Homework 14

Math 300 (section 901), Fall 2021

This homework is due on Wed., Dec. 8 (the last day of class). (Turn in your answers to questions 1–8.) You may cite results from class, as appropriate.

- 0. (This problem is NOT to be turned in.)
 - (a) Read Sections 11.1–11.5 and 12.1–12.3
 - (b) Section 10.5 # 10.50, 10.52, 10.53,
 - (c) Section 11.2 # 11.3, 11.5
 - (d) Section 11.3 # 11.25
- 1. Prove the following: If $f : A \to B$ and $g : B \to C$ are bijective functions, then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 2. Assume that a, b, c, d are real numbers with $a \neq 0$ and $c \neq 0$. Let f(x) = ax + b and g(x) = cx + d be functions (with both domain and codomain equal to \mathbb{R}). Is the function $h := g \circ (f^{-1})$ bijective? If so, find the inverse function of h (and prove that it is the inverse).
- 3. Let $f : A \to B$ be a function. Let Id_A and Id_B denote the identity functions on A and B, respectively. Prove or disprove the following:
 - (a) If there exists a function $h: B \to A$ such that $h \circ f = Id_A$, then f is surjective (onto).
 - (b) If there exists a function $h: B \to A$ such that $h \circ f = Id_A$, then f is injective (one-to-one).
 - (c) If there exists a function $h: B \to A$ such that $f \circ h = Id_B$, then f is surjective.
 - (d) If there exists a function $h: B \to A$ such that $f \circ h = Id_B$, then f is injective.
- 4. Is $\mathbb{Z} \times \{1, 2\}$ countable? Prove your answer.
- 5. Is $\mathbb{Z} \times \mathbb{Q}$ countable? Prove your answer.
- 6. Prove or disprove: If A and B are nonempty sets, then $|A| \leq |A \times B|$.
- 7. Use the Schröder-Bernstein Theorem to prove that the intervals [0, 1] and [1, 5) have the same cardinality.
- 8. (a) Section 10.5 # 10.56, 10.58
 - (b) Section 11.2 # 11.12
 - (c) Section 11.3 # 11.20, 11.24
 - (d) Section 11.4 # 11.28
 - (e) Section 12.1 #12.2, 12.14
 - (f) Section 12.2 #12.15(a-b), 12.18
 - (g) Section 12.3 # 12.34