Spring 2015 Math 151

Week in Review 10

courtesy: Amy Austin (Covering 5.5-6.1)

Section 5.5

- 1. A rectangular storage container with an open top is to have a volume of 10 cubic meters. The length of its base is twice the width. Material for the base costs \$10 per square meter. Material for the sides costs \$6 per square meter. Find the cost of materials for the cheapest such container.
- 2. Find the point on the parabola $x + y^2 = 0$ that is closest to the point (0, -3).
- 3. A piece of wire 12 inches long is cut into two pieces. One piece is bent into an equilateral triangle and the other is bent into a circle. How should the wire be cut so that the total area enclosed is a maximum? A minimum?
- 4. What are the dimensions of the largest rectangle that can be inscribed in the area bounded by the curve $y = 12 x^2$ and the x-axis?

Section 5.7

- 5. Given $f''(x) = 2e^x 4\sin(x)$, f(0) = 1, and f'(0) = 2, find f(x).
- 6. A particle accelerates according to the equation $a(t) = .12t^2 + 4$. If the initial velocity is 10 and the initial position is 0, find the position function s(t).
- 7. A stone is dropped from a 450 meter tall building.
 - a.) Derive a formula for the height of the stone at time t. Note the acceleration due to gravity is -9.8 meters per second squared.
 - b.) With what velocity does the stone hit the ground?
- 8. A car is traveling at a speed of 220/3 feet per second when the brakes are fully applied thus producing a constant deceleration of 40 feet per second squared. How far does the car travel before coming to a stop?

9. Find the vector functions that describe the velocity and position of a particle that has an acceleration of $\mathbf{a}(t) = \langle 0, 2 \rangle$, initial velocity of $\mathbf{v}(0) = \langle 1, -1 \rangle$ and an initial position of $\mathbf{r}(0) = \langle 0, 0 \rangle$.

Section 6.1

- 10. Compute $\sum_{i=2}^{5} \frac{i}{i+1}$
- 11. Compute $\sum_{i=1}^{500} (9) =$
- 12. Compute $\sum_{i=3}^{300} (2) =$
- 13. Using the formula $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, find $\sum_{i=1}^{99} 4i$.
- 14. Write in sigma notation:

a.)
$$\sqrt{3} + \sqrt{4} + \sqrt{5} + \sqrt{6} + \sqrt{7}$$

b.)
$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$$

c.)
$$1 - x + x^2 - x^3 + x^4 - x^5 + x^6$$