## Homework 14

## Math 300 (section 901), Fall 2021

This homework is due on Wed., Dec. 8 (the last day of class). (Turn in your answers to questions 1-8.) You may cite results from class, as appropriate.
0. (This problem is NOT to be turned in.)
(a) Read Sections 11.1-11.5 and 12.1-12.3
(b) Section $10.5 \# 10.50,10.52,10.53$,
(c) Section 11.2 \#11.3, 11.5
(d) Section 11.3 \#11.25

1. Prove the following: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective functions, then $(g \circ f)^{-1}=$ $f^{-1} \circ g^{-1}$.
2. Assume that $a, b, c, d$ are real numbers with $a \neq 0$ and $c \neq 0$. Let $f(x)=a x+b$ and $g(x)=c x+d$ be functions (with both domain and codomain equal to $\mathbb{R}$ ). Is the function $h:=g \circ\left(f^{-1}\right)$ bijective? If so, find the inverse function of $h$ (and prove that it is the inverse).
3. Let $f: A \rightarrow B$ be a function. Let $I d_{A}$ and $I d_{B}$ denote the identity functions on $A$ and $B$, respectively. Prove or disprove the following:
(a) If there exists a function $h: B \rightarrow A$ such that $h \circ f=I d_{A}$, then $f$ is surjective (onto).
(b) If there exists a function $h: B \rightarrow A$ such that $h \circ f=I d_{A}$, then $f$ is injective (one-to-one).
(c) If there exists a function $h: B \rightarrow A$ such that $f \circ h=I d_{B}$, then $f$ is surjective.
(d) If there exists a function $h: B \rightarrow A$ such that $f \circ h=I d_{B}$, then $f$ is injective.
4. Is $\mathbb{Z} \times\{1,2\}$ countable? Prove your answer.
5. Is $\mathbb{Z} \times \mathbb{Q}$ countable? Prove your answer.
6. Prove or disprove: If $A$ and $B$ are nonempty sets, then $|A| \leq|A \times B|$.
7. Use the Schröder-Bernstein Theorem to prove that the intervals $[0,1]$ and $[1,5)$ have the same cardinality.
8. (a) Section $10.5 \# 10.56,10.58$
(b) Section 11.2 \#11.12
(c) Section 11.3 \#11.20, 11.24
(d) Section 11.4 \#11.28
(e) Section 12.1 \#12.2, 12.14
(f) Section 12.2 \#12.15(a-b), 12.18
(g) Section 12.3 \#12.34
