## Homework 12

Math 300 (section 901), Fall 2021

This homework is due on Wed., Nov. 17. (Turn in your answers to questions 1-5.) You may cite results from class, as appropriate.
0. (This problem is not to be turned in.)
(a) Explain what is wrong with the following: Consider a function $f: \mathbb{Z} \rightarrow 9$.
(b) Give an example of a function $f: \mathbb{Z} \rightarrow \mathbb{R}$.
(c) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{Q}$.
(d) What is the difference between $f(x)$, where $x$ is an element, and $f(X)$, where $X$ is a set?

1. (No proofs necessary for this problem)
(a) List all functions $f: \mathbb{Z} \rightarrow\{8\}$ (functions with domain $\mathbb{Z}$ and codomain $\{8\}$ ).
(b) List all one-to-one (injective) functions $f:\{0,1\} \rightarrow\{2,3,4\}$.
(c) List all onto (surjective) functions $f:\{0,1\} \rightarrow\{2,3\}$.
2. Consider the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(n)=2 n$ if $n$ is even and $f(n)=n-3$ if $n$ is odd.
(a) Prove or disprove: $f$ is one-to-one.
(b) Prove or disprove: $f$ is onto.
3. Let $f: A \rightarrow C$ and $g: B \rightarrow D$ be functions. Consider the following function ${ }^{1}$ :

$$
\begin{aligned}
h: A \times B & \rightarrow C \times D \\
(a, b) & \mapsto(f(a), g(b)) .
\end{aligned}
$$

(a) Prove or disprove: If $f$ and $g$ are one-to-one, then so is $h$.
(b) Prove or disprove: If $f$ and $g$ are onto, then so is $h$.
4. Let $A$ be a nonempty set. Assume $b \notin A$. Consider the following function:

$$
\begin{aligned}
h: \mathcal{P}(A) & \rightarrow \mathcal{P}(A \cup\{b\}) \\
S & \mapsto S \cup\{b\} .
\end{aligned}
$$

(a) Prove or disprove: $h$ is one-to-one.
(b) Prove or disprove: $h$ is onto.
5. Let $f: A \rightarrow B$ be a function, and let $C \subseteq A$ and $D \subseteq B$. Prove or disprove the following:
(a) $f\left(f^{-1}(D)\right) \subseteq D$
(b) $f\left(f^{-1}(D)\right) \supseteq D$
(c) $f^{-1}(f(C)) \subseteq C$
(d) $f^{-1}(f(C)) \supseteq C$

[^0]
[^0]:    ${ }^{1}$ In $\# 3$ and \#4, we use the notation $x \mapsto y$ (for a function $h$ ), which means $h(x)=y$.

