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A GLOBAL CONVERGENCE RESULT FOR PROCESSIVE MULTISITE

PHOSPHORYLATION SYSTEMS

CARSTEN CONRADI AND ANNE SHIU

Abstract. Multisite phosphorylation plays an important role in intracellular signaling. There has
been much recent work aimed at understanding the dynamics of such systems when the phospho-
rylation/dephosphorylation mechanism is distributive, that is, when the binding of a substrate and
an enzyme molecule results in addition or removal of a single phosphate group and repeated binding
therefore is required for multisite phosphorylation. In particular, such systems admit bistability.
Here we analyze a different class of multisite systems, in which the binding of a substrate and an en-
zyme molecule results in addition or removal of phosphate groups at all phosphorylation sites. That
is, we consider systems in which the mechanism is processive, rather than distributive. We show
that in contrast with distributive systems, processive systems modeled with mass-action kinetics do
not admit bistability and, moreover, exhibit rigid dynamics: each invariant set contains a unique
equilibrium, which is a global attractor. Additionally, we obtain a monomial parametrization of
the steady states. Our proofs rely on a technique of Johnston for using “translated” networks to
study systems with “toric steady states”, recently given sign conditions for injectivity of polynomial
maps, and a result from monotone systems theory due to Angeli and Sontag.

Keywords: reaction network, mass-action kinetics, multisite phosphorylation, global convergence,
steady state, monomial parametrization, monotone systems

1. Introduction

A biological process of great importance, phosphorylation is the enzyme-mediated addition of
a phosphate group to a protein substrate, which often modifies the function of the substrate.
Additionally, many such substrates have more than one site at which phosphate groups can be
attached. Such multisite phosphorylation systems may be distributive or processive. In distributive
systems, each enzyme-substrate binding results in one addition or removal of a phosphate group,
whereas in processive systems, when an enzyme catalyzes the addition or removal of a phosphate
group, then phosphate groups are added or removed from all available sites before the enzyme
and substrate dissociate. The (fully) processive and distributive mechanisms can be viewed as
the extremes of a whole spectrum of possible mechanisms [36]. Some proteins are phosphorylated
at N > 1 sites with each enzyme-substrate binding, but not necessarily at all available sites.
An example that is briefly discussed in [36] is the yeast transcription factor Pho4 which has five
sites. Each time it binds with the enzyme, it is on average phosphorylated at two sites. With
every enzyme-substrate binding it is on average phosphorylated at two sites (cf. [36] and references
therein). Other proteins, however, are phosphorylated at all available sites in a single encounter
with the kinase (examples are the splicing factor ASF/SF2 or the Crk-associated substrate (Cas),
cf. [33, 36]). For more biological examples and discussion of the biological significance of multisite
phosphorylation, we refer the reader to the work of Salazar and Höfer [36] and of Gunawardena [22,
23]. An excellent source for processive systems in particular is the review article of Patwardhan
and Miller [33, §2–5].

Ordinary differential equations (ODEs) frequently are used to describe the dynamics of the chem-
ical species involved in multisite phosphorylation, e.g. protein substrate, (partially) phosphorylated
substrate, catalyzing enzymes, enzyme-substrate complexes, and so on. A protein substrate can
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have many phosphorylation sites (examples are discussed in [41]), and the number of variables and
parameters increases with the number of phosphorylation sites. Detailed models of multisite phos-
phorylation are therefore large, while only a limited number of variables can be measured. Thus,
parameter values can only be specified within large intervals, if at all (that is, parameter uncer-
tainty is high). For all these reasons, mathematical analysis of models of multisite phosphorylation
typically requires analysis of parametrized families of ODEs.

Much of the prior work on the mathematics of phosphorylation systems has focused on parametrized
families of ODEs that describe multisite phosphorylation under a sequential and distributive mecha-
nism; for instance, see Conradi et al. [11], Conradi and Mincheva [12], Feliu and Wiuf [18], Hell and
Rendall [24], Holstein et al. [25], Flockerzi et al. [20], Manrai and Gunawardena [29], Markevich
et al. [31], Pérez Millán et al. [34], Thomson and Gunawardena [40, 41], and Wang and Sontag
[42]. Here we concentrate instead on the multisite phosphorylation by a kinase/phosphatase pair
in a sequential and processive mechanism, building on work of Gunawardena [23] and Conradi et
al. [10]. While models of distributive phosphorylation can admit multiple steady states and mul-
tistability whenever there are at least two phosphorylation sites [24, 41, 42], it was shown in [10]
that models of processive phosphorylation at two phosphorylation sites cannot admit more than
one steady state in each invariant set. Whether or not this holds for models with an arbitrary
number of phosphorylation sites has not been discussed previously. Also, it is known from [40] that
there exists a rational parametrization of the set of all positive steady states for processive systems.
However, no explicit parametrization has been given for an arbitrary number of phosphorylation
sites.

The present article addresses both of the aforementioned topics: the number of steady states and
a parametrization of steady states of processive phosphorylation systems. We show that processive
phosphorylation belongs to the class of chemical reaction systems with “toric steady states” (as
does distributive phosphorylation [34] and other related networks [35]) and present a particular
(rational) parametrization of all positive steady states (Proposition 5.3). By applying the Brouwer
fixed-point theorem and recent results on injectivity of polynomial maps, we conclude that every
invariant set contains a unique element of this parametrization and that this element is the only
steady state within the invariant set (Theorem 5.9). Finally, in Theorem 6.3, we prove – for every
invariant set – global convergence to that unique steady state by applying a result of Angeli and
Sontag from monotone systems theory [4].

The outline of our paper is as follows. In Section 2, we introduce the dynamical systems arising
from chemical reaction networks taken with mass-action kinetics. The networks of interest in this
work, those arising from multisite phosphorylation by a sequential and processive mechanism, are
introduced in Section 3. In Section 4, we describe a “translated” version of the network which
will aid our analysis. In Section 5, we prove the existence and uniqueness of steady states of the
processive multisite system taken with mass-action kinetics and obtain a monomial parametrization
of the steady states. Global stability is proven in Section 6, and a discussion appears in Section 7.

2. Dynamical systems arising from chemical reaction networks

In this section we recall how a chemical reaction network gives rise to a dynamical system,
beginning with an illustrative example. An example of a chemical reaction, as it usually appears
in the literature, is the following:

3A+ CA+B
κ

(2.1)

In this reaction, one unit of chemical species A and one of B react to form three units of A and one of
C. The educt (or reactant) A+B and the product 3A+C are called complexes. The concentrations
of the three species, denoted by xA, xB, and xC , will change in time as the reaction occurs. Under
the assumption of mass-action kinetics, species A and B react at a rate proportional to the product
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of their concentrations, where the proportionality constant is the reaction rate constant κ. Noting
that the reaction yields a net change of two units in the amount of A, we obtain the first differential
equation in the following system:

d

dt
xA = 2κxAxB

d

dt
xB = −κxAxB

d

dt
xC = κxAxB .

The other two equations arise similarly. A chemical reaction network consists of finitely many
reactions. The mass-action differential equations that a network defines are comprised of a sum
of the monomial contribution from the reactant of each chemical reaction in the network; these
differential equations will be defined by equations (2.2–2.3).

2.1. Chemical reaction systems. We now provide precise definitions. A chemical reaction net-
work consists of a finite set of species {A1, A2, . . . , As}, a finite set of complexes (finite nonnegative-
integer combinations of the species), and a finite set of reactions (ordered pairs of the complexes).
A chemical reaction network is often depicted by a finite directed graph whose vertices are la-
beled by complexes and whose edges correspond to reactions. Specifically, the digraph is denoted
G = (V,E), with vertex set V = {1, 2, . . . , p} and edge set E ⊆ {(i, j) ∈ V × V : i 6= j}. Through-
out this paper, the integer unknowns p, s, and r denote the numbers of complexes, species, and
reactions, respectively. Writing the i-th complex as yi1A1 + yi2A2 + · · · + yisAs (where yij ∈ Z≥0

for j = 1, 2, . . . , s), we introduce the following monomial:

xyi := x
yi1
1 x

yi2
2 · · ·x

yis
s .

For example, the two complexes in (2.1) give rise to the monomials xAxB and x3AxC , which deter-
mine the vectors y1 = (1, 1, 0) and y2 = (3, 0, 1). These vectors define the rows of a p× s-matrix of
nonnegative integers, which we denote by Y = (yij). Next, the unknowns x1, x2, . . . , xs represent
the concentrations of the s species in the network, and we regard them as functions xi(t) of time t.

A directed edge (i, j) ∈ E represents a reaction yi → yj from the i-th chemical complex to the
j-th chemical complex, and the reaction vector yj − yi encodes the net change in each species that
results when the reaction takes place. Also, associated to each edge is a positive parameter κij ,
the rate constant of the reaction. In this article, we will treat the rate constants κij as positive
unknowns in order to analyze the entire family of dynamical systems that arise from a given network
as the κij ’s vary. A network is said to be weakly reversible if every connected component of the
network is strongly connected.

A pair of reversible reactions refers to a bidirected edge yi ⇋ yj in E. For each such pair yi ⇋ yj ,
we designate a ‘forward’ reaction yi → yj and a ‘backward’ reaction yi ← yj . Letting m denote the
number of reactions, where we count each pair of reversible reactions only once, the stoichiometric
matrix Γ is the s×m matrix whose k-th column is the reaction vector of the k-th reaction (in the
forward direction if the reaction is reversible), i.e., it is the vector yj − yi if k indexes the (forward)
reaction yi → yj . The choice of kinetics is encoded by a locally Lipschitz function R : Rs

≥0 → R
m

that encodes the reaction rates of the m reactions as functions of the s species concentrations (a
pair of reversible reactions is counted only once – in this case, Rk is the forward rate minus the
backward rate). The reaction kinetics system defined by a reaction network G and reaction rate
function R is given by the following system of ODEs:

dx

dt
= ΓR(x) . (2.2)
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For mass-action kinetics, which is the setting of this paper, the coordinates of R are:

Rk(x) =

{
κijx

yi if k indexes an irreversible reaction yi → yj
κijx

yi − κjix
yj if k indexes a reversible reaction yi ↔ yj

(2.3)

A chemical reaction system refers to the dynamical system (2.2) arising from a specific chemical
reaction network G and a choice of rate parameters (κ∗ij) ∈ R

r
>0 (recall that r denotes the number

of reactions) where the reaction rate function R is that of mass-action kinetics (2.3).

Example 2.1. The following network (called the “futile cycle”) describes 1-site phosphorylation:

S0 +K
k1

S0K
k2

k3
S1 +K

S1 + F
ℓ3

S1F
ℓ2

ℓ1
S0 + F

(2.4)

The key players in this network are a kinase (K), a phosphatase (F ), and a substrate (S0). The
substrate S1 is obtained from the unphosphorylated protein S0 by attaching a phosphate group to
it via an enzymatic reaction catalyzed by K. Conversely, a reaction catalyzed by F removes the
phosphate group from S1 to obtain S0. The intermediate complexes S0K and S1F are the bound
enzyme-substrate complexes. Using the variables x1, x2, . . . , x6 to denote the species concentrations
K,F, S0, S1, S0K,S1F , respectively, and letting ri denote the reaction vectors, the chemical reaction
system defined by the 1-site phosphorylation network (2.4) is given by the following ODEs:

dx

dt
= k1 x1 x3











−1
0
−1
0
1
0











︸ ︷︷ ︸
r1

+k2 x5











1
0
1
0
−1
0











︸ ︷︷ ︸
r2

+k3 x5











1
0
0
1
−1
0











︸ ︷︷ ︸
r3

+ ℓ3 x2 x4











0
−1
0
−1
0
1











︸ ︷︷ ︸
r4

+ℓ2 x6











0
1
0
1
0
−1











︸ ︷︷ ︸
r5

+ℓ1 x6











0
1
1
0
0
−1











︸ ︷︷ ︸
r6

(2.5)

To recognize the above ODEs (2.5) in the general form (2.2), we choose for the reversible reactions
S0 +K ⇌ S0K and S1 + F ⇌ S1F , the reactions S0 +K → S0K and S1 + F → S1F as forward
reactions, and then obtain the following equivalent representation of the ODEs (2.5):

dx

dt
=











−1 1 0 0
0 0 −1 1
−1 0 0 1
0 1 −1 0
1 −1 0 0
0 0 1 −1











︸ ︷︷ ︸

=Γ







k1 x1 x3 − k2 x5
k3 x5

ℓ3 x2 x4 − ℓ2 x6
ℓ1 x6







︸ ︷︷ ︸

=R(x)

. (2.6)

The column vectors of the stoichiometric matrix Γ are r1, r3, r4, and r6. We will study generaliza-
tions of the chemical reaction system (2.6) in this article.
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The stoichiometric subspace is the vector subspace of Rs spanned by the reaction vectors yj − yi
(where (i, j) is an edge of G), and we will denote this space by S:

S := R{yj − yi | (i, j) ∈ E} . (2.7)

Note that in the setting of (2.2), one has S = im(Γ). In the earlier example reaction shown in (2.1),
we have y2 − y1 = (2,−1, 1), which means that with each occurrence of the reaction, two units of
A and one of C are produced, while one unit of B is consumed. This vector (2,−1, 1) spans the
stoichiometric subspace S for the network (2.1). Note that the vector dx

dt
in (2.2) lies in S for all

time t. In fact, a trajectory x(t) beginning at a positive vector x(0) = x0 ∈ R
s
>0 remains in the

stoichiometric compatibility class (also called an “invariant polyhedron”), which we denote by

P := (x0 + S) ∩ R
s
≥0 , (2.8)

for all positive time. In other words, this set is forward-invariant with respect to the dynamics (2.2).
A steady state of a reaction kinetics system (2.2) is a nonnegative concentration vector x∗ ∈ R

s
≥0 at

which the ODEs (2.2) vanish: ΓR(x∗) = 0. We distinguish between positive steady states x∗ ∈ R
s
>0

and boundary steady states x∗ ∈
(
R
s
≥0 \ R

s
>0

)
. A system is multistationary (or admits multiple

steady states) if there exists a stoichiometric compatibility class P with two or more positive steady
states. In the setting of mass-action kinetics, a network may admit multistationarity for all, some,
or no choices of positive rate constants κij .

2.2. Alternate description of chemical reaction systems. We now give another characteriza-
tion of the ODEs arising from mass-action kinetics that will be useful for obtaining parametrizations
of steady states. First we introduce the following monomial mapping defined by the row vectors of
a nonnegative matrix B ∈ R

p×s:

Ψ(B) : Rs
≥0 → R

p
≥0,

Ψ(B)(x) =
(
xb1 , xb2 , . . . , xbp

)t
(2.9)

Second, recall that Y is the p × s-matrix with rows given by the yi’s; following (2.9) these rows
define the following monomial mapping:

Ψ(Y )(x) =
(
xy1 , xy2 , . . . , xyp

)t
.

Third, let Aκ denote the negative of the Laplacian of the chemical reaction network G. In other
words, Aκ is the p× p-matrix whose off-diagonal entries are the κij and whose row sums are zero.
An equivalent characterization of the chemical reaction system (2.2–2.3) is

dx

dt
= Y t At

κ Ψ(Y )(x) ; (2.10)

for details, see [26, Section 2]. That is, after fixing orderings of the species, complexes, and reac-

tions; the products ΓR(x) and Y tAt
κΨ

(Y )(x) evaluate to the same polynomial system: ΓR(x) =

Y tAt
κΨ

(Y )(x).

Example 2.2. We revisit the 1-site phosphorylation network (2.4). Using the ordering of the
species given earlier (namely, K,F, S0, S1, S0K,S1F ) and the following ordering of the complexes:
S0+K, S0K, S1+K, S1+F , S1F , S0+F , the alternate description (2.10) of the chemical reaction
system (2.6) arises as the product of the following:

Ψ(Y )(x) = (x1x3, x5, x1x4, x2x4, x6, x2x3)
t ,
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Y t =











1 0 1 0 0 0
0 0 0 1 0 1
1 0 0 0 0 1
0 0 1 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0











, and

At
κ :=











−k1 k2 0
k1 −(k2 + k3) 0 0
0 k3 0

−ℓ3 ℓ2 0
0 ℓ3 −(ℓ2 + ℓ1) 0

0 ℓ1 0











.

2.3. Translated chemical reaction networks. Recall that the reaction vector encodes the net
change in each species when a given reaction takes place. If the same amount of some chemical
species is added to both the product and the educt complex of this reaction, then the reaction
vector is unchanged. For example, the reactions A + B → 3A + C and 2A + B → 4A + C

both have the reaction vector (2,−1, 1)t. Thus, if both reactions are assigned the reaction rate
function v = κxA xB, then both reactions define the same dynamical system (2.2). To exploit this
observation, Johnston introduced the notion of a translated chemical reaction network in [27]: a
translated chemical reaction network is a reaction network obtained by adding to the product and
educt of each reaction the same amounts of certain species.

Obviously, a given reaction network generates infinitely many translated networks. Here, we
are interested only in those for which the original network (taken with mass-action kinetics) and
its translation (taken with certain general kinetics) define the same dynamical system. Translated
networks for which this is possible include those that are weakly reversible and for which there exists
a reaction-preserving bijection between the educt complexes in the original network and those of
the translated network [27, Lemma 4.1]. Following [27], such a weakly reversible translation is
called proper, and we now describe the general kinetics assigned to this translation. Consider a
reaction network with matrices Aκ and Y , and let Ãκ and Ỹ be the corresponding matrices defined
by its proper, weakly reversible translated network. By [27, Lemma 4.1], there exists a matrix
Y such that the chemical reaction system defined by the translation (taken with the monomial

function Ψ(Y)) is identical to the chemical reaction system defined by the original network (taken

with Ψ(Y )), where the rate constants are taken to be the same:

Ỹ t Ãt
κΨ

(Y)(x) = Y tAt
κΨ

(Y )(x) . (2.11)

For completeness, this entails Ỹ t Ãt
κΨ

(Y)(x) = ΓR(x), where Γ is the stoichiometric matrix and
R the mass-action rate function of the original network. In Section 4, we will establish proper,
weakly reversible translations for the generalizations of network (2.4) described in Section 3. And
in Section 5 we will obtain parametrizations of steady states based on these translations.

3. Sequential and processive phosphorylation/dephosphorylation at n sites

This section introduces a generalization of the 1-site phosphorylation network (2.4) to an n-site
network. In nature, an enzyme may facilitate the (de)phosphorylation of a substrate at n sites by a
processive or distributive mechanism. Our work focuses on the processive mechanism; a comparison
with the distributive mechanism appears in Subsection 3.2.

3.1. Description of the processive n-site network. Here is the reaction network that describes
the sequential1 and processive phosphorylation/dephosphorylation of a substrate at n sites, which

1In sequential (de)phosphorylation, phosphate groups are added or removed in a prescribed order.
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x1 x2 x3 x4 x5 x6 x7 x8 · · · x2n+3 x2n+4

K F S0 Sn S0K S1F S1K S2F · · · Sn−1K SnF

Table 1. Assignment of variables and species of the processive n-site network (3.1)

we call the processive n-site network in this paper:

S0 +K
k1

S0K
k2

k3
S1K

k4

k5
. . .

k6

k2n−1

Sn−1K
k2n

k2n+1
Sn +K

Sn + F
ℓ2n+1

SnF
ℓ2n

ℓ2n−1

. . .
ℓ2n−2

ℓ5
S2F

ℓ4

ℓ3
S1F

ℓ2

ℓ1
S0 + F

(3.1)

We see that the substrate undergoes n > 1 phosphorylations after binding to the kinase and
forming the enzyme-substrate complex; thus, only the fully phosphorylated substrate is released and
hence only two phosphoforms have to be considered: the unphosphorylated substrate S0 and fully
phosphorylated substrate Sn (see, for example, [31, 36]). Processive dephosphorylation proceeds
similarly. The enzyme-substrate complex formed by the kinase (or phosphatase, respectively) and
the substrate with i phosphate groups attached is denoted by SiK (or SiF , respectively).

Letting ei ∈ R
2n+4 denote the i-th standard basis vector, the (2n+ 4)× (2n+ 2) stoichiometric

matrix for the n-site processive network (3.1) is the following, where the rows are indexed by the
2n + 4 species in the order presented in Table 1 and the columns correspond to the (forward)
reactions in the order given by (k1, k3, . . . , k2n+1, l2n+1, l2n−1, . . . , l1):

Γ =
[
e5 − (e1 + e3) | . . . , e2i+5 − e2i+3, . . . | e4 + e1 − e2n+3,

e2 + e3 − e6 | . . . , e2i+4 − e2i+6, . . . | e2n+4 − (e2 + e4)
] (3.2)

where i = 1, . . . , n− 1. The reaction rate function arising from mass-action kinetics (2.3) is:

R(x) =

























k1x1x3 − k2x5
k3x5 − k4x7
k5x7 − k6x9

...
k2n−1x2n+1 − k2nx2n+3

k2n+1x2n+3

ℓ2n+1x2x4 − ℓ2nx2n+4

ℓ2n−1x2n+4 − ℓ2n−2x2n+2

ℓ2n−3x2n+2 − ℓ2n−4x2n
...

ℓ3x8 − ℓ2x6
ℓ1x6

























. (3.3)

For n = 1, the matrices (3.2–3.3) appeared earlier in (2.6).

Remark 3.1. The processive multisite network (3.1) is consistent with the one presented in [10],
but differs somewhat from the ones given in [33, Figure 1] and [23, Equation (7)].

Next we consider the rank of the matrix Γ ∈ R
(2n+4)×(2n+2):

Lemma 3.2. The matrix Γ from (3.2) has rank 2n+1.

Proof. It is easy to see that the row sums of Γ are zero (so the rank is at most 2n + 1) because
each species appears with stoichiometric coefficient one in the educt (reactant) of exactly one
reaction (in the forward direction) and similarly in the product of exactly one reaction. Also,
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after reordering the rows so that the first 2n + 1 rows are indexed by the species as follows:
(S0, S0K,S1K, . . . , Sn−1K,Sn, SnF, Sn−1F, . . . , S2F ), the upper (2n+ 1)× (2n+ 1)-submatrix has
full rank. Indeed, this submatrix is lower-triangular with −1’s along the diagonal; this holds because
when considering only the first 2n+ 1 species, reaction 1 involves only S0 as educt (reactant) and
S0K as product (corresponding to rows 1 and 2, respectively), reaction 2 involves only S0K and
S1K (rows 2 and 3), and so on, with reaction 2n involving only rows 2n and 2n + 1 and reaction
2n+ 1 involving only row 2n+ 1. �

Remark 3.3 (Conservation relations). By Lemma 3.2, ker(Γt) = S⊥ is three-dimensional. A
particular basis is formed by the rows of the following matrix:

A =





1 0 0 0 1 0 1 0 · · · 1 0
0 1 0 0 0 1 0 1 · · · 0 1
0 0 1 1 1 1 1 1 · · · 1 1



 . (3.4)

This basis has the following interpretation: the total amounts of free and bound enzyme or substrate
remain constant as the dynamical system (2.2) progresses. In other words, the rows of A correspond
to the following conserved (positive) quantities (recall the species ordering from Table 1):

Ktot = x1 + (x5 + x7 + · · ·+ x2n+3),

Ftot = x2 + (x6 + x8 + · · ·+ x2n+4) ,

Stot = x3 + x4 + · · ·+ x2n+4 .

From the conservation relations, we establish that no boundary steady states exist, by a straight-
forward generalization of the analysis due to Angeli, De Leenheer, and Sontag in [3, § 6, Ex. 1–2].

Lemma 3.4. Let x∗ ∈ R
2n+4
≥0 − R

2n+4
>0 be a boundary steady state. Set Λ := {i ∈ {1, . . . , 2n+ 4} :

x∗i = 0}. Then, Λ contains the support of at least one of the vectors defining the conservation
relations (3.4). Thus, there are no boundary steady states in any stoichiometric compatibility class.

Remark 3.5 (Existence of steady states via the Brouwer fixed-point theorem). The aim of this paper
is to analyze the chemical reaction systems arising from the n-site phosphorylation network (for all
n and all choices of rate constants), that is, the dynamical system dx

dt
= ΓR(x), where Γ and R(x)

are given in (3.2–3.3). We will show that the steady states admit a monomial parametrization,
each stoichiometric compatibility class has a unique steady state, and this steady state is a global
attractor. As a first step, the existence of at least one steady state in each compatibility class
is guaranteed by the Brouwer fixed-point theorem (for details, see [34, Remark 3.9]); indeed, the
compatibility classes are compact because of the conservation laws (Remark 3.3) and there are no
boundary steady states (Lemma 3.4). Therefore, to show that a unique steady state exists in each
compatibility class, it suffices to preclude multistationarity. This will be accomplished in Section 5.

3.2. Comparison with distributive multisite systems. Here we describe, for comparison, the
distributive multisite phosphorylation networks and what is known about their dynamics. Phospho-
rylation/dephosphorylation is distributive when the binding of a substrate and an enzyme results
in at most one addition or removal of a phosphate group. The distributive n-site network describes
the sequential and distributive phosphorylation/dephosphorylation of a substrate at n sites:

S0 +K S0K S1 +K S1K . . . Sn−1 +K Sn−1K Sn +K

Sn + F SnF . . . S2 + F S2F S1 + F S1F S0 + F
(3.5)

For any n ≥ 2, there exist rate constants such that the chemical reaction system arising from the
distributive n-site network (3.5) admits multiple steady states [20, 24, 41, 42]. These rate constants
arise from the solutions of the linear inequality systems described in [25]. One goal of this work is
to highlight the differences between distributive systems and processive systems. In particular, as



A GLOBAL CONVERGENCE RESULT FOR PROCESSIVE MULTISITE PHOSPHORYLATION SYSTEMS 9

Complex Corresponding vector ỹi Educt complex in (3.1) Corresponding vector yi

S0 +K + F ỹ1 = e1 + e2 + e3 S0 +K y1 = e1 + e3
...

...
...

...
SiK + F ỹi+2 = e2 + e2i+5 SiK yi+2 = e2i+5

...
...

...
...

Sn +K + F ỹn+2 = e1 + e2 + e4 Sn + F yn+2 = e2 + e4
...

...
...

...
Sn−iF +K ỹn+i+3 = e1 + e2n+4−2i Sn−iF yn+i+3 = e2n+4−2i

...
...

...
...

Table 2. Column 1: the complexes of the translated network (4.1); column 2:
the corresponding vectors ỹi (via the species ordering in Table 1); column 3: the
unique corresponding educt complexes of the (original) processive n-site network
(3.1); column 4: the corresponding vectors yi. The index i runs over 0 ≤ i ≤ n− 1.

we will see, processive systems are not multistationary: their steady states are unique and global
attractors (Theorem 6.3). Indeed, this confirms mathematically the observation in [33, §5] that
distributive phosphorylation can be switch-like, while processive phosphorylation is not.

Both distributive and processive systems have toric steady states: the set of steady states is cut
out by binomials, which then gives rise to a monomial parametrization of the steady states. This
was shown for distributive systems by Pérez Millán et al. [34, §4]. For processive systems, this will
be accomplished in Section 5.

4. Translated version of the processive network

Here we present a translated version of the processive n-site network which will aid in our analysis
of the steady states of the original network (cf. Section 2.3). This network is obtained from the
processive n-site network (3.1) by adding F to every complex of the first connected component and
adding K to every complex of the second connected component:

S0 +K + F
k1

S0K + F
k2

k3
S1K + F

k4

k5
· · ·

k6

k2n−3

Sn−2K + F
k2n−2

k2n−1

Sn−1K + F
k2n

k2n+1

S1F +K

ℓ1

ℓ2
S2F +K

ℓ3

ℓ4
· · ·

ℓ5

ℓ2n−4

Sn−1F +K
ℓ2n−3

ℓ2n−2

SnF +K
ℓ2n−1

ℓ2n
Sn +K + F

ℓ2n+1

(4.1)

Consisting of a single strongly connected component, our translated network (4.1) is therefore
weakly reversible. Our subsequent arguments generalize the analysis of the 1-site network by
Johnston [27, Example I] and fits in the setting of Theorem 4.1 in that work.

Following the ideas introduced in Section 2.3, we establish in Table 2 (columns 1 and 3) a
reaction-preserving bijection between educt complexes of the original processive network (3.1) and
those of its translation (4.1). Hence, as explained in Section 2.3, the translation (4.1) is weakly
reversible and proper. Columns 2 and 4 of Table 2 give the vectors ỹi of the translation together
with the corresponding vectors yi of the original network. These vectors define matrices Ỹ and Y:

Ỹ =






ỹ1
...

ỹ2n+2




 and Y =






y1
...

y2n+2




 . (4.2)
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The matrix Y defines the monomial vector

Ψ(Y)(x) = (x1x3 |x5, x7, . . . , x2n+3 |x2x4 |x2n+4, x2n+2, . . . , x6)
t . (4.3)

Also, the matrix Ãt
κ ∈ R

(2n+2)×(2n+2) for the translated network (4.1) is:

Ãt
κ =

1 2 3 4 ... n+1 n+2 n+3 n+4 n+5 ... 2n+1 2n+2
































































1 −k1 k2 l1
2 k1 −(k2+k3) k4
3 k3 −(k4+k5) k6
4 k5 −(k6+k7)
5 k7
...

. . .

n k2n
n+1 −(k2n+k2n+1)
n+2 k2n+1 −ℓ2n+1 ℓ2n
n+3 ℓ2n+1 −(ℓ2n−1+ℓ2n) ℓ2n−2

n+4 ℓ2n−1 −(ℓ2n−3+ℓ2n−2) ℓ2n−4

n+5 ℓ2n−3 −(ℓ2n−5+ℓ2n−4)
n+6 ℓ2n−5
...

. . .

2n ℓ4
2n+1 −(ℓ3+ℓ4) ℓ2
2n+2 ℓ3 −(ℓ1+ℓ2)

(4.4)
As explained earlier, it follows that the chemical reaction system defined by network (3.1) and
the generalized chemical reaction system defined by the translation (4.1) via the matrix Y are
identical [27, Lemma 4.1]. That is, either system is defined by the following system of ODEs:

dx

dt
= Ỹ t Ãt

κΨ
(Y)(x) = ΓR(x), (4.5)

where the matrix Ỹ is given in (4.2) (via Table 2), Ψ(Y) and Ãκ are given in (4.3–4.4), and the
matrix Γ and the function R(x) arise from from the original network via mass-action kinetics and
are given in (3.2–3.3), respectively.

We now analyze the matrix Ỹ ∈ R
(2n+2)×(2n+4) for the translated network (4.1):

Lemma 4.1. The matrix Ỹ ∈ R
(2n+2)×(2n+4) for the translated network (4.1) has full rank 2n+ 2

and hence ker(Ỹ t) = 0.

Proof. By Table 2,

Ỹ =





















e1 + e2 + e3
e2 + e5
e2 + e7

...
e2 + e2n+3

e1 + e2 + e4
e1 + e2n+4

e1 + e2n+2
...

e1 + e6





















.

As Ỹ is a (2n+2)×(2n+4)–matrix, it suffices to find 2n+2 linearly independent columns. Indeed,

the submatrix Ŷ consisting of the 2n + 2 columns 3, 4, . . . , 2n + 4 is a permutation matrix, so
det(Ŷ ) = ±1. �

5. Existence and uniqueness of steady states

As mentioned earlier, the fully distributive n-site system admits multiple steady states for all
n ≥ 2 [41, 42]. In this section, we show that the fully processive n-site systems preclude multiple
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steady states. By equation (4.5), steady states x ∈ R
2n+4
+ of the processive system are characterized

by the following equivalent conditions:

ΓR(x) = 0 ⇔ Ỹ tÃt
κΨ

(Y)(x) = 0 ⇔ Ãt
κΨ

(Y)(x) = 0 , (5.1)

where the rightmost equivalence follows from Lemma 4.1. Accordingly, we analyze the condition
Ãt

κΨ
(Y)(x) = 0, where Ψ(Y)(x) and Ãt

κ are defined in (4.3–4.4), respectively.
The underlying graph of the translated network (4.1) consists of a single connected component

that is strongly connected, so we obtain the following consequence of [40, Lemma 2].

Corollary 5.1. The (2n+2)× (2n+2)-matrix Ãt
κ from (4.4) has rank 2n+1. Moreover, ker(Ãt

κ)
is spanned by a positive vector ρ, whose entries are rational functions of the ki and ℓi.

Remark 5.2. In principle one may explicitly compute the the elements of ρ by using the Matrix-
Tree Theorem. To establish uniqueness of steady states (the aim of this section), however, one

needs only existence of a positive vector spanning ker(Ãt
κ), which is given by Corollary 5.1. As the

explicit computation of the ρi is a rather tedious process, we omit this here. The interested reader
is referred to Appendix A, where we comment on the computation of the vector ρi in some detail.

Following Corollary 5.1, we let ρ ∈ R
2n+2
+ be a vector that spans ker(Ãt

κ). Thus, by (5.1) of the
chemical reaction system defined by the processive network (3.1) if and only if

Ψ(Y)(x) = αρ for some α > 0 ,

where Ψ(Y)(x) is defined in (4.3). In other words:

x1 x3 = αρ1 (5.2)

x2i+3 = αρi+1 for 1 ≤ i ≤ n (5.3)

x2 x4 = αρn+2 (5.4)

x2n+6−2i = αρn+2+i for 1 ≤ i ≤ n . (5.5)

To eliminate α, we divide equations (5.2) and (5.3) by x6 = αρ2n+2 (the i = n case of (5.5)) and
divide equations (5.4) and (5.5) by x2n+3 = αρn+1 (the i = n case of (5.3)). We thereby obtain
the following implicit equations defining the set of steady states:

x1 x3

x6
=

ρ1

ρ2n+2
(5.6)

x2i+3

x6
=

ρi+1

ρ2n+2
for 1 ≤ i ≤ n (5.7)

x2 x4

x2n+3
=

ρn+2

ρn+1
(5.8)

x2n+6−2i

x2n+3
=

ρn+2+i

ρn+1
for 1 ≤ i ≤ n . (5.9)

These steady state equations are binomials in the xi’s (for instance, x1x3 −
ρ1

ρ2n+2
x6 = 0), i.e.,

the processive systems have toric steady states [34], just like the distributive systems. Therefore,
following [34, Theorem 3.11], we obtain the following parametrization of positive steady states in
terms of the coordinates of ρ and the free variables x2, x3, and x6:

Proposition 5.3 (Parametrization of the steady states of the processive network). Let n be a
positive integer. The set of positive steady states of the chemical reaction system defined by the
processive n-site network (3.1) and any choice of rate constants is three-dimensional and is the
image of the following map χ = χn,{ki,ℓi}:

χ : R3
+ → R

2n+4
+

χ(x2, x3, x6) := (x1, x2, . . . , x2n+4)
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given by

x1 :=
ρ1

ρ2n+2

x6

x3
x4 :=

ρn+2

ρ2n+2

x6

x2

x2i+3 :=
ρi+1

ρ2n+2
x6, for 1 ≤ i ≤ n x2i+6 :=

ρ2n+2−i

ρ2n+2
x6, for 1 ≤ i ≤ n− 1.

Proof. The expressions for x1 and x2i+3 follow from equations (5.6) and (5.7), respectively. The
expression for x4 follows from equation (5.8) together with the equation

x2n+3 =
ρn+1

ρ2n+2
x6 , (5.10)

which in turn follows from the i = n case of equation (5.9). The expression for x2i+6 follows from
equations (5.9) and (5.10) again, together with an index shift that replaces i (where 1 ≤ i ≤ n− 1)
by n− i (so, 2n+ 6− 2i 7→ 2i+ 6 and n+ 2 + i 7→ 2n+ 2− i). �

Remark 5.4. That we could achieve Proposition 5.3 was guaranteed by the rational parametrization
theorem for multisite systems of Thomson and Gunawardena [40]; see also [34, Theorem 3.11]. An
alternative derivation follows from a recent result of Feliu and Wiuf [19, Theorem 1]. This result
guarantees that one may express the concentrations of the ‘intermediate’ species S0K, . . . , Sn−1K

and hence the variables x5, x7, . . . , x2n+3 in terms of the product x1 x3. Likewise one may express
the concentrations of the ‘intermediate’ species S1F , . . . , SnF and hence the variables x6, x8, . . . ,
x2n+4 in terms of the product x2 x4. By exploiting the steady state relation of x1 x3 and x2 x4 one
may then arrive at a parameterization. Although the approach we took is more lengthy, it allows
us to see that Johnston’s analysis of the 1-site network generalizes [27].

Remark 5.5. In the parametrization in Proposition 5.3, two of the coordinates require dividing by
x2 or x3, so the parametrization is not technically a monomial map. However, this can be made
monomial easily: by introducing y := x6

x2x3
, so that the parametrization accepts as input (x2, x3, y),

we see that x6
x3

is replaced by x2y and x6
x2

is replaced by x3y.

Below we will restate Proposition 5.3 so that we can apply results from [32] to rule out multi-
stationarity. First we require some notation.
Notation.

• For x, y ∈ R
n, we denote the componentwise (or Hadamard) product by x ◦ y ∈ R

n, that is,
(x ◦ y)i = xiyi.
• For x ∈ R

n
+, the vector ln(x) ∈ R

n is defined componentwise: ln(x)i := ln(xi).
• For a vector x ∈ R

n, we obtain the sign vector sign(x) ∈ {−, 0,+}n by applying the sign
function componentwise. For a subset X of Rn, we then have sign(X) := {sign(x) | x ∈ X}.

We collect the exponents of x2, x3, and x6 in the above parametrization (Proposition 5.3) as
rows of a 3× (2n+ 2)-matrix we call B:

Bt :=





0 1 0 −1 0 0 · · · 0
−1 0 1 0 0 0 · · · 0
1 0 0 1 1 1 · · · 1



 . (5.11)

Also, we use x∗ to denote the value of χ at (1, 1, 1):

x∗ = x∗(n, {ki, ℓi}) := χ(1, 1, 1) ∈ R
2n+2
>0 . (5.12)

We obtain the following representation of the map χ(·) from Proposition 5.3:

Proposition 5.6 (Parametrization, restated). Let ξ = (ξ1, ξ2, ξ3) be a vector of indeterminates.
Then the map χ given in Proposition 5.3 can be rewritten as:

χ(ξ) = x∗ ◦Ψ(B)(ξ) ,
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where the matrix B and the vector x∗ are given in (5.11–5.12) and Ψ(B)(ξ) is as in (2.9). Thus,
distinct positive vectors a, b ∈ R

2n+2
+ are both steady states of the system if and only if ln b− ln a ∈

im(B).

Proof. Follows from Proposition 5.3, the construction of both, B and x∗ and the fact that by (2.9)

one has Ψ(B)(ξ) = (ξb1 , . . . , ξb2n+2)t. �

Next we consider steady states within a stoichiometric compatibility class, that is, we analyze the
intersection of Im(χ) with parallel translates x′+S of the stoichiometric subspace of the processive
network (3.1). The following is an application of the discussion preceding [32, Proposition 3.9]. For
any x′ ∈ R

2n+2
+ , the intersection Im(χ) ∩ (x′ + S) is nonempty if and only if there exist vectors

ξ ∈ R
3
+ and u ∈ S such that

χ(ξ) = x′ + u. (5.13)

Let A ∈ R
3×(2n+2) be the (full-rank) matrix with kerA = S given in equation (3.4) of Remark 3.3.

Then, equation (5.13) implies that

Aχ(ξ) = Ax′.

Therefore, if the map fx∗ : R3
+ → R

3 given by

fx∗(ξ) := Aχ(ξ) (5.14)

is injective, then every parallel translate x′+S (and thus, every stoichiometric compatibility class)
contains at most one element of Im(χ). So, by Propositions 5.3 and 5.6, multistationarity would be
precluded for all processive systems. To decide injectivity of fx∗ , we use the following result which
is a direct consequence of [32, Proposition 3.9]:

Proposition 5.7 (Müller et al.). Let S be the stoichiometric subspace of the processive net-
work (3.1), and let B be as in (5.11). If

sign(im(B)) ∩ sign(S) = {0} ,

then the polynomial map fx∗ : R3
+ → R

3 given in (5.14) is injective.

Proof. Follows from the equivalence (ii) ⇔ (iii) of [32, Proposition 3.9]. �

Remark 5.8. Proposition 5.7 appears in many works, for instance, [9, 37]. In fact, criteria for
injectivity (including those given by sign conditions) have a long history in the study of reaction
systems. For a more detailed discussion, see [32].

We can now give the main result of this section:

Theorem 5.9. Let n be a positive integer. For any chemical reaction system (2.2) arising from the
processive n-site network (3.1) and any choice of rate constants, each stoichiometric compatibility
class P contains a unique steady state η, and η is a positive steady state.

Proof. As explained earlier in Remark 3.5, the existence of at least one (necessarily positive) steady
state in P is guaranteed by the Brouwer fixed-point theorem. Thus, to prove the theorem, we need
only preclude multistationarity. So, by Proposition 5.7 and the preceding discussion, it suffices to
prove the nonexistence of nonzero vectors α ∈ im(B) and s ∈ S with sign(s) = sign(α). We begin

by defining B̃ as the matrix obtained from B by adding the first two columns to the third column,
so im(B) = im(B̃):

B̃t =





0 1 0 −1 0 0 · · · 0
−1 0 1 0 0 0 · · · 0
0 1 1 0 1 1 · · · 1



 . (5.15)
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We proceed by contradiction: assume that there exist nonzero vectors α ∈ im(B̃) and s ∈ S with

sign(α) = sign(s). By (5.15), α ∈ im(B̃) implies that

sign(α5) = sign(α6) = · · · = sign(α2n+4),

so we conclude that
sign(s5) = sign(s6) = · · · = sign(s2n+4) (5.16)

as well. Also, from our choice of A in (3.4), the vector s ∈ ker(A) satisfies

s1 = −s5 − s7 − · · · − s2n+3

s2 = −s6 − s8 − · · · − s2n+4

s3 + s4 = −s5 − s6 − · · · − s2n+4 .

Thus, using (5.16), the coordinates s1, s2, . . . , s5 must satisfy

sign(s1) = − sign(s5), sign(s2) = − sign(s5), sign(s3 + s4) = − sign(s5). (5.17)

We assumed that sign(s) = sign(α), so the coordinates α1, α2, . . . , α5 must satisfy the same

conditions (5.17). Now we make use of a vector β ∈ R
3 for which α = B̃ β, which exists because

α ∈ im(B) = im(B̃). By (5.15), we have:

α1 = −β2 α2 = β1 + β3 α3 = β2 + β3 α4 = −β1 α5 = β3 .

Thus, the conditions on α arising from (5.17) imply:

sign(−β2) = sign(−β3) sign(β1 + β3) = sign(−β3) sign(−β1 + β2 + β3) = sign(−β3) . (5.18)

We distinguish three cases based on the sign of β2.
Case One: β2 > 0. The conditions (5.18) yield

−β2 < 0, −β3 < 0, β1 + β3 < 0, −β1 + β2 + β3 < 0 .

The sum of the first, second, and fourth inequalities yields the consequence −β1 < 0, while the sum
of the second and the third inequalities yields the consequence β1 < 0, which is a contradiction.
Case Two: β2 < 0. This similarly yields a contradiction (reverse all inequalities in Case One).
Case Three: β2 = 0. The first condition in (5.18) implies β3 = 0, which, by the second condition

in (5.18), implies that β1 = 0. Thus, α = B̃ β is zero , so we again reach a contradiction. �

Having established the existence and uniqueness of steady states, the next section addresses the
natural next question: global convergence.

6. Convergence to a global attractor

In this section, we prove that each steady state of the processive network taken with mass-
action kinetics is a global attractor of the corresponding compatibility class (Theorem 6.3). The
proof is via Lemma 6.2, which is due to Angeli and Sontag [4]. Their work is one of many recent
papers proving convergence of reaction systems by way of monotone systems theory; see Angeli,
De Leenheer, and Sontag [2], Banaji and Mierczynski [8], and Donnell and Banaji [13].

Setup. We begin by recalling the setup in Angeli and Sontag [4, §3]. We consider any reaction
kinetics system with s chemical species and m reactions (where each pair of reversible reactions
is counted only once) given by ẋ = ΓR(x), as in (2.2). Each such system together with a vector
σ ∈ R

s
≥0 (viewed as an initial condition of (2.2)) defines another ODE system:

ċ = fσ(c) := R(σ + Γc), (6.1)

with associated state space (which is sometimes called the space of “reaction coordinates”)

Xσ =
{
c ∈ R

m | σ + Γc ∈ R
s
≥0

}
. (6.2)

To state Lemma 6.2 below, we require the following definition.
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Definition 6.1.

(1) The nonnegative orthant Rm
≥0 defines a partial order on R

m given by c1 < c2 if c1−c2 ∈ R
m
≥0.

Also, we write c1 ≻ c2 if c1 < c2 with c1 6= c2, and c1 ≫ c2 if c1 − c2 ∈ R
m
>0.

(2) A dynamical system with state space X ⊆ R
m and flow denoted by φt(c) (for initial condition

c) is monotone with respect to the nonnegative orthant Rm
≥0 if the partial order arising from

R
m
≥0 is preserved by the forward flow: for c1, c2 ∈ X, if c1 ≥ c2 then φt(c1) ≥ φt(c2) for all

t ≥ 0. A dynamical system is strongly monotone with respect to the nonnegative orthant
if it is monotone with respect to the nonnegative orthant and, additionally, for c1, c2 ∈ X,
the relation c1 ≻ c2 implies that φt(c1)≫ φt(c2) for all t > 0.

The lemma below is due to Angeli and Sontag [4, Corollary 3.3]. We note that it is stated in
the setting of monotonicity with respect to the nonnegative orthant (cone), but the result and the
theory of monotone systems more generally extend to other cones and moreover to partial orders
not necessarily arising from a cone [6].

Lemma 6.2 (Angeli and Sontag). Let R, Γ, and σ be as in the setup above. Assume that:

(1) the stoichiometric matrix Γ has rank m − 1, with kernel spanned by some positive vector
(i.e., in R

m
>0),

(2) every trajectory of the reaction kinetics system (2.2) is bounded, and
(3) the system ċ = fσ(c) defined in (6.1) is strongly monotone with respect to the nonnegative

orthant.

Then there exists a unique η = ησ ∈ R
s
≥0 such that for any initial condition µ ∈ R

s
≥0 that is

stoichiometrically compatible with σ (i.e., µ−σ ∈ Im(Γ)), the trajectory x(t) of the reaction kinetics
system (2.2) with initial condition x(0) = µ converges to η: lim

t→∞
x(t) = η.

Following closely the example of the 1-site system presented by Angeli and Sontag [4, §3], we now
use Lemma 6.2 to extend their result beyond the n = 1 case: the following result states that the
processive n-site network (3.1) is convergent. Note that in applying Lemma 6.2, we will show that
the new system in (6.1), not the original processive system, is strongly monotone. Also note that
by obtaining existence and uniqueness of steady states, the theorem supersedes our earlier result
(Theorem 5.9), but the approach here can not obtain the parametrization of the steady states we
accomplished earlier (Proposition 5.3).

Theorem 6.3. Let n be a positive integer. For any chemical reaction system (2.2) arising from
the processive n-site network (3.1) and any choice of rate constants,

(1) each stoichiometric compatibility class P contains a unique steady state η,
(2) η is a positive steady state, and
(3) η is the global attractor of P.

Proof. Let σ ∈ P. The result will follow from Lemma 6.2 applied to this reaction system and the
vector σ, once we verify its three hypotheses.

For hypothesis (1) we note that the rank of Γ is (2n+ 2)− 1 by Lemma 3.2.
For hypothesis (2) of Lemma 6.2, every stoichiometric compatibility class is bounded due to the

conservation laws (cf. Remark 3.3). Thus, trajectories of (2.2) are bounded.
Finally, we must verify that the system (6.1) is strongly monotone. We begin by showing that it is

monotone with respect to the nonnegative orthant. It suffices (by Proposition 1.1 and Remark 1.1
in [38, §3.1]) to show that the Jacobian matrix of fσ(c) := R(σ + Γc) with respect to c has
nonnegative off-diagonal entries for all c ∈ Xσ. Note that this reaction rate function R appeared
earlier in (3.3). For simplicity, we introduce z := σ+Γc, so by the chain rule, the Jacobian matrix
of fσ(c) := R(σ + Γc) with respect to c is Jaccfσ(c) = JacxR(z) Γ, which from (3.2–3.3) is the
following (2n+ 2)× (2n+ 2)-matrix:
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























(−k1 (z3 + z1)− k2) e1 + k2e2 + k1z3en+1 + k1z1e2n+2

k3e1 − (k3 + k4)e2 + k4e3
k5e2 − (k5 + k6)e3 + k6e4

...
k2n−1en−1 − (k2n−1 + k2n)en + k2nen+1

k2n+1en − k2n+1en+1

ℓ2n+1z2en+1 + (−ℓ2n+1 (z4 + z2)− ℓ2n) en+2 + ℓ2nen+3 + ℓ2n+1z4en+2

ℓ2n−1en+2 − (ℓ2n−1 + ℓ2n−2)en+3 + ℓ2n−2en+4

ℓ2n−3en+3 − (ℓ2n−3 + ℓ2n−4)en+4 + ℓ2n−4en+5
...

ℓ3e2n − (ℓ3 + ℓ2)e2n+1 + ℓ2e2n+2

ℓ1e2n+1 − ℓ1e2n+2

























. (6.3)

By inspection of the Jacobian matrix (6.3), each nonzero off-diagonal entry either is some ℓi or kj ,
which is strictly positive, or has the form kjzi or ℓjzi (for some i) and such a term is nonnegative for

c ∈ Xσ (recall that the system (6.1) evolves on the space Xσ defined in (6.2), so z = σ+Γc ∈ R
2n+2
≥0 .

Now we show that the system (6.1) is strongly monotone by checking that the Jacobian ma-
trix (6.3) is almost everywhere irreducible along trajectories of (6.1) (see Theorem 1.1 of [38, §4.1]),
i.e., that the matrix is almost everywhere the adjacency matrix of a strongly connected directed
graph. By inspection of (6.3), this directed graph always contains the edges 1↔ 2↔ · · · ↔ n+ 1
and n+2↔ n+3↔ · · · ↔ 2n+2 (because ki, ℓi > 0 for all i), and the only possible edges between
these two components are 1→ 2n+2 and n+2→ n+1, so we must show that the corresponding two
entries in the matrix (6.3), namely k1z1 = k1(σK−c1+cn+1) and ℓ2n+1z2 = ℓ2n+1(σF−cn+2+c2n+2),
are almost everywhere nonzero along trajectories.

By symmetry between K and F , we need only verify the first case. We proceed by contradiction:
assume that z1(t) = σK − c1(t)+ cn+1(t) ≡ 0 for a positive amount of time t along a trajectory c(t)
of (6.1). So, using (3.3), this subtrajectory satisfies:

0 ≡ ċ1(t)− ċn+1(t) = (0− k2z5(t))− k2n+1z2n+3(t) .

But, z5(t) ≥ 0 and z2n+3(t) ≥ 0, so both must equal zero for the above to hold. Additionally, we
conclude that ċ1(t) ≡ 0 and ċn+1(t) ≡ 0. Hence, the base case is complete for showing by induction
on i = 0, 1, . . . , n− 1 that

z2i+5(t) ≡ 0 and ċi+1(t) ≡ 0 . (6.4)

For the i-th step, we use the inductive hypothesis (namely, z2i+3(t) = σ2i+3 + ci(t) − ci+1(t) ≡ 0
and ċi(t) ≡ 0) to obtain:

0 ≡ ċi(t)− ċi+1(t) = 0− (0− k2i+2z2i+5(t)) .

Thus, the desired equalities (6.4) hold. Hence,

0 = 0 + · · ·+ 0 ≡ z1(t) + z5(t) + z7(t) + · · ·+ z2n+3(t)

= (σ1 − c1 + cn+1) + (σ5 + c1 − c2) + · · ·+ (σ2n+3 + cn − cn+1)

= σ1 + (σ5 + σ7 + · · ·+ σ2n+3) > 0 , (6.5)

where the inequality in (6.5) follows because the sum in (6.5) represents the total (free and bound)
amount of kinase K present in the initial condition σ, which must be strictly positive in order for
σ ∈ P (recall Remark 3.3). Thus, we obtain a contradiction, and this completes the proof. �
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7. Discussion

In this section, we comment on related works. The following three remarks highlight alternative
methods to the one taken here for precluding multistationarity in processive networks. For an
overview of known methods for assessing multistationarity in reaction kinetics systems, see the
introduction of [28]. For a historical survey of experimental and theoretical findings concerning
multistationarity, see the book of Marin and Yablonsky [30, Chapter 8].

Remark 7.1. Readers familiar with “directed species-reaction graphs” (DSR graphs) can verify that
the DSR graph arising from the processive multisite network (3.1) satisfies Banaji and Craciun’s
condition (*) in [7] and thereby conclude that processive systems do not admit multistationarity.

Remark 7.2. Another approach to ruling out multistationarity in processive systems is via the Defi-
ciency One Algorithm due to Feinberg. Namely, one could apply a criterion for multistationarity of
regular deficiency-one networks [17, Corollary 4.1] (it is straightforward to check that the processive
network is regular and has deficiency one), determine that the resulting system of inequalities is
infeasible, and then conclude that multiple steady states are precluded. Indeed, for small n, this
can be verified by the CRN Toolbox software [16].

Remark 7.3. A third approach to analyzing processive systems is to use the recent work of Feliu
and Wiuf [19]. Namely, in their notation, each processive n-site network (3.1) is an “extension
model” of the following “core model” network:

S0 + E → Sn + E Sn + F → S0 + F .

The corresponding “canonical model” is obtained by adding the reactionsX ⇋ S0+E and Sn+F ⇋

Y . This canonical model can be determined to preclude multistationarity, via the CRN Toolbox
software [16] (which applies the Deficiency One Algorithm [17] in this case) or the online software
tool CoNtRol [14] (which applies injectivity criteria of Banaji and Pantea [9]). Corollary 6.1 in
the work of Feliu and Wiuf states that if a canonical model admits at most N steady states,
then every extension model of the core model also admits no more than N steady states. So,
that corollary allows us to conclude that the entire family of processive n-site networks (3.1) also
precludes multistationarity. Also, their results can give information about the stability of the
resulting unique steady states. However, even if we could readily apply Proposition 2 in the Data
Supplement of that work, we would obtain only local stability. In Section 6, we accomplished the
stronger result of global stability by appealing to monotone systems theory.

The next two remarks relate our convergence result to other such results.

Remark 7.4. As explained before Theorem 6.3, our result extends the convergence result for 1-site
systems due to Angeli and Sontag. An alternate proof of convergence of the 1-site network is due
to Donnell and Banaji [13, Example 3], but their argument does not extend to n-site systems.

Remark 7.5. As mentioned earlier, Theorem 6.3 is one of many results proving the global conver-
gence of various reaction systems by way of monotone systems theory [2, 8, 13]. As a complement to
monotone systems theory, other approaches to obtaining convergence theorems for reaction systems
have been aimed at resolving the so-called Global Attractor Conjecture and related conjectures.
An overview of such recent results appears in [1, §1.1] and [21, §4]. However, the aforementioned
conjectures and results do not apply to the processive systems considered in our work.

Finally, we identify other families of multisite systems for further study.

Remark 7.6. As discussed earlier, many works have analyzed distributive multisite systems, in con-
trast with the processive versions analyzed in our work. We now make note of two additional
families of multisite systems. The first is the class of mixed systems, in which the phosphoryla-
tion mechanism is processive and the dephosphorylation mechanism is distributive (or vice-versa);
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the n = 2 case was considered in [10, §2.2]. We conjecture that, like processive systems, mixed
systems taken with mass-action kinetics admit a unique (positive) steady state in each stoichio-
metric compatibility class, and that this steady state is a global attractor. The online software tool
CoNtRol [14] verifies that for small n, steady states are unique because the systems satisfy certain
injectivity criteria [9]. As for convergence, the proof of Theorem 6.3 can not easily be modified to
analyze mixed systems, so global convergence (if it holds) must be proved in another way. We note
that a related version of the mixed 2-site system was considered by Gunawardena in [23].

A second potentially interesting class of networks arises when phosphorylation proceeds by a
semi-processive mechanism [33, §4.2], in which the kinase is capable of catalyzing the attachment of
more than one phosphate group per binding event, but the maximum number of phosphate groups
is not attached each time. Indeed, macromolecular crowding [15] causes distributive systems to
function in a semi-processive manner [5].

We leave this class as a topic for future work.

Acknowledgments. We thank Murad Banaji and Pete Donnell for directing us to the relevant
monotone systems literature. We also thank Matthew Johnston for helpful discussions, and two
conscientious referees whose comments improved this work.
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Appendix A. Obtaining the nullspace of At
κ from (4.1)

Here we focus on the nullspace of At
κ and explain how it can be obtained by studying the directed

graph underling network (4.1), given in Fig. 1 below.

Notation (G∗). For a directed graph G, we let G∗ denote the undirected graph obtained from G

by making each directed edge undirected (and allowing multiple edges in the resulting graph).

Definition A.1 (Directed spanning tree / spanning tree rooted at node j).
Let j be a node of a directed graph G. A subgraph T is a spanning tree (of G) rooted at j, if it
satisfies the following:

(a) T contains all nodes of G,
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1
•

2
• . . . . . . . . .

n+1
•

k2n+1

•
2n+2

ℓ1

. . . . . . . . . •
n+3

•
n+2

Figure 1. Directed graph G underlying the translated network (4.1)

(b) the undirected graph T ∗ is acyclic and connected, and
(c) for every node v 6= j of T , there exists a directed path from v to j.

A subgraph is a directed spanning tree of G if it is a spanning tree rooted at j, for some node j.

Remark A.2. In a directed graph, a sink is a node that has no outgoing edges. For a spanning tree
rooted at j, the unique sink is the node j. Any acyclic and connected subgraph that contains more
than one sink is not a directed spanning tree.

Next we identify the directed spanning trees of G from Fig. 1. Note that G is cyclic, and due to
the unidirectional edges labeled k2n+1 and ℓ1, G can be traversed in the clockwise direction only.

Remark A.3 (Acyclic, connected subgraphs of G from Fig. 1).
For a subgraph T of G that contains all nodes of G, the undirected graph T ∗ is acyclic and connected
if and only if T satisfies the following properties (cf. Fig. 2):

(i) there is a unique node p such that T contains neither the edge p→ p+1 nor the edge p← p+1
(where p+ 1 := 1 if p = 2n+ 2).

(ii) for all other nodes q 6= p, exactly one of the edges q → q + 1 and q ← q + 1 is present in T .

Now we can determine the directed spanning trees of G (recall Definition A.1):

Proposition A.4 (Directed spanning trees of G from Fig. 1).
For the directed graph G in Fig. 1, let j and p be integers such that

1 ≤ j ≤ p ≤ n+ 1 or n+ 2 ≤ j ≤ p ≤ 2n+ 2 . (A.1)

Let Tj,p be the subgraph of G that contains all nodes of G and for which the edges are comprised of:

(1) if j 6= n+ 1, 2n+ 2:
(A) the clockwise path from node p+ 1 to j, and
(B) the counter-clockwise path from p to j (cf. Fig. 2(b)).

(2) if j = n + 1 or j = 2n + 2, the clockwise path from node j + 1 to j (where j + 1 := 1 if
j = 2n+ 2).

Then Tj,p is a directed spanning tree rooted at node j that does not contain the edges p→ p+ 1 or
p← p+ 1 (where p+ 1 := 1 if p = 2n+ 2). Conversely, every spanning tree of G has this form.

Proof. Assume that Tj,p is a subgraph as described in the proposition. By Definition A.1 and
Remark A.3, it remains only to show that there exists a path from every node v 6= j to j. Indeed,
by points (1) and (2), every node belongs to a path that ends in j.

Conversely, let T be a spanning tree of G rooted at j. By Remark A.3, there exists a node p

such that T contains neither p → p+ 1 nor p ← p + 1, so it suffices to check that condition (A.1)
holds and the edges of T satisfy points (1) and (2). We first assume that p violates condition (A.1).
By symmetry between the two cases, we need only consider the case when 1 ≤ j ≤ n + 1 and
p ∈ {1, . . . , j − 1} ∪ {n+ 2, . . . , 2n+ 2}. If p ∈ {1, . . . , j − 1}, then there is no path in T from p to
j; similarly, if p ∈ {n+ 2, . . . , 2n+ 2}, then there is no path from n+ 2 to j (cf. Fig. 2). Thus, T
is not a spanning tree rooted at j, which is a contradiction. Thus, T must satisfy condition (A.1),
so it remains only to show that it must satisfy points (1) and (2) as well. Indeed in the first case
(that is, if j 6= n + 1, 2n + 2), the paths (A) and (B) are the unique paths in G that do not use
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p → p + 1 to reach j from p + 1 and p, respectively, and all nodes except j lie on exactly one of
these paths, so the two paths comprise the edges of T . Similarly, in the remaining case (if j = n+1
or j = 2n + 2), the clockwise path from node j + 1 to j is the unique path in G from j + 1 to j,
and all nodes lie along the path (note that j = p in this case). This completes the proof. �

We note the following corollary of Proposition A.4:

Corollary A.5. For the directed graph G in Fig. 1, the number of spanning trees rooted at j is

• n+ 2− j, if j ∈ {1, . . . , n+ 1}
• 2n+ 3− j, if j ∈ {n+ 2, . . . , 2n+ 2}.

Consequently the number of spanning trees rooted at j is at most n+ 1.

Now we turn to the kernel of At
κ. In Corollary 5.1, we argued that ker(At

κ) is spanned by a
positive vector. This is a consequence of [40, Lemma 2], which built on the well-known Matrix-Tree
Theorem of algebraic combinatorics [39, §5.6], and also gives an explicit formula for this vector.
For this, we need some more notation:
Notation. Following [40], for a directed spanning tree T of an edge-labeled directed graph G, we
denote by L(T ) the product of all edge labels in the spanning tree T :

L(T ) :=
∏

yi
a
→yj∈T

a . (A.2)

Note that L(T ) > 0, as it is a product of rate constants.

Proposition A.6. Recall the spanning trees Tj,p of G from Fig. 1. For the matrix Ãt
κ displayed

in (4.4) for the translated network (4.1), the nullspace is spanned by the positive vector ρ ∈ R
2n+2
+

whose coordinates are given below:

ρj =







n+1∑

p=j

L(Tj,p) if 1 ≤ j ≤ n+ 1

n+1∑

i=j−(n+1)

L(Tj,n+1+i) if n+ 2 ≤ j ≤ 2n+ 2 .

(A.3)

The terms L(Tj,p) are defined in eq. (A.4) below.

Proof. Proposition A.4 and application of [40, Lemma 2] to G from Fig. 1. �

Next we will compute the product L(Tj,p) associated to each spanning tree Tj,p of G. To this
end, we recall the labeling of reactions between adjacent nodes j and j + 1 for 1 ≤ j ≤ n− 1:

. . .
j
•

k2j−1 j+1
•

k2j
. . .

For a node j with n+2 ≤ j ≤ 2n+1, we write j as j = n+1+ i (so, 1 ≤ i ≤ n+1) and recall the
labeling of reactions between adjacent nodes j and j + 1:

. . .

(n + 1) + (i + 1)
=

j + 1
•

ℓ2(n+1−i)

(n + 1) + i

=
j

•
ℓ2(n+1−i)+1

. . .

Now we use Proposition A.4 to compute L(Tj,p), for a spanning tree Tj,p of G:

• if 1 ≤ j ≤ n, the tree Tj,p splits into four paths:

(a) p+ 1→ · · · → n+ 2, with product of edge labels k2n+1
∏n

i=p+1 k2i−1 =
∏n+1

i=p+1 k2i−1,

(b) n+ 2→ · · · → 1, with product of edge labels ℓ1
∏n

i=1, ℓ2(n+1−i)+1 =
∏n+1

i=1 ℓ2(n+1−i)+1,
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(c) 1→ · · · → j, with product of edge labels
∏j−1

i=1 k2i−1,

(d) p→ · · · → j, with product of edge labels
∏p−1

i=j k2i.

• if j = n+ 1 (so, p = n+ 1, by Proposition A.4), the tree Tj,p splits into two paths:

(a) n+2→ · · · → 1, with product of edge labels
∏n+1

i=1 ℓ2(n+1−i)+1, as in (b) in the previous
case.

(b) 1→ · · · → n+ 1, with product of edge labels
∏n

i=1 k2i−1.
• if n+ 2 ≤ j ≤ 2n+ 1, write j = n+ 1+ j0 and p = n+ 1+ p0, and then split Tj,p into four
paths (cf. Fig. 2(b)):

(a) p+1→ · · · → 1, with product of edge labels ℓ1
∏n

i=p0+1 ℓ2(n+1−i)+1 =
∏n+1

i=p0+1 ℓ2(n+1−i)+1,

(b) 1→ · · · → n+ 2, with product of edge labels k2n+1
∏n

i=1 k2i−1 =
∏n+1

i=1 k2i−1,

(c) n+ 2→ · · · → j, with product of edge labels
∏j0−1

i=1 ℓ2(n+1−i)+1,

(d) p→ · · · → j, with product of edge labels
∏p0−1

i=j0
ℓ2(n+1−i).

• if j = 2n+ 2 (so, p = 2n+ 2, by Proposition A.4), the tree Tj,p splits into two paths:

(a) 1 → · · · → n + 2, with product of edge labels
∏n+1

i=1 k2i−1, as in (b) in the previous
case,

(b) n+ 2→ · · · → 2n+ 2, with product of edge labels
∏n

i=1 ℓ2(n+1−i)+1.

Thus, by definition (A.2), we obtain for L(Tj,p), where for i1 < i0 we adopt the standard convention
∏i1

i=i0
αi := 1 for the empty product, and, as before, j0 := j − (n+ 1) and p0 := p− (n+ 1):

L(Tj,p) =







n+1∏

i=1

ℓ2(n+1−i)+1 ·

j−1
∏

i=1

k2i−1 ·

p−1
∏

i=j

k2i ·

n+1∏

i=p+1

k2i−1 if 1 ≤ j ≤ n

n+1∏

i=1

ℓ2(n+1−i)+1 ·
n∏

i=1

k2i−1 if j = n+ 1

n+1∏

i=1

k2i−1 ·

j0−1
∏

i=1

ℓ2(n+1−i)+1 ·

p0−1
∏

i=j0

ℓ2(n+1−i) ·
n+1∏

i=p0+1

ℓ2(n+1−i)+1 if n+ 2 ≤ j ≤ 2n+ 1

n+1∏

i=1

k2i−1 ·
n∏

i=1

ℓ2(n+1−i)+1 if j = 2n+ 2 .

(A.4)
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(a) Subgraph of G without edges p ↔ p + 1
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(b) Spanning tree of G rooted at node j

Figure 2. (a) Subgraph obtained from G by removing edges p → p + 1 and
p ← p + 1. To obtain a subgraph T for which the undirected graph T ∗ is acyclic
and connected, choose one edge from each gray pair of reversible edges. By choosing
all the blue edges, one obtains two directed paths ending at j: one connecting the
nodes p+1,. . . , j− 1 to j and the other connecting j+1, . . . , n+1 to j. No choice
of edges, however, will connect any of the following nodes to j: n + 2, . . . , 2n + 2
and 1, . . . , p. Thus, any such subgraph will have at least two sinks. (b) Spanning
tree Tj,p (of G from Fig. 1) rooted at j; this tree consists of two paths, one from p

to j (green, counter-clockwise) and one from p+ 1 to j (red, clockwise).


