheva, and Wiuf presented [4]. We will see again that C is

much simpler than C̃.

The first critical function. Consider the following upper-triangular matrix:

M(κ) =



1
κ3

0 0 0 1
κ3

0

0 1
κ9

0 0 0 1
κ9

0 0 1
κ1

0 0 0

0 0 0 1
κ7

0 0

0 0 0 0 1
κ4

0

0 0 0 0 0 1
κ10


.

Note that detM(κ) > 0 for all κ ∈ R10
>0. Following (8)–(10), the resulting system is
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hc,a,1 = x1 + x7 + x8 − c1, hc,a,2 = x2 + x9 + x10 − c2,
hc,a,3 = x3 + x4 + x7 + x9 − c3, hc,a,4 = x7 − a1x9,
hc,a,5 = x5 + x6 + x8 + x10 − c4, hc,a,6 = x8 − a2x10,
hc,a,7 = x1x3 − a3x7, hc,a,8 = x1x5 − a4x8,
hc,a,9 = x2x4 − a5x9, hc,a,10 = x2x6 − a6x10,

where the effective parameters are:

ā1 = κ6
κ3

, ā2 = κ12
κ9

, ā3 = κ2+κ3
κ1

, ā4 = κ8+κ9
κ7

, ā5 = κ5+κ6
κ4

, ā6 = κ11+κ12
κ10

.

Notice that the map R12
>0 → R6

>0 given by κ 7→ ā(κ) is surjective. The Jacobian matrix of hc,a is

Jac(hc,a) =



1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 0 0 1 0 1 0
0 0 0 0 0 0 1 0 −a1 0
0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 −a2

x3 0 x1 0 0 0 −a3 0 0 0
x5 0 0 0 x1 0 0 −a4 0 0
0 x4 0 x2 0 0 0 0 −a5 0
0 x6 0 0 0 x2 0 0 0 −a6


.

By solving the equations hc,a,4 = hc,a,6 = hc,a,7 = hc,a,8 = hc,a,9 = hc,a,10 = 0 in the unknowns
a1, a2, a3, a4, a5, a6, we obtain

a1 = x7
x9

, a2 = x8
x10

, a3 = x1x3
x7

, a4 = x1x5
x8

, a5 = x2x4
x9

, a6 = x2x6
x10

.

This yields a steady-state parametrization φ : R10
>0 → R6

>0 × R10
>0, where â = ∅ and x̂ = x, so we

denote φ(â, x̂) by φ(x) = (a1, . . . , a6, x), which is defined as follows:(
a1 =

x7

x9
, a2 =

x8

x10
, a3 =

x1x3

x7
, a4 =

x1x5

x8
, a5 =

x2x4

x9
, a6 =

x2x6

x10
; x

)
.(14)

We substitute the parametrization φ(x) into det Jac(hc,a) to obtain C(x) = − x1x2
x9x10

B(x), where

B(x) is the following polynomial:

x1x10x2x3 + x1x10x2x4 + x1x10x2x7 + x1x10x2x9 + x1x10x3x6 + x1x10x4x6 + x1x10x4x9 +
x1x10x6x7 + x1x10x6x9 + x1x2x3x5 + x1x2x3x6 + x1x2x3x8 + x1x2x4x5 + x1x2x4x6 + x1x2x4x8 +
x1x2x5x7 + x1x2x5x9 + x1x2x6x7 + x1x2x6x9 + x1x2x7x8 + x1x2x8x9 + x1x4x5x9 + x1x4x6x9 +
x1x4x8x9 + x10x2x3x7 + x10x3x6x7−x10x4x5x7 + x2x3x5x7 + x2x3x5x8 + x2x3x6x7 + x2x3x7x8 +

x2x4x5x8 + x2x5x7x8 + x2x5x8x9−x3x6x8x9 + x4x5x8x9.

We see that B(x) is square-free and homogeneous, so every monomial of B(x) defines a vertex
of NP(B(x)). So, as B(x) has both positive and negative terms (underlined), we conclude from
Lemma 2.2 that B(x), and thus C(x) too, changes sign. So, by Theorem 3.12 (this network is
conservative and hence dissipative, and has no boundary steady states [4, 35]), the network is
multistationary. We will see that such properties of B(x) – having square-free monomials and ho-
mogeneous – come from the fact that every non-conservation-law hc,a,i is a binomial (Theorem 4.6).
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The second critical function (from [4]). Using the equations for fc,κ given in Example 2.1,
the resulting Jacobian matrix is as follows:

Jac(fc,κ) =



1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 0 0 1 0 1 0
0 −κ4x4 0 −κ4x2 0 0 κ3 0 κ5 0
0 0 0 0 1 1 0 1 0 1
0 −κ10x6 0 0 0 −κ10x2 0 κ9 0 κ11

κ1x3 0 κ1x1 0 0 0 −κ2 − κ3 0 0 0
κ7x5 0 0 0 κ7x1 0 0 −κ8 − κ9 0 0

0 κ4x4 0 κ4x2 0 0 0 0 −κ5 − κ6 0
0 κ10x6 0 0 0 κ10x2 0 0 0 −κ11 − κ12


.

In [4], a steady state parametrization of the form (κ, x̂) 7→ (κ, (x̂,Φ(κ, x̂)), where x̂ = (x1, x2, x3, x5),
is derived as follows. The equations fc,κ,i = 0 (i = 4, 6, 7, 8, 9, 10) are solved for the unknowns xi
(i = 4, 6, 7, 8, 9, 10), which yields a steady-state parametrization,

ψ : R16
>0 −→ R12

>0 × R10
>0 ,

where ψ(κ;x1, x2, x3, x5) is defined as(
κ; x1, x2, x3,

κ1κ3(κ5 + κ6)x1x3

κ4κ6(κ2 + κ3)x2
, x5,

(κ11 + κ12)κ7κ9x1x5

(κ8 + κ9)κ10κ12x2
,
κ1x1x3

κ2 + κ3
,
κ7x1x5

κ8 + κ9
,
κ1κ3x1x3

(κ2 + κ3)κ6
,
κ1κ7κ9x1x5

(κ8 + κ9)κ12

)
.

Substituting (κ, x) = ψ(κ, x1, x2, x3, x5) into det Jac(fc,κ) yields the critical function

C̃(κ;x1, x2, x3, x5), which is exactly the function “a(x̂)” in [4, §6 in Supplementary Information].

This critical function C̃ is a rational function, and the denominator is (κ2 + κ3)κ6(κ8 + κ9)κ12x2

and thus is positive for every choice of positive (κ;x1, x2, x3, x5) ∈ R16
>0. The numerator is a poly-

nomial in Q[κ;x1, x2, x3, x5] with total degree 15 and 225 terms. Conradi, Feliu, Mincheva, and

Wiuf showed that C̃ changes sign, and so again by Theorem 3.12 (or [4, Corollary 2]) the network
is multistationary.

We compare the two critical functions C and C̃ described above:

(1) C is simpler than C̃. The numerator of C has 36 terms while that of C̃ has 225 terms.

(2) Unlike the numerator of C̃, the numerator of C (namely, B(x)) is square-free and homo-
geneous. So, to conclude that the network is multistationary, we only had to examine the
signs in B(x), whereas in [4] a more careful examination of the Newton polytope of the

numerator of C̃ had to be undertaken.
(3) The critical function C̃ contains the rate-constant vector κ, so the authors of [4] used the

structure of C̃ to derive necessary and sufficient conditions on κ for multistationarity – in
other words, they found the multistationary region of parameter space. In contrast, C does
not contain κ, so we can not readily use C to find the multistationary region. Nonetheless,
we can use C to find a witness to multistationarity (by Theorem 3.12).

3.3. Critical functions and discriminants. For readers familiar with real algebraic geometry,
we now explain the relationship between a critical function C(â, x̂) and the mixed discriminant
of the polynomial equation system hc,a(x) = 0 [18]. Let I be the ideal in the polynomial ring

Q[c, a, x1, x
−1
1 , . . . , xs, x

−1
s , y1, y

−1
1 , . . . , ys, y

−1
s ] generated by hc,a,1(x), . . . , hc,a,s(x) and the equa-

tions expressing that y = (y1, . . . , ys) lies in the kernel of the Jacobian matrix Jac(hc,a) with
respect to the x variables. Note that the vanishing of these equations for given values (c∗, a∗) of
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(c, a) at x∗, y∗ imply that det (Jac(hc∗,a∗)) (x∗) = 0 and so x∗ is a non-simple common root of hc∗,a∗ .
If the elimination ideal I ∩ Q[c, a] has codimension one, we call any generator of this ideal a mixed
discriminant of the family hc,a(x), and we denote it by D(c, a). So, D(c∗, a∗) = 0 whenever hc∗,a∗
has a multiple root over C∗ where all maximal minors of size (s − 1) of the Jacobian matrix are
nonzero. As a real positive root x∗ of hc∗,a∗(x) is a real positive root of fk∗(x) = 0 when ā(k∗) = a∗,
and the matrix M(κ∗) is invertible, such a positive multiple root x∗ of hc∗,a∗ is a degenerate steady
state of the dynamical system ẋ = fκ∗(x), and in this case D(c∗, a∗) = 0.

Assume that the codimension of the elimination ideal is one and consider the discriminant locus,
i.e., the set of pairs of vectors of parameters (c∗, a∗) where the discriminant vanishes (D(c∗, a∗) = 0).
Consider also the critical locus, i.e., the set of pairs (â, x̂) where the critical function vanishes
(C(â, x̂) = 0). We relate these two conditions in Proposition 3.21 below. We begin with a simple
example.

Example 3.20. Consider the following network [26], where we set two of the rate constants to 1
to simplify the analyses:

0
1−⇀↽−
κ

A, 2 A
1−→ 3 A .(15)

The resulting mass-action kinetics ODE is:

dxA
dt

= x2
A − κxA + 1 ,(16)

and the discriminant equals κ2−4. We obtain, from the ODE (16), the steady-state parametrization
φ : R>0 → R2

>0 given by:

xA 7→
(
xA, κ =

x2
A + 1

xA

)
.(17)

(Here, ā is the identity map ā(κ) = κ, and â = ∅, x̂ = xA.) This steady-state parametrization is
depicted in Figure 1, along with the unique degenerate steady state (when (xA, κ) = (1, 2)) and the
corresponding projections onto the critical locus (xA = 1) and onto the discriminant locus (κ = 2).
The second point on the discriminant locus, κ = −2, is not shown.

We see in Figure 1 that the critical locus is a projection of the degenerate steady states, and
the discriminant locus is a subset of a similar projection. The first observation – viewing the
critical locus as a projection of the degenerate steady states – gives an intrinsic definition of the
critical locus, which does not depend on the specific parametrization. As for the second observation,
pertaining to the discriminant locus, we generalize this in Proposition 3.21.

Proposition 3.21 (C = 0 implies D = 0). Consider a network G with conservation-law matrix W
and simplified system hc,a(x) as in Definition 3.2. Assume I ∩Q[c, a] has codimension one, and let
D(c, a) denote the mixed discriminant. Consider, as in Definition 3.6, a positive parametrization
φ : Rm̂>0 × Rŝ>0 → Rm̄>0 × Rs>0, denoted by (â, x̂) 7→ φ(â, x̂), with respect to hc,a. Let C(â, x̂)

denote the resulting critical function. Then, for (â∗, x̂∗) ∈ Rm̂>0 × Rŝ>0, if C(â∗, x̂∗) = 0 and any
minor of the Jacobian matrix Jac(hĉ∗,â∗)(x̂

∗) of size (s − 1) is nonzero, then D(c∗, a∗) = 0, where
(a∗, x∗) = φ(â∗, x̂∗) and c∗ = Wx∗.
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κ

Steady-state parametrization
Degenerate steady state

Critical locus
Discriminant locus

Figure 1. The image of the steady-state parametrization (17) for network (15).
Also shown is the unique degenerate steady state and its projections to the critical
locus (where C = 0) and discriminant locus (where D = 0).

Proof. If C(â∗, x̂∗) = 0, then, by definition, (det Jac(hc,a)) |(a,x)=φ(â∗,x̂∗) = 0. Let (a∗, x∗) =
φ(â∗, x̂∗). Then, for c∗ = Wx∗, the system hc∗,a∗ = 0 has a multiple root (namely, x∗). So, by the
definition of the mixed discriminant and the assumptions about the Jacobian matrix Jac(hĉ∗,â∗)(x̂

∗),
we have D(c∗, a∗) = 0. �

The converse of Proposition 3.21 does not hold, as we see in the following example.

Example 3.22 (Converse of Proposition 3.21 is false). We revisit the network in Examples 2.1
and 3.19. For the following choice of κ∗ and c∗:

κ∗ =

(
1,

1

20
,

1

20
, 1,

19

2
,

1

2
, 1, 5, 5, 6,

926

823
,

4630

823

)
and

c∗ =

(
12,

2675

926
, 22,

11935

926

)
,

there are two positive steady states:

x(1) =

(
1, 1, 1, 10, 10, 1, 10, 1, 1,

823

926

)
and

x(2) ≈ (2.48, 0.60, 0.31, 13.08, 6.84, 2.81, 7.82, 1.70, 0.78, 1.51) .

The first steady state, x(1), is degenerate, while the second, x(2), is nondegenerate. Thus, for the
parametrization (14), which we denote by x 7→ φ(x), it follows that C(x(1)) = 0 (because x(1) is

degenerate). Let (a(1), x(1)) = φ(x(1)) and (a(2), x(2)) = φ(x(2)). So,

D
(
Wx(2), a(2)

)
= D

(
Wx(1), a(1)

)
= D

(
c∗, a(1)

)
= 0 ,
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where we are using the fact that a(1) = a(2) and Wx(1) = Wx(2) = c∗. However, the second steady
state, x(2), is nondegenerate, so although D

(
Wx(2), a(2)

)
= 0, we nonetheless have C(x(2)) 6= 0.

4. Multistationarity for linearly binomial networks

This section focuses on a class of networks that appear surprisingly often in applications. We
called these networks linearly binomial networks in Definition 3.4 because their steady-state equa-
tions are equivalent to binomial equations, and these binomial equations are related to the polyno-
mials arising from mass-action kinetics linearly via multiplication by a matrix M(κ). We prove for
linearly binomial networks that multistationarity can be decided simply from inspecting the critical
function (Theorem 4.6) and that the regions of parameter space allowing for multistationarity that
we find via degree theory and the use of effective parameters are full-dimensional (Theorem 4.10).

It follows from Definition 3.4 that linearly binomial networks are the networks for which the
augmented system fc,κ can be simplified to some hc,a, as in (10), with the following form:

(18) hc,a(x)i =

{
xγk − ak · xδk if i = jk ∈ {j1, j2, . . . , js−d} (i.e., i /∈ I)

(Wx− c)k if i = ik ∈ I .

where for k = 1, 2, . . . , s−d, the coefficient ak is an indeterminate arising from an effective parameter
āi(κ), and both xγk and xδk are monomials. The steady-state equations can be transformed into
binomial equations by linear operations, as in (8), via a matrix M(κ) which has positive determinant
for all κ ∈ Rm>0.

Remark 4.1. Mass-action systems arising from linearly binomial networks have “toric steady
states”, as defined in [36], for every choice of positive rate constants. For networks with toric steady
states, analyzing and finding witnesses for multistationarity has been investigated [32, 35, 36].

We use the binomials in (18) to solve for the indeterminates ak:

ak = xγk−δk , k = 1, 2, . . . , s− d ,

and this yields a steady-state parametrization φ(â, x̂), where â = ∅ and x̂ = x:

φ : Rs>0 → Rs−d>0 × Rs>0(19)

(â, x̂) 7→ (φa(x), x)

given by φa(x) :=
(
xγ1−δ1 , xγ2−δ2 , . . . , xγs−d−δs−d

)
. The parametrization φ(â, x̂), which we

denote by φ(x), yields the following critical function:

(20) C(x) = (det Jac(hc,a)) |ak=xγk−δk , k =1,...,s−d .

Example 4.2 (Phosphorylation of two substrates, continued). The network describing phosphory-
lation/dephosphorylation of two substrates, from Examples 2.1 and 3.19, is linearly binomial. This
can be seen from the system hc,a given in Example 3.19. Moreover, the steady-state parametrization
given there in (14), has the form in (20).

Example 4.3 (ERK network, continued). The ERK network from Example 3.1 is MESSI but not
linearly binomial. This result can be checked using results from [35].
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4.1. Establishing multistationarity using the critical function. For linearly binomial net-
works, we show that the critical function C(x) has the same sign as a homogeneous polynomial
B(x) with square-free monomials (Lemma 4.4). It follows that every monomial of B(x) defines a
vertex of the Newton polytope, so establishing multistationarity for a linearly binomial network is
easy: simply check whether B(x) has coefficients of both signs (Theorem 4.6).

Recall that a polynomial g(x) is homogeneous of degree d if g(λx) = λdg(x) for all constants
λ ∈ C.

Lemma 4.4. For a linearly binomial network G, the critical function C(x) in (20) has the form

(21) C(x) =
xα

xβ
·B(x) ,

where xα and xβ are monomials, and B(x) is either the zero polynomial or a homogeneous polyno-
mial of degree d = s − rank(N) such that all monomials have exponents vectors with coordinates
0, 1. Here, s denotes the number of species, and N denotes the stoichiometric matrix of G.

Proof. First we reorder the polynomials hc,a as b1, b2, . . . , bs such that the first s − d polynomials
are the binomials:

bk = xγk − ak · xδk , k = 1, 2, . . . , s− d ,
and the remaining d polynomials are the linear equations from the conservation laws:

bs−d+` = (Wx− c)` , ` = 1, 2, . . . , d .

As b is obtained by reordering the polynomials hc,a, we have that

det Jac(hc,a) = (−1)µ · det Jac(b),

for some integer µ. So, the critical function, as in (20), is:

C(x) = (det Jac(hc,a)) |ak=xγk−δk = (−1)µ · (det Jac(b)) |ak=xγk−δk .

We first describe the first s − d rows of Jac(b). For every k = 1, 2, . . . , s − d and for every r =
1, 2, . . . , s, the entry in the k-th row and the r-th column of Jac(b) is

∂bk
∂xr

= γk,r
xγk

xr
− akδk,r

xδk

xr
.

Thus, the entry in the k-th row and the r-th column of Jac(b)|ak=xγk−δk is

∂bk
∂xr
|ak=xγk−δk =

xγk

xr
(γk,r − δk,r) .

As for the last d rows of Jac(b), this submatrix is exactly W , the conservation-law matrix. So,

Jac(b)|ak=xγk−δk =



xγ1

x1
(γ1,1 − δ1,1) . . . xγ1

xs
(γ1,s − δ1,s)

...
. . .

...
xγs−d
x1

(γs−d,1 − δs−d,1) . . . xγs−d
xs

(γs−d,s − δs−d,s)

W


,
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and hence,

(det Jac(b)) |ak=xγk−δk =

s−d∏
k=1

xγk det



1
x1

(γ1,1 − δ1,1) . . . 1
xs

(γ1,s − δ1,s)
...

. . .
...

1
x1

(γs−d,1 − δs−d,1) . . . 1
xs

(γs−d,s − δs−d,s)

W



=

s−d∏
k=1

xγk

s∏
r=1

xr

det



(γ1,1 − δ1,1) . . . (γ1,s − δ1,s)
...

. . .
...

(γs−d,1 − δs−d,1) . . . (γs−d,s − δs−d,s)

Wx


,(22)

where Wx denotes the d × s matrix obtained from W by multiplying the j-th column by xj , for
every j = 1, 2, . . . , s.

Therefore, in the determinant in (22), each term is a product of d distinct xi’s times a number,

that is, we get a homogeneous polynomial B̃(x) of degree d where each monomial has exponents
vectors with coordinates 0, 1, as stated. Hence,

C(x) = (−1)µ · (det Jac(b)) |ak=xγk−δk = (−1)µ ·
Πs−d
k=1x

γk

Πs
r=1xr

B̃(x) .

Then, letting B(x) = (−1)µB̃(x), it follows that B(x) is as in (21) and is homogeneous of degree d
with each monomial has exponents vectors with coordinates 0, 1. �

Notice that C(x) and B(x), as in (21), have the same sign for every x ∈ Rs>0. This observation
motivates the following definition.

Definition 4.5. The critical polynomial of a linearly binomial network is the polynomial B(x) in
(21).

In the remainder of this section, we make the following assumption: B(x) is not the zero polyno-
mial. Indeed, we do not know of any network for which the critical function is the zero function.
For such a network, every steady state (in every compatibility class and for every choice of rate con-
stants) would be degenerate. We suspect that no such networks exist, and in fact the non-existence
of such networks is implied by the (open) Nondegeneracy Conjecture [28].

Theorem 4.6 (Multistationarity for linearly binomial networks). Let G be a linearly binomial
network that is dissipative and has no boundary steady states in any compatibility class. Let B(x)
denote its critical polynomial. Then:

(A) Multistationarity. G is multistationary if and only if B(x) has a coefficient with sign

equal to (−1)rank(N)+1, where N denotes the stoichiometric matrix of G.

(B) Witness to multistationarity. Every x∗ ∈ Rs>0 with sign(B(x∗)) = (−1)rank(N)+1 yields a
witness to multistationarity (κ∗, c∗) as follows: let c∗ = Wx∗ (where W is the conservation-
law matrix), and let κ∗ ∈ Rm>0 be such that ā(κ∗) = φa(x

∗) (where φa is as in (19)).
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Proof. Part (B) follows directly from Theorem 3.12 and Lemma 4.4.
For the forward direction of part (A), we proceed by contrapositive. Assume that every coefficient

of B(x) has sign (−1)rank(N) (at least one such coefficient exists, as B(x) is nonzero). So, B(x), and

thus C(x) as well (by Lemma 4.4), has sign (−1)rank(N) for all x ∈ Rs>0. Thus, by Theorem 3.12,
G is monostationary.

For the backward direction of part (A), assume that B(x) has a coefficient with sign equal to

(−1)rank(N)+1. By Lemma 4.4, B(x) is homogeneous with square-free monomials, so every monomial
of B(x) defines a vertex of the Newton polytope. Then, by Lemma 2.2, there exists x∗ ∈ Rs>0 with

sign(B(x∗)) = (−1)rank(N)+1. By again appealing to Lemma 4.4, we conclude that C(x) also takes
that sign, so, by Theorem 3.12, G is multistationary. �

Theorem 4.6 and its proof yield the following procedure for obtaining, for linearly binomial
networks, a witness to multistationarity.

Procedure 4.7 (Witness to multistationarity for linearly binomial networks).
Input: A binomial network that is dissipative and has no boundary steady states, given by equa-
tions hc,a(x) as in (18), arising from a reparametrization map ā as in (7), with conservation-law
matrix W and steady-state parametrization φ(x) = (φa(x), x) as in (19).
Output: “No” if G is not multistationary; otherwise, a witness to multistationarity.
Steps:

(1) Does the critical polynomial B(x) (Definition 3.8) have a coefficient with sign equal to

(−1)rank(N)+1 (e.g., if B(x) has both positive and negative coefficients)? If not, return

“No”. If yes, pick any x∗ ∈ Rs>0 such that sign(B(x∗)) = (−1)rank(N)+1.
(2) Let c∗ := Wx∗.
(3) Pick any κ∗ ∈ Rm>0 such that ā(κ∗) = φa(x

∗).
(4) Return (κ∗, c∗).

Recall from Remark 3.13 that one way to complete Step (1) (in the “yes” case) follows the proof of

Lemma 2.2. Namely, choose a monomial xα of B(x) with coefficient having sign (−1)rank(N)+1, and
then pick x∗ ∈ Rs>0 as follows: let λ� 1 and x∗i = λ when i ∈ α and x∗i = 1 when i /∈ α. It follows

that (x∗)α � (x∗)β for every other monomial xβ in B(x), and hence sign(B(x∗)) = (−1)rank(N)+1.
We demonstrate Procedure 4.7 in the following example.

Example 4.8. Consider the following network from [14, Figure 1(k)]:

P0 P1

F

S0 S1

F

E

S0 + E
κ1−−⇀↽−−
κ2

ES0
κ3−→ S1 + E, S1 + F

κ4−−⇀↽−−
κ5

FS1
κ6−→ S0 + F

P0 + S1

κ7−−⇀↽−−
κ8

S1P0
κ9−→ P1 + S1, P1 + F

κ10−−⇀↽−−
κ11

FP1
κ12−−→ P0 + F

This network describes a “cascade motif” with two layers; each layer is a “one-site modification
cycle”, and the same phosphatase (F ) acts in each layer [14, Figure 1(k)].

The network has s = 10 species:

X1=S0, X3=S1, X5=P0, X7=P1, X9=E,
X2=ES0, X4=FS1, X6=S1P0, X8=FP1, X10=F .
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There are d = 4 conservation laws, which arise from the total amounts of substrate S, enzyme E,
enzyme F , and product P , respectively:

(23) x1 + x2 + x3 + x4 + x6 = c1, x2 + x9 = c2, x4 + x8 + x10 = c3, x5 + x7 + x6 + x8 = c4 .

The resulting augmented system is

fc,κ,1 = x1 + x2 + x3 + x4 + x6 − c1,

fc,κ,2 = x2 + x9 − c2,

fc,κ,3 = κ3x2 − κ4x3x10 + κ5x4 − κ7x3x5 + κ8x6 + κ9x6,

fc,κ,4 = x4 + x8 + x10 − c3,

fc,κ,5 = x5 + x7 + x6 + x8 − c4,

fc,κ,6 = κ7x3x5 − κ8x6 − κ9x6,

fc,κ,7 = −κ10x7x10 + κ11x8 + κ9x6,

fc,κ,8 = κ10x7x10 − κ11x8 − κ12x8,

fc,κ,9 = −κ1x1x9 + κ2x2 + κ3x2,

fc,κ,10 = −κ4x3x10 + κ5x4 + κ6x4 − κ10x7x10 + κ11x8 + κ12x8.

Consider the following upper-triangular matrix:

M(κ) =



1
κ3

1
κ3

0 − 1
κ3

0 − 1
κ3

0 1
κ7

0 0 0 0

0 0 1
κ9

1
κ9

0 0

0 0 0 1
κ10

0 0

0 0 0 0 1
κ1

0

0 0 0 0 0 1
κ4


.

Note that detM(κ) > 0 for all κ ∈ R12
>0. Following (8)–(10), the resulting system is:

hc,a,1 = x1 + x2 + x3 + x4 + x6 − c1, hc,a,2 = x2 + x9 − c2, hc,a,3 = x2 − a1x4,
hc,a,4 = x4 + x8 + x10 − c3, hc,a,5 = x5 + x7 + x6 + x8 − c4, hc,a,6 = x3x5 − a2x6,
hc,a,7 = x6 − a3x8, hc,a,8 = x7x10 − a4x8, hc,a,9 = −x1x9 + a5x2,
hc,a,10 = −x3x10 + a6x4

where the effective parameters are as follows:

(24) ā1 = κ6
κ3

, ā2 = κ8+κ9
κ7

, ā3 = κ12
κ9

, ā4 = κ11+κ12
κ10

, ā5 = κ2+κ3
κ1

, ā6 = κ5+κ6
κ4

.

The associated map R12
>0 → R6

>0 given by κ 7→ ā(κ) is surjective.
Note that the non-conservation-law equations in hc,a are binomials, so the network is linearly

binomial. Hence, as in (19), we use the binomial equations hc,a,3 = hc,a,6 = hc,a,7 = hc,a,8 = hc,a,9 =
hc,a,10 = 0 to solve for the ak’s:

(25) a1 = x2
x4

, a2 = x3x5
x6

, a3 = x6
x8

, a4 = x7x10
x8

, a5 = x1x9
x2

, a6 = x3x10
x4

.

Substituting (25) into det Jac(hc,a) – that is, considering the parametrization x 7→ (φa(x), x) where
φa(x) is given by (25) – yields the following critical function C(x), as in (20):

C(x) =
x3x10

x4x8
B(x) ,

where B(x) is the following critical polynomial:
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x1x10x2x5 + x1x10x2x6 + x1x10x2x7 + x1x10x2x8 + x1x10x5x9 + x1x10x6x9 + x1x10x7x9 +
x1x10x8x9−x1x2x5x8 + x1x2x7x8−x1x5x8x9 + x1x7x8x9 + x10x2x5x9 + x10x2x6x9 + x10x2x7x9 +

x10x2x8x9 + x10x3x5x9 + x10x3x6x9 + x10x3x7x9 + x10x3x8x9 + x10x4x5x9 + x10x4x6x9 +
x10x4x7x9 + x10x4x8x9 + x10x5x6x9−x2x5x8x9 + x2x7x8x9 + x3x4x5x9 + x3x4x6x9 + x3x4x7x9 +

x3x4x8x9 + x3x7x8x9 + x4x5x6x9−x4x5x8x9 − x4x6x7x9 + x4x7x8x9 .

Consistent with Lemma 4.5, B(x) is homogeneous with total degree d = 4 and square-free mono-
mials.

From the conservation laws (23), we see that this network is conservative and hence dissipative.
It is also straightforward to check (for instance, using criteria in [42, 35]) that it has no boundary
steady states. Thus, we can follow Procedure 4.7 to find a witness as follows:

Step 1. We compute the following sign:

(−1)rank(N)+1 = (−1)s−d+1 = (−1)10−4+1 = −1 .

We see that B(x) has five (underlined) terms with the above negative sign; one such term is:

−x1x2x5x8 .

Accordingly, define x∗ ∈ R10 with coordinates λ (in indices 1, 2, 5, and 8) and 1 (all others):

x∗ = (λ, λ, 1, 1, λ, 1, 1, λ, 1, 1) .(26)

Then we have

B(x∗) = −λ4 + λ3 + 7λ2 + 14λ+ 5 .(27)

It follows that B(x∗) < 0 if λ is larger than the largest positive root of the polynomial (27). There
are many well-known upper bounds for the real roots of a univariate polynomial. Here, we use an
elementary bound, the sum of the absolute values of all coefficients:

1 + 1 + 7 + 14 + 5 = 28 .

Let λ = 29; then, B(x∗)|λ=29 = −676594 < 0.
Step 2. To solve for c∗, we substitute x∗|λ=29, as in (26), into equation (23), which yields:

c∗ = (61, 30, 31, 60)

Steps 3–4. We substitute x∗|λ=29, as in (26), into equation (25). This yields:

and φa(x
∗) = (29, 29, 1/29, 1/29, 1, 1) .

Finally, we choose κ∗ for which ā(κ∗) = φa(x
∗), as in (24):

κ∗ = (2, 1, 1, 30, 1, 29, 1, 28, 1, 2, 1/29, 1/29) .

So, (κ∗, c∗) is a witness to multistationarity.
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4.2. Open multistationarity regions in parameter space. We saw in Procedure 4.7 that,
for linearly binomial networks, finding x∗ with sign(B(x∗)) = (−1)rank(N)+1 allows us to obtain a
witness to multistationarity (κ∗, c∗) satisfying ϕ(κ∗, c∗) = ψ(x∗) for the maps:

Rs>0
ψ→ Rs−d>0 × Rd>0

ϕ← Rm>0 × Rd>0

x 7→ (a, c) 7→(κ, c) ,

where ψ : x 7→ (a, c) is given by:

(28)

{
ak = ψk = xγk−δk , k = 1, 2, . . . , s− d
ck = ψs−d+k = (Wx)k, k = 1, 2, . . . , d ,

and ϕ is given by

(29) ϕ(κ, c) := (ā(κ), c) .

Therefore, the region in the parameter space Rm>0 × Rd>0 of the (κ, c)’s where degree theory
guarantees multistationarity is

(30) ϕ−1(ψ(U)) ,

where

(31) U =
{
x ∈ Rs>0 | sign(B(x)) = (−1)rank(N)+1

}
.

We will show that the set ψ(U) is open (Theorem 4.10), and thus so is ϕ−1(ψ(U)), our region
of interest (Corollary 4.11). For “typical” networks, the multistationarity regions of parameter
space are full-dimensional. The interpretation for applications is that multistationarity persists
under small perturbations of the rate constants and the total-constant values (equivalently, initial
values). Such robustness properties are desirable in biological systems. In our setting, it is not
immediately evident that we find an open region in the parameter space of the variables (c, κ)
because we detect a multistationarity region in the x space and not in the parameter space.

Before stating the results in this section, we show in Figure 2 a “slice” of the set U , as in (31),
arising from the network in Example 4.8. More precisely, starting with the critical polynomial B
from that example, we display the (open) region where B < 0, under the following specialization:

x3 = x4 = 1 , x5 = x8 = 6 , x6 = x7 = 1 , x9 = x10 = 1 .(32)

This region, in (x1, x2)-space, is guaranteed by degree theory to yield multistationarity.

Lemma 4.9. Let G be a linearly binomial network with critical polynomial B(x) and map ψ as
in (28). Then for every x∗ ∈ Rs>0, we have det Jac ψ|x=x∗ 6= 0 if and only if B(x∗) 6= 0.

Proof. It is straightforward to verify, using equations (18) and (28), the following equality:

Jac ψ = ±

(
1

Πs−d
k=1x

δk

)
· Jac (hc,a) |ak=xγk−δk , k = 1, 2, . . . , s− d.
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Figure 2. The shaded region depicts a “slice” of the multistationarity region U , as
in (31), for the network in Example 4.8. The slice arises from the specialization (32).

Thus, for every y ∈ Rs>0 we obtain the first equality here:

det Jac ψ|x=y = ±

(
1

Πs−d
k=1y

δk

)
·
(

det (Jac (hc,a)) |ak=xγk−δk

)
|x=y = ± C(y)

Πs−d
k=1y

δk
= ±y

α

yβ
· B(y)

Πs−d
k=1y

δk
,

and the second and third equalities arise, respectively, from equation (20) and Lemma 4.4. Thus,
for every y ∈ Rs>0, we have det Jac ψ|x=y 6= 0 if and only if B(y) 6= 0. �

Theorem 4.10. Let G be a linearly binomial network with critical polynomial B(x) and map ψ as
in (28). Let U be as in (31). Then ψ(U) is an open set in the (c, a)-space Rs>0.

Proof. Note that B(x∗) 6= 0 for any x∗ ∈ U . So, we deduce from Lemma 4.9 that the Jacobian of
ψ never vanishes on U . The result now follows from the Inverse Function Theorem. �

Corollary 4.11. Let G be a linearly binomial network, with maps ψ and ϕ as in (28)–(29). Then
the multistationarity region of parameter space ϕ−1 (ψ(U)) as in (30), is an open set in the (κ, c)-
space Rm>0 × Rd>0.

Proof. The map ϕ is continuous, and, by Theorem 4.10, ψ(U) is open. Hence, ϕ−1 (ψ(U)) is
open. �

5. Many MESSI networks are linearly binomial networks

In this section, we show that a class of networks that includes many biological signaling networks
are linearly binomial networks (Theorem 5.3). These networks are so-called MESSI networks [35],
whose definition we recall below.

5.1. Definition of MESSI systems. A chemical reaction network with species set S is a MESSI
network if there is a partition

(33) S = S (0)
⊔

S (1)
⊔

S (2)
⊔
· · ·
⊔

S (m),
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where m ≥ 1 and
⊔

denotes disjoint union, such that the complexes and reactions satisfy the

conditions below. Species in S (0) and S1 := S \ S (0) are called, respectively, intermediate
and core. Complexes are also partitioned into two disjoint sets: intermediate complexes and core
complexes [15]. Each intermediate complex consists of a unique intermediate species.

Core complexes satisfy the following two conditions:

(i) They are molecular or bimolecular and consist of either one or two core species.
(ii) If the core complex consists of two species Xi, Xj , they must belong to different sets

S (α),S (β) (with α 6= β and α, β ≥ 1).

We say that complex y reacts to complex y′ via intermediates if either y → y′ or there exists a
path of reactions from y to y′ only through intermediate complexes. This is denoted by y →◦ y′.
The intermediate complexes of a MESSI network satisfy moreover the following condition. For
every intermediate complex y, there exist core complexes y′ and y′′ such that y′ →◦ y and y →◦ y′′.

The reactions of MESSI networks are constrained by the following rules:

(i) If three species are related by Xi+Xj →◦ Xk or Xk →◦ Xi+Xj , then Xk is an intermediate
species.

(ii) If two core species Xi, Xj are related by Xi →◦ Xj , then there exists α ≥ 1 such that both

belong to S (α).
(iii) If Xi +Xj →◦ Xk +X`, then there exist α 6= β such that Xi, Xk ∈ S (α), Xj , X` ∈ S (β) or

Xi, X` ∈ S (α), Xj , Xk ∈ S (β).

The partition (33) defines a MESSI structure on the network. A MESSI system is the mass-action
kinetics dynamical system (1) associated with a MESSI network.

5.2. The associated digraphs. We now present the digraphs G1, G0
2, and GE associated to a

MESSI network G through an example. For the actual definition we refer the reader to [35].

Example 5.1 (Two-layer cascade, continued). Recall the two-layer cascade network in Exam-

ple 4.8. We consider the following partition S (0) = {ES0, FS1, S1P0, FP1} (intermediate species),

and S (1) = {S0, S1}, S (2) = {P0, P1}, S (3) = {E}, S (4) = {F} (partition of the core species).
The intermediate complexes correspond to the intermediate species, and the remaining complexes
are core complexes. This partition defines a MESSI structure in the network.

We first define a digraph G1 by keeping the core complexes as vertices and considering the edges
y → y′ if y →◦ y′ in G. The labels assigned to these edges, τ (κ), are rational functions of the
original rate constants κ, following [15, Theorem 3.1]:

τ : Rm>0 → Rr>0(34)

κ 7→ (τ1(κ), τ2(κ), . . . , τr(κ)) ,

where r denotes the number of edges in G1. We then define a new digraph G2 where we “hide” the
concentrations of some of the species in the labels. We keep all monomolecular reactions Xi → Xj

and for each reaction Xi +X`
τ−→ Xj +Xm, with Xi, Xj ∈ S (α), X`, Xm ∈ S (β), we consider two

reactions Xi
τx`−→ Xj and X`

τxi−→ Xm. We obtain a multidigraph MG2 that may contain loops or
parallel edges between some pairs of nodes (i.e., directed edges with the same source and target
nodes). We define the digraph G2 by collapsing into one edge all parallel edges in MG2 and we
define the labels of each edge as the sum of the labels of the corresponding collapsed edges in MG2.
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Note that these labels might depend on some of the concentrations. We will moreover denote by G◦2
the digraph obtained from G2 by deleting loops and isolated nodes. We finally define the associated
digraph GE . The set of vertices of GE equals {S (α) | α ≥ 1}. The pair (S (α),S (β)) is an edge of

GE when there is a species in S (α) in a label of an edge in G0
2 between (distinct) species of S (β).

The graphs G1, G◦2, and GE associated to this network are the following:
G1: G◦2: GE :

S0 + E
τ1→ S1 + E

S1 + F
τ2→ S0 + F

P0 + S1
τ3→ P1 + S1

P1 + F
τ4→ P0 + F

⇒
S0

τ1x9

�
τ2x10

S1

P0

τ3x3

�
τ4x10

P1

S (3) S (1) S (2)

S (4)

Here, as defined in (34), τ : R12
>0 → R4

>0 is

τ1 = κ1
κ2+κ3

, τ2 = κ4
κ5+κ6

, τ3 = κ7
κ8+κ9

, τ4 = κ10
κ11+κ12

.

Remark 5.2. An important fact is that for any MESSI network with digraph G, once the edges
in G1 are labeled with the constants τ (κ), the steady states of the mass-action chemical reaction
system defined by G and those of G1 are in one-to-one correspondence. Moreover, G1 and G0

2,
together with the corresponding equations of the intermediate species, define the whole variety of
steady states of G.

5.3. Main result: conditions for MESSI linearly binomial networks. In this section we
give sufficient conditions on a MESSI system that ensure that the network is linearly binomial
(Definition 3.4). We define a further condition (C): For every intermediate complex y there exists
a unique core complex y′ such that y′ →◦ y in G.

Theorem 5.3. Let G be the underlying digraph of a MESSI system with m reactions (m directed
edges). Assume that G satisfies condition (C) and that the associated digraph GE has no directed
cycles, the underlying undirected graph of the associated graph G0

2 is a forest (an acyclic graph),
and MG2 has no parallel edges. Then, there exist:

(1) ā1(κ), ā2(κ), . . . , ām̄(κ) ∈ Q(κ) such that āi(κ
∗) is defined and, moreover, āi(κ

∗) > 0 for
every i = 1, 2, . . . , m̄ and for all κ∗ ∈ Rm>0, and

(2) an (s− d)× (s− d) matrix M(κ) with detM(κ∗) > 0 for all κ∗ ∈ Rm>0,

such that the functions

(h̄j1 , h̄j2 , . . . , h̄js−d)
> := M(κ) (fj1 , fj2 , . . . , fjs−d)

> ,

are binomials, where f is the polynomial system obtained from the ODEs (1) of the network G, and
every nonconstant coefficient in h̄jl is equal to a rational-number multiple of some āi(κ). Therefore,
if the map ā is surjective, then ā is a reparametrization map, as in (7), and h̄j1 , . . . , h̄js−d is an
effective steady-state function hc,a(x) of G, as in (9)–(10), and so G is a linearly binomial network.

We prove Theorem 5.3 in Appendix A.

Remark 5.4. The extra hypothesis in Theorem 5.3 that guarantees that G is a linearly binomial
network – namely, the condition that the map ā is surjective – holds for every example we have
examined. See, for instance, Examples 3.19 and 4.8.
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Example 5.5 (Two-layer cascade, continued). Recall the two-layer cascade network in Exam-
ples 4.8 and 5.1. Notice that G satisfies condition (C) and that the associated digraph GE has no
directed cycles (see Example 5.1). Moreover, the underlying undirected graph of the associated
graph G0

2 is a forest:
S0 − S1 P0 − P1

and MG2 has no parallel edges. Hence, Theorem 5.3 applies, and in fact the resulting binomials
are the ones we computed in Example 4.8.

6. Establishing multistationarity using triangular forms

For networks that are non-dissipative or have boundary steady states, Theorems 3.12 and 4.6
do not apply. Accordingly, in this section, we propose a method to analyze such networks. The
main idea is to find a degenerate positive steady state x∗ and then perturb the corresponding
parameters. The hope is that x∗ will break into two distinct positive steady states. We prove
that this approach will succeed under certain conditions (Theorem 6.5). Specifically, we require
that the steady-state equations admit a “triangular form” (Definition 6.2). Finally, we show that
such a triangular form exists whenever the steady-state equations form a “general zero-dimensional
system” (Corollary 6.12).

Before stating our results, we introduce our running example, which we first show has boundary
steady states (so, our earlier results do not apply).

Example 6.1 (Calvin cycle). Consider the following “elementary mode” of the Calvin cycle net-
work proposed in [23, Fig. 4]:

RuBP + E1
κ1−→ RuBPE1

κ2−→ 2 · PGA + E1, PGA + E2
κ3−→ PGAE2

κ4−→ DPGA + E2,

DPGA + E3
κ5−→ DPGAE3

κ6−→ GAP + E3, 5 ·GAP + E4
κ7−→ GPAE4

κ8−→ 3 · Ru5P + E4,

Ru5P + E5
κ9−→ Ru5PE5

κ10−−→ RuBP + E5, GAP + E7
κ11−−→ GAPE7

κ12−−→ E7.

This network is obtained by shutting down 9 transporter reactions from the original Calvin cycle
network (see “vEM1 ” in [23, page 218]). Let

X1=RuBP, X2=E1, X3=RuBPE1, X4=PGA, X5=E2, X6=PAGE2,
X7=DPGA, X8=E3, X9=DPGAE3, X10=GAP, X11 = E4, X12 = GAPE4,
X13=Ru5P, X14=E5, X15=Ru5PE5, X16=E7, X17=GAPE7.

The function fc,κ(x) is

fc,κ,1 = −κ1x1x2 + κ10x15, fc,κ,2 = x2 + x3 − c1,
fc,κ,3 = κ1x1x2 − κ2x3, fc,κ,4 = 2κ2x3 − κ3x4x5,
fc,κ,5 = x5 + x6 − c2, fc,κ,6 = κ3x4x5 − κ4x6,
fc,κ,7 = κ4x6 − κ5x7x8, fc,κ,8 = x8 + x9 − c3,
fc,κ,9 = κ5x7x8 − κ6x9, fc,κ,10 = κ6x9 − 5κ7x

5
10x11 − κ11x10x16,

fc,κ,11 = x11 + x12 − c4, fc,κ,12 = κ7x
5
10x11 − κ8x12,

fc,κ,31 = 3κ8x12 − κ9x13x14, fc,κ,14 = x14 + x15 − c5,
fc,κ,15 = κ9x13x14 − κ10x15, fc,κ,16 = x16 + x17 − c6,
fc,κ,17 = κ11x10x16 − κ12x17.

If we set x1 = x3 = x4 = x6 = x7 = x9 = x10 = x12 = x13 = x15 = x17 = 0, the polynomials fc,κ,i
(for i = 1, 2, . . . , 17) above become

0, x2 − c1, 0, 0, x5 − c2, 0, 0, x8 − c3, 0, 0, x11 − c4, 0, 0, x14 − c5, 0, x16 − c6, 0 .
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Thus, for any rate-constant vector κ and for any total-constant vector c, we have the following
boundary steady state:

(0, c1, 0, 0, c2, 0, 0, c3, 0, 0, c4, 0, 0, c5, 0, c6, 0) .

Thus, Theorem 3.12 does not apply to the Calvin cycle network.

6.1. Steady-state equations that admit a triangular form. In this section, we investigate
multistationarity for networks whose steady-state equations admit a triangular form (Theorem 6.5).

Definition 6.2. Let G be a reaction network with s species. The steady-state equations of G
admit a triangular form if there exists a system hc,a(x) = 0 (10) for G and there exist functions
T1, T2, . . . , Ts of the following form:

Ts = θs(c, a, xs),

Ts−1 = xs−1 − θs−1(c, a, xs),

Ts−2 = xs−2 − θs−2(c, a, xs−1, xs),

...

T1 = x1 − θ1(c, a, x2, . . . , xs) ,

such that:

(i) each θi : Rd>0 × Rm̄>0 × Rs−1
>0 → R is a C2-function, θs does not depend on x1, x2, . . . , xs−1,

and (for 1 ≤ i ≤ s− 1) θi does not depend on x1, x2, . . . , xi; and
(ii) there exists a variety W ( Cd×Cm̄ such that for all (c∗, a∗) ∈ Rd>0×Rm̄>0 \W, the positive

zeros of hc∗,a∗ coincide with the positive zeros of the system

Ts(c
∗, a∗, xs), . . . , T1(c∗, a∗, x1, x2, . . . , xs).

We recall the standard notion of singular point and we state a useful lemma (Lemma 6.4) that
we will prove in Appendix B using the Implicit Function Theorem.

Definition 6.3. Consider a polynomial f ∈ R[b, z], where (b, z) ∈ Rn×R. We say (b∗, z∗) ∈ Rn×R
is a singular point of f if f(b∗, z∗) = 0 , ∂f

∂z (b∗, z∗) = 0, and ∂f
∂bi

(b∗, z∗) = 0, for all i = 1, . . . , n.

We say (b∗, z∗) is a regular point of f if f(b∗, z∗) = 0 and (b∗, z∗) is not a singular point of f . Given
a univariate polynomial f ∈ R[z], we say that z∗ ∈ R is a multiplicity-2 solution of f(z) = 0 if

f(z∗) = 0 , df
dz (z∗) = 0, and d2f

dz2 (z∗) 6= 0.

Lemma 6.4. Consider a C2-function f : Rn+1 → R. Assume that (a∗, z∗) = (a∗1, a
∗
2, . . . , a

∗
n, z) ∈

Rn+1 satisfies the following:

(1) z∗ ∈ R is a multiplicity-2 solution of f(a∗, z) = 0, and

(2) there exists an index ` ∈ [n] such that ∂f
∂a`

(a∗, z∗) 6= 0 (i.e. (a∗, z∗) is a regular point of f).

Then for every ε > 0, there exists δ > 0 such that for all δ′ ∈ (0, δ), for either a∗∗` = a∗` − δ′ or
a∗∗` = a∗` + δ′, the equation f(a∗∗, z) = 0, where we set a∗∗i = a∗i for all i 6= `, has two distinct real

solutions z(1) and z(2), for which |z(1) − z∗| < ε and |z(2) − z∗| < ε.

We are ready to present a result that uses the existence of a triangular form to find witnesses of
multistationarity.
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Theorem 6.5 (Multistationarity when steady-state equations admit a triangular form). Let G be
a reaction network with s species. Suppose that the steady-state equations of G admit a simplified
system hc,a, a triangular form via functions T1, T2, . . . , Ts, and a variety W ( Cd × Cm̄ (as in

Definition 6.2). Fix a total-constant vector c∗ ∈ Rd>0, effective parameters a∗ ∈ Rm̄>0, and x∗ ∈ Rs>0.
Assume that:

(1) T1(c∗, a∗, x∗2, . . . , x
∗
s) = T2(c∗, a∗, x∗3, . . . , x

∗
s) = · · · = Ts(c

∗, a∗, x∗s) = 0 (i.e., x∗ is a positive
steady state of the system defined by G, c∗, and any κ∗ for which ā(κ∗) = a∗),

(2) x∗s is a multiplicity-2 solution of Ts(c
∗, a∗, xs) = 0,

(3) there exists an index i ∈ {1, 2, . . . , m̄} such that (a∗i , x
∗
s) is a regular point of

Ts(c
∗; a∗1, . . . , a

∗
i−1, ai, a

∗
i+1, . . . , a

∗
m̄, xs) = 0 ,

(4) (c∗, a∗) /∈ W.

Then G is multistationary. Moreover, a witness to multistationarity is guaranteed as follows: there
exists δ > 0 such that for all δ′ ∈ (0, δ), for either a∗∗i = a∗i − δ′ or a∗∗i = a∗i + δ′, the mass-action
system given by G, c∗, and any κ∗ for which ā(κ∗) = (a∗1, . . . , a

∗
i−1, a

∗∗
i , a

∗
i+1, . . . , a

∗
m̄) has at least

two positive steady states.

Proof. Straightforward from Lemma 6.4 and Definition 6.2. �

Remark 6.6. Theorem 6.5 suggests a procedure for finding a witness to multistationarity for
networks that admit a triangular form. Namely, find a degenerate positive steady state x∗ and
associated values for c∗ and a∗, and then perturb some coordinate of a∗ by a small amount. See
Example 6.13. However, in practice this perturbation method could fail if we can obtain only
approximations for x∗, c∗, and a∗, and if the multistationary region in the space of a∗’s is too small
for such approximations to find a witness. Hence, our approach is most promising when x∗, c∗,
and a∗ can be exactly chosen with rational-number coordinates (as in Example 6.13). Indeed, for
linearly binomial networks, this is easier as it is enough to find a solution x∗ of B(x∗) = 0, and the
critical function B has the nice properties detailed in Lemma 4.4. Nevertheless, for this case, we
gave other methods for obtaining witnesses to multistationarity.

6.2. Sufficient conditions for a triangular form. Theorem 6.5 gave an approach to multista-
tionarity for networks whose steady-state equations admit a triangular form. In turn, Corollary 6.12
below guarantees that a network admits such a triangular form as long as the steady-state equations
form a “general zero-dimensional system”.

Definition 6.7. A set of s polynomials

H = {h1, h2, . . . , hs} ⊆ C[a1, a2, . . . an, x1, x2, . . . , xs] = C[a, x]

forms a general zero-dimensional system if there exists a variety W ( Cn such that for any a∗ =
(a∗1, a

∗
2, . . . , a

∗
n) ∈ Cn\W, the system h1|a=a∗ = h2|a=a∗ = . . . = hs|a=a∗ = 0 satisfies:

(A1) the number of complex solutions is finite and nonzero;
(A2) for any distinct complex solutions x∗ = (x∗1, . . . , x

∗
s) and y∗ = (y∗1, . . . , y

∗
s), x

∗
s 6= y∗s ;

(A3) the ideal I({h1|a=a∗ , h2|a=a∗ , . . . , hs|a=a∗}) is radical.

Remark 6.8. When (A1) holds, the assumption (A3) implies that each complex solution x∗ =
(x∗1, x

∗
2, . . . , x

∗
s) has multiplicity 1 [6, Page 150, Corollary 2.6].
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Remark 6.9. It is computationally expensive to verify whether a given system is general zero-
dimensional. In practice, one can take a heuristic approach: pick random values of a1, a2, . . . , an,
solve approximately for the resulting complex solutions, and then check whether conditions (A1)–
(A3) in Definition 6.7 are satisfied. If this is the case, then we assume that the given system is
general zero-dimensional and we try to look for the triangular form described in Theorem 6.11.

Remark 6.10 (Relation to Shape Lemma). Theorem 6.11 can be viewed as a more general version
of the Shape Lemma. The original Shape Lemma [2] pertains to a zero-dimensional ideal arising
from a polynomial system without parameters. Later, a version for systems involving parameters
was given by geometric resolutions [20, 21]. The main difference between Theorem 6.11 and the
results in [20, 21] is that in Theorem 6.11, a triangular system representing the solution set of a
general zero-dimensional ideal is selected from a Gröbner basis, whereas in [20, 21], a triangular
system is computed by an interpolation idea.

Theorem 6.11. Suppose that h1, h2, . . . , hs ∈ C[a, x] form a general zero-dimensional system. Let
G be a Gröbner basis of the following ideal with respect to the lexicographic order an < · · · < a2 <
a1 < xs < · · · < x2 < x1:

I({h1, h2, . . . , hs}) ⊆ C[a, x] .

Then there exist g1, g2, . . . , gs ∈ G such that:

(1) g1, g2, . . . , gs have the following triangular form:

gs = Qs,N xNs +Qs,N−1 x
N−1
s + . . .+Qs,1 xs +Qs,0 ,

gs−1 = Qs−1 xs−1 +Rs−1 ,

...

g1 = Q1 x1 +R1 ,

where N > 0 and, for all i ∈ {0, 1, . . . , N} and j ∈ {1, 2, . . . , s− 1}, we have:

Qs,i ∈ C[a] , Qj ∈ C[a] , Rj ∈ C[a, xj+1, . . . , xs] .

(2) For any a∗ ∈ Cn\V (Qs,N Q1Q2 · · ·Qs−1), the set {g1|a=a∗ , g2|a=a∗ , . . . gs|a=a∗} is a Gröbner
basis of the following ideal with respect to the lexicographic order xs < · · · < x2 < x1:

I({h1|a=a∗ , h2|a=a∗ , . . . , hs|a=a∗}) ⊆ C[x1, x2, . . . , xs] .

The proof of Theorem 6.11 is in Appendix C.

Corollary 6.12. Let G be a reaction network with s species and a simplified system hc,a(x). If
hc,a,1, hc,a,2, . . . , hc,a,s form a general zero-dimensional system, then the steady-state equations of G
admit a triangular form.

Proof. Straightforward from Definition 6.2, Theorem 6.11, and the fact that if (c∗, a∗) is not in W ,
then the same is true for any sufficiently small perturbation of (c∗, a∗). �

We end this section by showing, through the Calvin cycle example, how to use Theorem 6.5 to
find a witness to multistationarity.
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Example 6.13 (Calvin cycle, continued). We return to the network in Example 6.1, which is
known to be multistationarity [23]. Here we find a witness to multistationarity.

Consider the following upper-triangular matrix:

M(κ) =



1 1 0 0 0 0 0 0 0 0 0
0 1

κ1
0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0
0 0 0 1

κ3
0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1

κ5
0 0 0 0 0

0 0 0 0 0 0 1 5 0 0 1
0 0 0 0 0 0 0 1

κ7
0 0 0

0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1

κ9
0

0 0 0 0 0 0 0 0 0 0 1
κ11



.

Note that detM(κ) > 0 for κ ∈ R10
>0. Let the effective parameters be:

ā1 = κ2, ā2 = κ4, ā3 = κ6, ā4 = κ8, ā5 = κ10, ā6 = κ12,(35)

ā7 =
κ2

κ1
, ā8 =

κ4

κ3
, ā9 =

κ6

κ5
, ā10 =

κ8

κ7
, ā11 =

κ10

κ9
, ā12 =

κ12

κ11
.

From the above effective parameters (35) and equations (8)–(10), the resulting system hc,a(x) is:

hc,a,1 = −a1x3 + a5x15, hc,a,2 = x2 + x3 − c1,
hc,a,3 = x1x2 − a7x3, hc,a,4 = 2a1x3 − a2x6,
hc,a,5 = x5 + x6 − c2, hc,a,6 = x4x5 − a8x6,
hc,a,7 = a2x6 − a3x9, hc,a,8 = x8 + x9 − c3,
hc,a,9 = x7x8 − a9x9, hc,a,10 = a3x9 − 5a4x12 − a6x17,
hc,a,11 = x11 + x12 − c4, hc,a,12 = x5

10x11 − a10x12,
hc,a,13 = 3a4x12 − a5x15, hc,a,14 = x14 + x15 − c5,
hc,a,15 = x13x14 − a11x15, hc,a,16 = x16 + x17 − c6,
hc,a,17 = x10x16 − a12x17.

With an eye toward applying Theorem 6.5, we find a triangular form for our steady-state equa-
tions, as follows. Following the heuristic proposed in Remark 6.9, we verified for several values
of the ai’s and ci’s that (A1), (A2), and (A3) in Definition 6.7 are satisfied. Hence, we assume
that the hc,a,i’s form a general zero-dimensional system. If so, Corollary 6.12 would imply that the
steady-state equations admit a triangular form. More precisely, we would obtain such a triangular
set as a subset of a Gröbner basis (by Theorem 6.11).

Accordingly, we compute a Gröbner basis of the generated ideal 〈hc,a,i〉 with respect to the
lexicographic order c < a < x17 < . . . < x1, via Maple [34], which consists of 86 polynomials.
Following the proof of Theorem 6.11 (see Appendix C), we select for each i = 1, 2, . . . , 17, some gi
among these 86 polynomials for which the leading monomial of gi, where gi viewed in Q(ai, ci)[x],

has the form xNii for some Ni ≥ 0. This yields the following 17 polynomials gi, which form a
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triangular set:

g17 = a6(a10 − a5
12)x6

17 + (a4a
5
12c4 − 5a6a10c6)x5

17 + 10a6a10c
2
6x

4
17

− 10a6a10c
3
6x

3
17 + 5a6a10c

4
6x

2
17 − a6a10c

5
6x17,

g16 = x16 + x17 − c6,

g15 = a5x15 − 3a6x17,

g14 = x14 + x15 − c5,

...

g3 = a1x3 − 3a6x17,

g2 = x2 + x3 − c1,

g1 = Q1(a, c) x1 +R1(a, c, x17) ,

where Q1(a, c) and R1(a, c, x17) are polynomials. So, by Theorem 6.11 (2), the steady-state equa-
tions admit the following triangular form:

T17 = g17(a, c, x17), T16 = x16 − (c6 − x17), T15 = x15 − 3
a6

a5
x17, T14 = x14 − (c5 − x15)

. . .

T3 = x3 − 3
a6

a1
x17, T2 = x2 − (c1 − x3), T1 = x1 −

R1(a, c, x17)

Q1(a, c)
.

This triangular form is valid as long as the leading coefficients of gi’s do not vanish. In other words,
the variety W, as in Definition 6.2, can be defined by the vanishing set of those coefficients.

Next, we aim to find a degenerate positive steady state x∗ and corresponding parameters (a∗, c∗).
Let â = a6 and x̂ = x. The idea is to compute the critical function C(â, x̂) and then find a positive
point where the function vanishes. By solving the equations hc,a,1 = hc,a,3 = hc,a,4 = hc,a,6 =
hc,a,7 = hc,a,8 = hc,a,9 = hc,a,10 = hc,a,12 = hc,a,13 = hc,a,15 = hc,a,17 = 0 in the unknowns
a1, a2, a3, a4, a5, a7, a8, a9, a10, a11, a12, we obtain:

a1 = 3a6x17
x3

, a2 = 6a6x17
x6

, a3 = 6a6x17
x9

, a4 = a6x17
x12

, a5 = 3a6x17
x15

,

a7 = x1x2
x3

, a8 = x4x5
x6

, a9 = x7x8
x9

, a10 =
x5

10x11

x12
, a11 = x13x14

x15
, a12 = x10x16

x17
.

Thus, we obtain the following steady-state parametrization (outside W) φ : R18
>0 → R12

>0 × R17
>0,

where φ(â, x̂) = φ(a6;x) is defined as(
3a6x17

x3
,
6a6x17

x6
,
6a6x17

x9
,
a6x17

x12
,
3a6x17

x15
, a6,

x1x2

x3
,
x4x5

x6
,
x7x8

x9
,
x5

10x11

x12
,
x13x14

x15
,
x10x16

x17
;x

)
.

The resulting critical function is:

C(â, x̂) = C(a6, x) = −324a5
6x2x5x8x

5
10x14x

4
17 (4x11x16 + 5x11x17 − x12x16) .

It is straightforward to find a positive rational vector (a∗6, x
∗) such that C(a∗6, x

∗) vanishes. For
instance, one can simply choose

a∗6 = 1 and x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1) .
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Plugging u∗ into φ(u), we compute:

a∗ =

(
3, 6, 6,

1

9
, 3, 1, 1, 1, 1,

1

9
, 1, 1

)
.

Also, by plugging x∗ into the conservation laws, we obtain:

c∗ = (2, 2, 2, 10, 2, 2) .

Then x∗ is a degenerate positive steady state for (a∗, c∗). In other words, we have verified the
first hypothesis of Theorem 6.5. It is straightforward to check the validity of the remaining three
hypotheses of this theorem. Thus, by Theorem 6.5, there exists a small positive number δ such
that for any 0 < δ′ < δ

(a∗1, . . . , a
∗
3, a
∗
4 + δ′, a∗5, . . . , a

∗
12, c

∗) or (a∗1, . . . , a
∗
3, a
∗
4 − δ′, a∗5, . . . , a∗12, c

∗)

generates multistationarity. Indeed, one can check that the system

hc,a(a
∗∗, c∗, x) = 0, where a∗∗ =

(
a∗1, . . . , a

∗
3, a
∗
4 −

1

1000
, a∗5, . . . , a

∗
12

)
,

has two distinct positive steady states, which are approximately equal to:

x(1) ≈(0.96, 1.01, 0.98, 0.96, 1.01, 0.98, 0.96, 1.01, 0.98, 0.96, 1.14, 8.85, 0.96, 1.01, 0.98, 1.01, 0.98), and

x(2) ≈(1.02, 0.98, 1.01, 1.02, 0.98, 1.01, 1.02, 0.98, 1.01, 1.02, 0.87, 9.12, 1.02, 0.98, 1.01, 0.98, 1.01).

Finally, any κ∗ ∈ R12
>0 for which ā(κ∗) = a∗∗, as in (35), yields a witness to multistationarity. One

such κ∗ is:

κ∗ =

(
3, 3,

5999

1000
,

5999

1000
, 6, 6, 1,

1

9
, 3, 3, 1, 1

)
.

7. Discussion

Steady-state parametrizations have been shown in recent years to be very useful for analyzing
chemical reaction networks and more specifically their capacity for multistationarity. Our first main
results are in this vein, discerning multistationarity and finding witnesses to multistationarity for
networks with steady-state parametrizations (Theorem 3.12), including linearly binomial networks
(Theorem 4.6). Furthermore, we characterize a class of MESSI networks that are linearly binomial,
which provides an interesting range of application for our results. In a complementary direction, we
also showed how to obtain witnesses to multistationarity when a network’s steady-state equations
admit a triangular form and a degenerate steady state exists (Theorem 6.5).

Hence, the main contribution of our work is a suite of new tools for tackling the important but
difficult problem of assessing and analyzing multistationarity. Moreover, our results can decide
multistationarity for networks from biology that previously could not be handled systematically.

Finally, our work used novel approaches that we expect to be useful in the future. For instance,
we used steady-state parametrizations in which the rate constants depend on the species variables,
thereby simplifying the subsequent analyses. We also analyzed reaction networks based on results
on specialization of Gröbner bases, adapting a general technique used in several applications. We
expect similar algebraic techniques to allow us in the future to go beyond multistationarity to study
topics such as stability of steady states and Hopf bifurcations.
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[36] Mercedes Pérez Millán, Alicia Dickenstein, Anne Shiu, and Carsten Conradi. Chemical reaction systems with

toric steady states. Bull. Math. Biol., 74(5):1027–1065, 2012.
[37] Boris Y. Rubinstein, Henry H. Mattingly, Alexander M. Berezhkovskii, and Stanislav Y. Shvartsman. Long-term

dynamics of multisite phosphorylation. Mol. Biol. Cell, 27(14):2331–2340, 2016.
[38] AmirHosein Sadeghimanesh and Elisenda Feliu. The multistationarity structure of networks with intermediates

and a binomial core network. Preprint, arXiv:1808.07548.
[39] Guy Shinar and Martin Feinberg. Concordant chemical reaction networks. Math. Biosci., 240(2):92–113, 2012.
[40] Anne Shiu. The smallest multistationary mass-preserving chemical reaction network. Lect. Notes Comput. Sc.,

5147:172–184, 2008.
[41] Anne Shiu and Timo de Wolff. Nondegenerate multistationarity in small reaction networks. Preprint,

arXiv:1802.00306, 2018.
[42] Anne Shiu and Bernd Sturmfels. Siphons in chemical reaction networks. Bull. Math. Biol., 72(6):1448–1463,

2010.
[43] Matthew Thomson and Jeremy Gunawardena. The rational parameterisation theorem for multisite post-

translational modification systems. J. Theoret. Biol., 261(4):626–636, 2009.
[44] William T. Tutte. The dissection of equilateral triangles into equilateral triangles. Math. Proc. Cambridge,

44(4):463–482, 1948.
[45] Liming Wang and Eduardo D. Sontag. On the number of steady states in a multiple futile cycle. J. Math. Biol.,

57(1):29–52, 2008.
[46] Carsten Wiuf and Elisenda Feliu. Power-law kinetics and determinant criteria for the preclusion of multistation-

arity in networks of interacting species. SIAM J. Appl. Dyn. Syst., 12:1685–1721, 2013.



MULTISTATIONARITY IN STRUCTURED REACTION NETWORKS 37

Appendix A. Proof of Theorem 5.3

We now prove Theorem 5.3. We also illustrate the proof in Example A.1. We assume the
reader is familiar with the notion of the Laplacian L(G) of a digraph G and its main properties.
One important observation is that mass-action kinetics associated with a digraph G with vertices
labeled by variables x1, . . . , xs equals ẋ = L(G)x. Another important observation is that when G
is strongly connected, the kernel of L(G) has dimension one and there is a known generator ρ(G)
with positive entries described as follows. Recall that an i-tree T of a digraph is a spanning tree
where the i-th vertex is its unique sink (equivalently, the i-th is the only vertex of the tree with no
edges leaving from it) and we call kT the product of the labels of all the edges of T . Then, the i-th
coordinate of ρ(G) equals

(36) ρi(G) =
∑

T an i−tree
kT .

We refer the reader to [31, 44] for a detailed account.

Proof of Theorem 5.3. Recall that in a MESSI network there are two types of species: intermediate
and core. Our proof proceeds by performing (invertible) linear operations on the steady-state
equations, which in the end yield (equivalent) binomial equations.

We begin by operating on the steady-state equations of intermediate species. Given a core
complex y, we consider the following set of intermediate complexes: Iy = {y′ intermediate : y →◦
y′}. Following the reasoning in [15], we build a labeled directed graph denoted by Gy, with node

set Iy ∪ {y}, and labeled directed edges as in G, except that any reaction of the form y′
κ→ y′′,

where y′ ∈ Iy and y′′ is any core complex, is replaced by y′
κ→ y, with the same rate constant (if

there are several core complexes to which y′ reacts, the edges are collapsed and the label equals the
sum of the labels of the corresponding collapsed edges). Note that, as all intermediate complexes in
MESSI networks react via intermediates to some core complex, the graph Gy is strongly connected.

Number the species in Iy and denote by x1, . . . , xny the corresponding concentrations. Then, the

mass-action ODEs corresponding to them in the given network, are given by f` = ẋ` = (L(Gy))`x
>,

where (L(Gy))` is the `th row of the Laplacian L(Gy) of Gy, x = (x1, . . . , xny ,m(y)), and m(y)
is the monomial associated with the complex y. Call ρ` = ρ(Gy)` for 1 ≤ ` ≤ ny + 1. From the
Matrix-Tree Theorem we know that, up to sign, the determinant of the first ny×ny principal minor
of L(Gy) equals ρny+1 6= 0. Call A the (ny + 1)× (ny + 1) block matrix

A =

(
A1 0
0 1

)
,

where A1 is the ny × ny is such that A · L(Gy) has the form:

A · L(Gy) =


1 0 −α1

. . .
...

0 1 −αny
∗ . . . ∗ ∗

 .

Such a matrix A exists since the ny × ny first principal minor of L(Gy) is invertible. Observe that
ker(L(Gy)) is generated by (ρ1, ρ2, . . . , ρny , ρny+1), so ρ` − α`ρny+1 = 0, for 1 ≤ ` ≤ ny, and then
α` = ρ`

ρny+1
(and α` 6= 0). By multiplying L(Gy) on the left by A, which is equivalent to operating
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linearly on the original equations f` = 0, we deduce the binomial equations x` − α`m(y) = 0, for
the intermediate species x` at steady state, for 1 ≤ ` ≤ ny. Note that, as ρny+1 6= 0 for all κ ∈ Rm>0,
these operations are well defined for all κ ∈ Rm>0.

We can afterwards substitute the steady-state value of the intermediate species x` ∈ Iy into the
original steady-state equations, for core species, of G. We moreover show that this substitution can
be achieved via linear operations. Indeed, for a core species Xk, write the corresponding ODE as:

fk = ẋk = pk +

ny∑
`=1

κ`x` ,

where pk is a polynomial that does not depend on x1, . . . , xny and κ` ≥ 0 is positive precisely when
X` reacts with rate constant κ` to a core complex that involves Xk. We now subtract a linear
combination of the intermediate-species binomials (x` − α`m(y)):

fk −
ny∑
`=1

κ`(x` − α`m(y)) = pk +

ny∑
`=1

(κ`α`)m(y) ,

and so we replace fk = 0 by pk +
∑ny

`=1(κ`α`)m(y) = 0, where all the intermediates in Iy have been
eliminated by performing linear operations on the original steady-state equations (for core species)
and the new binomials (for the intermediates).

A key observation pertaining to how we obtained binomial equations for all intermediate species
is that, by condition (C), the set of intermediate complexes can be written as the disjoint union
of sets Iy for a certain (finite) number of core complexes y. By the natural bijection between
intermediate complexes and intermediate species, we can then obtain the corresponding binomials
by operating linearly on the original equations. We also, as described above, eliminated all the
intermediate species from the core-species equations by linear operations. We will denote this
procedure as follows. First assume, without loss of generality, that the intermediate species are the
last s−n species. Then we can assert that there exists an invertible matrix M1 = M1(κ) ∈ Q(κ)s×s

which is well defined for all κ ∈ Rm>0 such that M1(f1, . . . , fs)
> = (f̃1, . . . , f̃n, h̃n+1, . . . , h̃s)

>, where

f̃1, . . . , f̃n do not depend on the intermediate-species concentrations xn+1, . . . , xs, and h̃n+` is the
binomial for the intermediate species xn+` (1 ≤ ` ≤ s− n) and its form is xn+` − αn+`m(y) = 0.

Before we continue operating on the core-species equations (the f̃i’s are not binomials), we
describe the map τ = τ (κ) mentioned in (34). For each Xi + Xj →◦ X` + Xm in G, the reaction

constant τ in G1 which gives the label Xi +Xj
τ−→ X` +Xm has the form

τ = κ+

s−n∑
k=1

κkαk,

where κ ≥ 0 is positive when Xi+Xj
κ−→ X`+Xm in G (and κ = 0 otherwise), and κk ≥ 0 is positive

if there is a reaction from the intermediate species Xn+k
κk−→ X` +Xm and Xi +Xj →◦ Xn+k in G

(and κk = 0 otherwise). As we pointed out in Remark 5.2, the steady states of G are in one-to-one

correspondence with those of G1 and, in fact, the polynomials f̃i can be read from the digraph G1

(see Theorem 3.2 in [15]).

What we show now is that we can operate linearly on the core-species equations f̃i = 0 (for
1 ≤ i ≤ n) in order to obtain equivalent binomial equations. To avoid unnecessary notation, we
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will assume in what follows that the partition of S is minimal. Recall that a vertex in a directed
graph has outdegree zero if it is not the tail of any directed edge. Let us define subsets of indices
based on the graph GE :

L0 ={β ≥ 1 : outdegree of S (β) is 0},

Lk ={β ≥ 1 : for any edge S (β) → S (γ) in GE it holds that γ ∈ Lt, with t < k}\
k−1⋃
t=0

Lt, k ≥ 1.

As S is finite and there are no directed cycles in GE , there must exist a subset S (β) with 1 ≤ β ≤ m
such that its outdegree in GE is zero. This means that L0 6= ∅.

Consider α ∈ L0. By the assumption of minimality of the partition, there is a connected compo-

nent of G0
2, which we denote by Hα, with vertices the species in S (α). Let H̃α be the corresponding

underlying undirected graph. As H̃α is a tree, consider Xi, a leaf of the tree (this is, a vertex of

degree one). Xi is only connected to one vertex Xj , so f̃i is already a binomial of the form

f̃i = τjixjx` − τijxixh,

for some species X` ∈ S (β), Xh ∈ S (γ), β, γ in levels strictly greater than 0. Moreover, f̃j is

f̃j = pj + τijxixh − τjixjx` = pj − f̃i,

with pj a polynomial that does not depend on xi. Then, f̃j + f̃i = pj . And we can replace f̃j
with pj . As the associated digraph GE has no directed cycles, all the reactions are enzymatic.

This means that the reactions that correspond to τij and τji in G1 are Xi +Xh
τij−→ Xj +Xh and

Xj + X`
τji−→ Xi + X`, respectively, and none of these reactions affect either f̃h or f̃`. Moreover,

as Xi ∈ S (α) with α ∈ L0 and S (α) has outdegree zero in GE , xi only appears in f̃i and f̃j . We

have then eliminated by linear operations the variable xi from all the equations other than f̃i. And

this can be done for all the species whose vertices are leaves of H̃α. We can then erase all the

leaves from H̃α and, by an inductive argument we see that we can operate linearly, with integer
coefficients, on f̃1, . . . , f̃n to obtain binomials for the species in S (α). This argument holds for any
α ∈ L0. As the species in the S (α)’s for α ∈ L0 do not appear in any label of the Li’s for i ≥ 1 and
all the reactions in all the Hα’s with α ∈ L0 do not affect the equations of those species that appear
on its labels, by an inductive argument we can complete the proof to obtain binomial equations by
operating linearly on the equations f̃j = 0 for the species in S (α) for α ∈ Li, i ≥ 1.

We have then proved that there exists a matrix with integer entries M̃2 ∈ Qn×n, and an invertible
block matrix M2 ∈ Qs×s of the form

M2 =

(
M̃2 0
0 Ids−n

)
,

such that M2 (f̃1, . . . , f̃n, h̃n+1, . . . , h̃s)
> = (h̃1, . . . , h̃s)

>, where h̃1, . . . , h̃s are binomials.
We have so far that there are invertible matrices M1 ∈ Q(κ)s×s and M2 ∈ Qs×s, with M1 well

defined for all κ ∈ Rm>0, such that M2M1(f1, . . . , fs)
> = (h̃1, . . . , h̃s)

>, with det(M2M1) 6= 0. If
fj1 , . . . , fjs−d is a basis of the Q(κ)-linear subspace generated by f1, . . . , fs there must exist a set of

s−d binomials {h̄j1 , . . . , h̄js−d} ⊆ {h̃1, . . . , h̃s} and an invertible matrix M ∈ Q(κ)(s−d)×(s−d), which
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is well defined for all κ ∈ Rm>0, such that M(fj1 , . . . , fjs−d)
> = (h̄j1 , . . . , h̄js−d)

>, as we wanted to
prove. �

Example A.1. Consider the following network:

S0 + E
κ1−−⇀↽−−
κ2

ES0
κ3−→ S1 + E

κ4−→ S2 + E
κ5−→ S3 + E

S3
κ6−→ S2

κ7−→ S1
κ8−→ S0,

which has s = 6 species:

X1=S0, X2=S1, X3=S2, X4=S3, X5=E, X6=ES0.

There are 2 conservation laws:

x1 + x2 + x3 + x4 + x6 = c1

x5 + x6 = c2.

The equations fc,κ(x) are
fc,κ,1 = x1 + x2 + x3 + x4 + x6 − c1,
fc,κ,3 = κ4x2x5 − κ5x3x5 + κ6x4 − κ7x3,
fc,κ,5 = x5 + x6 − c2,

fc,κ,2 = κ3x6 − κ4x2x5 + κ7x3 − κ8x2,
fc,κ,4 = κ5x3x5 − κ6x4,
fc,κ,6 = κ1x1x5 − (κ2 + κ3)x6.

The matrix M1(κ) is the product of two matrices: the first one multiplied by (f1, . . . , f6)> gives
binomials for the intermediate species equations; the second one eliminates the intermediate species
from the core species equations.

M1 = M1(κ) =



−κ2

−κ3

Id5 0
0

−κ2 − κ3

0 . . . 0 1

 ·



0

Id5

...

0

0 . . . 0 − 1

κ2 + κ3


,

where Id5 is the 5× 5 identity matrix. This leads to:

M1(f1, . . . , f6)> =(κ8x2 −
κ1κ3
κ2 + κ3

x1x5, −κ4x2x5 + κ7x3 − κ8x2 +
κ1κ3
κ2 + κ3

x1x5,

f3, f4, 0, − κ1
κ2 + κ3

x1x5 + x6)> = (f̃1, . . . , f̃5, h̃6).(37)

The corresponding digraph G0
2 defined in §5.2 is:

S0

κ1
κ2+κ3

x5

−−−−−−⇀↽−−−−−−
κ8

S1

κ4x5−−−⇀↽−−−
κ7

S2

κ5x5−−−⇀↽−−−
κ6

S3,

and the underlying undirected graph is a tree with leaves S0 and S3. Then f̃1 and f̃4 are already

binomials, and p2 = f̃2− f̃1 = −κ4x2x5 +κ7x3 (from (37)), and p3 = f̃3 + f̃4 = (κ4x2x5−κ5x3x5 +
κ6x4 − κ7x3) + (κ5x3x5 − κ6x4) = κ4x2x5 − κ7x3, which are binomials. The matrix M2 is

M2 =


1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,
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and M2 (f̃1, . . . , f̃5, h̃6)> = (h̃1, . . . , h̃6)>.
In order to obtain hc,κ,2, hc,κ,3, hc,κ,4, hc,κ,6 we need to build f1 and f5 from fc,κ,2, fc,κ,3, fc,κ,4,

fc,κ,6, multiply by the product M2M1, and then pick 4 linearly independent binomials:

M ′ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

M2M1


−1 −1 −1 −1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
0 0 0 1

 =


−1 −1 −1 − κ3

κ2+κ3

0 −1 −1 0
0 0 1 0
0 0 0 − 1

κ2+κ3

 ,

which leads to M ′(fc,κ,2, fc,κ,3, fc,κ,4, fc,κ,6)> = (κ8x2 − κ1κ3
κ2+κ3

x1x5,−κ4x2x5 + κ7x3, κ5x3x5 −
κ6x4,− κ1

κ2+κ3
x1x5 + x6)>. Notice that, as M1(κ) is well defined for all κ ∈ R8

>0, then M ′ is

also well defined for all κ ∈ R8
>0.

We now choose the matrix M = M(κ):

M =


1
κ8

0 0 0

0 1
κ7

0 0

0 0 − 1
κ6

0

0 0 0 1

M ′,

and the effective parameters ā1 = κ1κ3
κ8(κ2+κ3) , ā2 = κ4

κ7
, ā3 = κ5

κ6
, and ā4 = κ1

κ2+κ3
. Then, the

reparametrization map ā is surjective, M(κ) is well defined for all κ ∈ R8
>0, and det(M) =

(− 1
κ6κ7κ8

) · (− 1
κ2+κ3

) > 0.

Appendix B. Proof of Lemma 6.4

In this appendix, we prove Lemma 6.4.

Proof of Lemma 6.4. Let ε > 0. By hypothesis, f(a, z) and (a∗, z∗) ∈ Rn+1 satisfy:

(I) f(a∗, z∗) = 0,

(II) ∂f
∂z (a∗, z∗) = 0,

(III) ∂2f
∂z2 (a∗, z∗) 6= 0, and

(IV) ∂f
∂a`

(a∗, z∗) 6= 0.

By assumptions (I) and (IV), the implicit function theorem applies. So, there exists a function

β̃ : Bε′(a1, . . . , a`−1, a`+1, . . . , an, z)→ R

defined on a ball of some radius ε′ ≤ ε in Rn such that β̃(a∗1, . . . , a
∗
`−1, a

∗
`+1, . . . , a

∗
n, z
∗) = a∗` and,

near the point of interest (a∗, z∗), the f = 0 locus is the graph of β̃.

Call β : (z∗ − ε′, z∗ + ε′) → R the restriction β(z) = β̃(a∗1, . . . , a
∗
`−1, a

∗
`+1, . . . , a

∗
n, z), and call

β̂(z) = (a∗1, . . . , a
∗
l−1, β(z), a∗`+1, . . . , a

∗
n); then near (a∗, z∗) we have

f(β̂(z), z) = 0 for z ∈ (z∗ − ε′, z∗ + ε′) .(38)

Take the derivative of equation (38), via the chain rule:

∂f

∂a`

(
β̂(z), z

)
β′(z) +

∂f

∂z
(β̂(z), z) = 0 .(39)
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Evaluating this equation at z = z∗, and recalling that β(z∗) = a∗` and β̂(z∗) = a∗, we obtain:

∂f

∂a`
(a∗, z∗)β′(z∗) +

∂f

∂z
(a∗, z∗) = 0 .

Recall that ∂f
∂a`

(a∗, z∗) 6= 0, by hypothesis (IV), and ∂f
∂z (a∗, z∗) = 0, by (II). Thus, β′(z∗) = 0. Next,

take another derivative, applying the chain rule to equation (39), and then evaluate at z = z∗:

∂f

∂a`
(a∗, z∗)β′′(z∗) +

∂2f

∂a2
`

(a∗, z∗)
(
β′(z∗)

)2
+ 2

∂2f

∂z∂a`
(a∗, z∗)β′(z∗) +

∂2f

∂z2
(a∗, z∗) = 0 .

Thus, we deduce from (III) and (IV) that β′′(z∗) 6= 0. It follows that the univariate function β has a
maximum or a minimum at z∗ (depending on the sign of the second derivative). Hence, there exists
a sufficiently small δ > 0 such that for all δ′ ∈ (0, δ), either b∗∗` = a∗`−δ′ (if a∗` is a local maximum) or
a∗∗` = a∗`+δ

′ (if a∗` is a local minimum) yields f(a∗∗, z) = 0, for a∗∗ = (a∗1, . . . , a
∗
`−1, a

∗∗
` , a

∗
`+1, . . . , a

∗
n),

with two distinct real solutions within distance ε of z∗. �

Appendix C. Proof of Theorem 6.11

The goal of this appendix is to prove Theorem 6.11. We first recall some definitions and a result
of Kapur, Sun, and Wang from the theory of comprehensive Gröbner bases [29]. For basic concepts
from computational algebraic geometry, see the books [6, 7].

Let h ∈ C[a, x] := C[a1, a2, . . . , an, x1, x2, . . . , xs]. We denote by

lppx(h) and lcx(h) ,

the leading monomial (or “leading power product”) and leading coefficient of h, respectively, when
h is viewed in C(a)[x] taken with the lexicographic order xs < · · · < x2 < x1. For instance, if
h = a2

1x1 + x2, then lppx(h) = x1 and lcx(h) = a2
1.

Definition C.1. [29, Definition 4.1] Given H ⊆ C[a, x], a subset H ′ of H is a noncomparable subset
of H if

(1) for every h ∈ H, there exists g ∈ H ′ such that lppx(h) is a multiple of lppx(g), and
(2) for every g1, g2 ∈ H ′, with g1 6= g2, the leading monomial lppx(g1) is not a multiple of

lppx(g2), and lppx(g2) is not a multiple of lppx(g1).

Example C.2. Consider H = {a2x
2
2 − 1, a1x1 − 1, (a1 + 1)x1 − x2, (a1 + 1)x2 − a1}. Let H ′ =

{a1x1 − 1, (a1 + 1)x2 − a1} (⊆ H). We verify that H ′ is a noncomparable subset of H:

(1) Note that {lppx(h) | h ∈ H} = {x2
2, x2, x1} and {lppx(g) | g ∈ H ′} = {x2, x1}. So, every

monomial in the first set is a multiple of some monomial in the second set.
(2) For the two polynomials in H ′, their leading monomials are, respectively, x1 and x2. We

see that x1 is not a multiple of x2, and x2 is not a multiple of x1.

The following straightforward lemma shows that noncomparable subsets always exist and ex-
plains how (in theory) to effectively find one.

Lemma C.3 (Existence of noncomparable subsets). Let H be a finite, nonempty subset of C[a, x].
The following procedure yields a noncomparable subset of H:

(1) Let M = {lppx(h) | h ∈ H}, and let D = ∅.
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(2) Pick a monomial from M , say m1. Let d := m1. Search M . If there exists m ∈ M such
that m|d and m 6= d, then set d := m. Continue searching until there is no m in M such
that m|d and m 6= d. Then add d into D.

(3) Let M ′ := {m ∈M : d|m}, and let M := M\M ′.
(4) Repeat steps 2–3 until M is empty.
(5) For each d ∈ D, pick some fd ∈ F for which lppx(f) = d. Output FD := {fd | d ∈ D}.

Now consider a set of s polynomials H = {h1, h2, . . . , hs} in C[a, x]. Denote by I(H) the
ideal generated by H in the polynomial ring. Denote by V (H) the variety generated by H (or,
equivalently generated by I(H)) in Cn+s:

V (H) := {(a;x) = (a1, a2, . . . an, x1, x2, . . . , xs) ∈ Cn+s | h(a;x) = 0 for all h ∈ I(H)} .

Below, we show that if the system H is a general zero-dimensional system (Definition 6.7), then
H admits a triangular form (see the proof of Theorem 6.11). More specifically, we prove that
any noncomparable subset of a Gröbner basis of I(H) with respect to the lexicographic order
an < · · · < a2 < a1 < xs < · · · < x2 < x1 has the desired triangular form. The proof requires the
following result, due to Kapur, Sun, and Wang [29, Theorem 4.3], which relates Gröbner bases of
I(H) to those of the specialized ideal I(H|b=b∗):

Proposition C.4 (Specialization of Gröbner bases [29]). Consider H ⊆ C[a, x], and let G be a
Gröbner basis of the ideal I(H) ⊆ C[a, x] with respect to the lexicographic order an < · · · < a2 <
a1 < xs < · · · < x2 < x1. Let G∩ = G ∩ C[a], let Gm be a noncomparable subset of G\G∩, and
let h = Πg∈Gm lcx(g). For any a∗ = (a∗1, a

∗
1, . . . , a

∗
n) ∈ Cn, if G∩|a=a∗ ⊆ {0} and h|a=a∗ 6= 0, then

Gm|a=a∗ is a Gröbner basis of the ideal I(H|a=a∗) ⊆ C[x] with respect to the lexicographic order
xs < · · · < x2 < x1:

To prove Theorem 6.11, we also need the following lemma:

Lemma C.5. For a general zero-dimensional system H = {h1, h2, . . . , hs} ⊆ C[a, x], we have
I(H) ∩ C[a] = {0}.

Proof. Since H is a general zero-dimensional system (Definition 6.7), there exists a proper variety
W ( Cn such that for every a∗ ∈ Cn \ W the specialized system H|a=a∗ has at least one complex
solution. It follows that Cn\W ⊆ π(V (H)), where π : Cn+s → Cn denotes the standard projection
given by (a, x) 7→ a. Thus,

Cn\W ⊆ π(V (H)) ⊆ Cn .
Note that Cn\W = Cn (as W ( Cn), so π(V (H) = Cn. By [7, pg. 193, Thm. 3], we know that

π(V (H)) = V (I(H) ∩ C[a]). So, V (I(H) ∩ C[a]) = Cn. The only ideal that generates the variety
Cn is the zero ideal. So, I(H) ∩ C[a] = {0}. �

Proof of Theorem 6.11. Let H = {h1, h2, . . . , hs}. Let Gm be a noncomparable subset of G (which
exists by Lemma C.3). By Lemma C.5, we have:

Gm ∩ C[a] ⊆ I(H) ∩ C[a] = {0} .

In fact, 0 /∈ Gm (by the definition of noncomparable subset and because G 6= {0}), so Gm∩C[a] = ∅.
So, by Proposition C.4, for every a∗ ∈ Cn\V (h), where h = Πg∈Gm lcx(g), the set Gm|a=a∗ is a
Gröbner basis of I(H|a=a∗) ⊆ C[x] with respect to xs < · · · < x1.
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(1) We show that a subset {g1, g2, . . . , gs} of Gm has the required triangular form. As H is a
general zero-dimensional system, let W be the variety in Cn such that H satisfies the hypotheses
(A1)–(A3) in Definition 6.7. Let c∗ ∈ Cn\ (W ∪ V (h)). Then by (A1) in Definition 6.7, we know
that V (Gm|a=c∗) = V (H|a=c∗) is a nonempty finite set in Cs. Hence, by [7, pg. 234, Thm. 6 (i) and
(iii)], for i ∈ {1, 2, . . . , s}, there exists gi ∈ Gm such that the leading monomial of gi|a=c∗ has the

form xNii , where Ni is a non-negative integer. In particular, gs|a=c∗ ∈ C[xs].

It follows that lppx(gi) = xNii , because c∗ /∈ V (h) and so lcx(gi)|a=c∗ 6= 0. Hence, if we show that
N2 = N3 = · · · = Ns = 1, then, by the definition of the lexicographic order, g1, g2, . . . , gs have the
forms shown in Theorem 6.11 (1).

Hence, to finish proving (1), we need only show that N2 = N3 = · · · = Ns = 1. Let N :=
|V (H|a=c∗)|. Then every x∗ ∈ V (H|a=c∗) has a distinct xs-coordinate (by (A2) in Definition 6.7),
and every such coordinate is a root of gs|a=c∗ ∈ C[xs]. Hence,

Ns = deg(gs|a=c∗) ≥ N .(40)

Next, by (A3) in Definition 6.7 and [7, pg. 235, Prop. 8(ii)], we know that

N = N1N2 · · ·Ns .(41)

So, by (40) and (41), we have Ns = N and N2 = N3 = · · · = Ns−1 = 1.
(2) Consider the following claim:

Claim: Gm = {g1, g2, . . . , gs}.
This claim implies that h = Qs,N Q1Q2 · · ·Qs−1 and so, by what we saw earlier, for every a∗ ∈
Cn\V (Qs,N Q1Q2 · · ·Qs−1), the set {g1|a=a∗ , g2|a=a∗ , . . . , gs|a=a∗} is a Gröbner basis of the ideal
I(H|a=a∗) with respect to xs < · · · < x1. So, to complete the proof, we need only prove the Claim.

First, the containment Gm ⊇ {g1, g2, . . . gs} follows from the fact that the gi’s were selected from
Gm. Next, we show the containment Gm ⊆ {g1, g2, . . . , gs} by proving the following equality by
induction on i:

(42) Gm ∩ C[a, xi, xi+1 . . . , xs] ⊆ {gi, gi+1, . . . , gs} , for all i ∈ {1, 2, . . . , s} .

For i = s, assume that g ∈ Gm ∩ C[a, xs]. Then lppx(g) = xÑs for some Ñ ≥ 0, and also recall that
lppx(gs) = xNs for some N > 0. However, Gm is noncomparable, so g = gs.

For the inductive step, assume that the containment (42) holds for all i ∈ {j, j + 1, . . . , s} (for
some j ≤ s). For i = j − 1, let g ∈ Gm ∩ C[a1, a2, . . . , an, xj−1, xj , . . . , xs], and write lppx(g) =

xass · · ·x
aj
j x

aj−1

j−1 . If aj−1 = 0, then g ∈ Gm ∩ C[a1, a2, . . . , an, xj , xj+1, . . . , xs], so by the induction

hypothesis, g ∈ {gj , gj+1, . . . , gs}. If aj−1 > 0, then lppx(gj−1) = xj−1|lppx(g). Hence, g = gj−1

(because Gm is noncomparable). �
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