Exam 3 Practice Problems ### Part 1 - Counting and Probability COPYRIGHT 2004, 2010 Janice Epstein. All rights reserved. - 1. Find the probability distribution table for the number of face cards (J, Q, or K) in a hand of 4 cards. - 2. A stack of 100 copies has 8 defective copies in it. A sample of 10 is chosen. What is the probability that the sample will have no defective copies? - 3. A bowl has 6 green, 7 red and 4 purple jelly beans. A sample of 4 is chosen at random. What is the probability that the sample will have exactly 3 green or exactly one purple jelly bean? - 4. Four couples go to the movies. If all 8 people sit down randomly, what is the probability that couples are seated together? | 1. | 007 | CO | ME | | X | 19 | $[\mathcal{N}]$ | | | | Cuprilled Line | | | | | ****** | | we-wek | 424 | | | | | | | | | | |----|-----|------|----------------|----|-----|---------|-----------------|------------|-----|-------------|----------------|-----|-----|------------|------|----------|---|---------------|------------|--------|-----|--------------|-----|------------|-----|------|-----|--------------| | | 0 | F | .c. | | 0 | C | (12 | 10) |) C | (40 |),4 |)/ | 6 | らる | ,,4 |) | | 91 | 30 | 0 | /2- | 70 | 72 | 15 | , ≈ | 0. | 33 | 16 | | | | F | ے | | 1 | 10 | (12 | ٠ <u>١</u> |) C | (4) | O.E | 3)/ | (C) | 52 | ٠, 4 | -) | 三 | \mathcal{H} | 85 | W | /2 | 70 | 76 | 25 | ≈ | 0 | 43 | 19 | | | 12 | رسنر | | | 2 | 10 | (12 | 12 |)C | (40 | 7 |)/ | (C | 52 | 4ر. |) | = | 51 | 180 |)
/ | 2 | 10, | 725 | <u>ે</u> જ | ~ D | , 19 | 02 | | | | | 3 F | C | | 3 | C | 12 | 13 |)C | (4 | 0,1 |)/ | 2 | 52 | 4 |) | - | 8% | α |)/ | | | | | | | 325 | | | | 2 | 1 = | C | | 4 | 10 | 11: | 214 | +)(| <u>`</u> (2 | 40 | (0) | 10 | 5 2 |)4 |) = | | 40 | 5/ | | | | | | | | 18 | | | | | | | 1 | | | | , | | • | | J | | 3 | 7 | * | | J | | | | - - 6 | | | | | | | | 1 | | 10 |) ₍ | 1/ | N / | \ \ \ \ | _~ | 1 | | | _ 1 | 1 1 | | | | | | *********** | N-10.19.19 | | | | | | | (| 1 | announce jam | $$\frac{2. (8.0)(93.0)}{(100,10)} = 0.4166$$ 3, $$n(s) = C(17.14) = 2380$$ $n(E) = C(6.3) \cdot C(11.1) + C(4.1) \cdot C(13.3) - C(6.3) \cdot C(4.1) = 1284$ 36 , 16 4. $$n(S) = 8! = 40320$$ $P(E) = 384 \approx 0.0095$ $n(E) = 4! \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 384$ 40320 ### Exam 3 Practice Problems # Part 4 – Binomial and Normal Probability COPYRIGHT 2004, 2010 Janice Epstein. All rights reserved. 1. If 1/3 of the students at a very large school are women, what is the probability that in a randomly chosen group of 4 students that there will be at most 1 woman? binomial. 5uccess = woman, N = 4, p = 1/3X = 0, 1 binomicaf (4, 1/3, 1) = 0.5926 - 2. At a local restaurant 100 people ate bad tuna salad. The probability of getting food poisoning from badtuna salad is 40%. - (a) What is the probability that fewer then 30 people get sick? - (b) What is the probability that more than 45 people get sick? - (c) What is the probability that between 40 and 50 people get sick? - (d) What is the expected number of sick people? What is the standard deviation in the number of people who get sick? a) binomial. 3uccess = sick, N = 100, 0 = .4 X = 0.51, ... 29 binomical f(100, .4, 29) = 0.0148b) X = 46, 47, ... 100 1 - binomical <math>f(100, .4, 45) = 0.1311c) X = 41, 42, ... 49 binomical f(100, ..., 49) - binomical <math>f(100, ..., 49) = 0.4296d) $\sigma = 100 \times ... 4 = 40$ $\sigma = \sqrt{100}(..., 4)(1-4) = \sqrt{24} \approx 4.9$ 3. The probability that a transistor is defective is 0.2%. A box contains 120 transistors. What is the probability that a box contains at least one defective transistor? binomial, success = defective. N = 120. p = 0.002X = 1, 2, ..., 120 (1 - binompdf(120, .002, 0) = 0.2136 C= INV NOIM (175,0,1) = :674° 4. Given that Z is the standard normal variable, find (a) P(Z > 0.65) (b) P(Z < 1) (c) P(-1.2 < Z < 0) (d) a value of c such that P(-c < Z < c) = 0.5 a) normaled f(.65, 1=99, 0, 1) = 0.2578b) normaled f(.65, 1=99, 0, 1) = 0.8413 c) normaled f(-1/2,0,0,1) = 0.3849 ### Exam 3 Practice Problems #### Part 3 – Random Variables and Statistics COPYRIGHT 2004, 2010 Janice Epstein. All rights reserved. 1. A sample of jelly bean bags is chosen and the number of blue jelly beans in each bag is counted. The results are shown in the table below: | No. of bags | 10 | 9 | 8 | 7 | 6 | |-------------------------|----|---|----|----|----| | No. of blue jelly beans | 8 | 9 | 10 | 11 | 12 | - (a) What is the expected number of blue jelly beans? - (b) What is the mean, median, mode, and standard deviation in the number of jelly beans? 2. A bag contains 10 oranges and 2 of them are rotten. What is the expected number of rotten oranges in a sample of 2? | OUTCOME ! | X | PC | <u> </u> | | | | | |-----------|-------------|-----|----------|---------|--------|------|--------| | arotten | > | 00 | 12)C | (80)/(| (10,2) | = 1/ | 45 | | Irotten | | 0(2 | 11)01 | 811/c | (10,2) | = 16 | 145 | | n notten | 10 | 0(| 40)0 | (8/2)/(| (10,2) | = 2 | 8/45 | | | | | | | | | | | E(X) = 3 | 2(1/4 | 5) | +1(| 16/45) | +0(2 | 8/45 |) = .4 | - 3. Find the range of values for the random variable X in the following experiments and determine if the random variable is finite discrete, infinite discrete or continuous. - (a) Let X be the number of queens in a hand of 5 cards. - (b) Let X be the time in seconds to swim a 50m race - (c) A bowl has 5 red and 5 green marbles. One marble is chosen at random. If the marble is green, it is replaced in the bowl. Let X be the number of times a marble is chosen until a red marble is picked. | | - | <u>1</u> | <u></u> | cha | irge | d to | pla | iy iii | us g | المر
المرا | 13 6 | ne pi | | , | | | | r | r r | | , | 1 | , | | | <u> </u> | | |---|----------------------------|----------------------|-------------------------------|--------------------------------|---------------------------|-----------------------------|--------------------|--------------------------------|---------------------|----------------------|--|------------------------|--------------------------|--------|-----------|--------------|--------------------------|------------------|--------------------|-----------------------|------------------------------------|-------------|-------------|--------|------------|----------|--| | <u> </u> | <u> </u> | | | | | $\stackrel{\triangle}{=}$ | | l _j | 7 (? | 2 | | | <u> </u> | (X) | = | C | (1) | 713 | 6 | <i>)</i> † | \ | 2 | ر <i>ر</i> | (l/3 | جےا د | | | | | 57 | · | 6 | | | 5 | | 1 | 101 | ·· | | | | | | 1 | \sim / | 2 5 | : /_ | _ | _ | | | | | | | | | Hw | ; | | it | | 20 | | | 1/= | | | | | | | Τ- | \mathcal{L} | <i></i> | 5/3 | 6) | 7. | \subseteq | _ | | | | - ر | | | <u> 1/10</u> | | 015 | · | | |) | - | 25 | /3 | 6 | | | - | | | a | 71 | | anadi Wasin ta at ana | 5 | Œ | २८७ | - 12 |) † | PLE | Y | | | | <u> </u> | | | | | | | | | | <u>+</u> | 20 | _= | 1 | | ٠٦ | 4 | | | | | | | | | | | - pr | Mr.
obab
this | ility | that | uys
the | a \$
vic | 400
lin | 0 in
will | sura
nec | ance
ed to | pol
be | icy (
repl | on hi
aced | s sor
is 0. | .8%, | wha | it is | the | ınsı | ıranc | e co | mpa | ny | s g | aın (| 11 8 | uiy) | ************************************** | | 0 | Te | 7 | سسر |) | | | | | | | OCY | () | | F | - | 6 | 34 | 50 | 710 | .00 | 2×, | 5 | + | 50 |)/ | ,90 | 2) | | | 909 | - | 1 | | 47 | Ø | 7# | -5 | a | , | | -
08 | | | | | | | <i>_</i> | | ب | / | | | | e l | | | not | - 7 | 100
12h | \mathcal{J} | | | 50 | | | | | | 90 | | | | 3 | \$1 | እ | | | | | | | | i | | | / <u>/ / / / / / / / / / / / / / / / / / </u> | | | | | | | | | | | | | - | - | | | J | | | | | | | | | · | | | | | | | | | | | | | | | usefu | | of 1 | 2 h | ours | wit | h a | stan | lard | devi | ati | on o | of 2 l | hou | ırs. | | | | se Cł
(a)
(b) | heby
) A
) Ir | cherbatt
batt
a ba | v's tery i | heo
last
of | rem
s be
120 | to
twe | esti
en 9
itter | mate
and
ies, | e the
d 15
hov | e fol
hou
v ma | lowi | ng"
'ill la | ıst m | ore | than | 18 | or f | èwe | r tha | a 6 l | 101 | ırs? | | hou | ırs. | | | U | se Cł
(a)
(b) | heby
) A
) Ir | cherbatt
batt
a ba | v's tery i | heo
last
of | rem
s be
120 | to
twe | esti
en 9
itter | mate
and
ies, | e the d 15 hov | e follow
how
ma
of th | lowings
ony was bar | ng"
rill la
tterie | ist m | ore | than | 18
en 1 | or f
2-c | ewe
hou | r than | n 6 l
d 12 | 101 | ırs? | ırs. | ı | ; | 51- | | | se Cł
(a)
(b) | heby A Ir Fi | batt
batt
a ba
and a | v's tery atch val | heo
last
of
ue o | rems be
1200
of c | to
twe | esti
en 9
itter | mate
and
ies, | e the d 15 hov | e follow
how
ma
of th | lowi
irs
iny w | ng"
rill la
tterie | ist m | ore | than | 18
en 1 | or f
2-c | ewe
hou | r tha | n 6 l
d 12 | nou
+c | ırs?
hou | ırs. | Z _ | ; | 5/4 | | U | se Cł
(a)
(b) | heby
) A
) Ir | batt
batt
a ba
and a | v's tery i | heo
last
of
ue o | rem
s be
120 | to
twe | esti
en 9
itter | mate
and
ies, | e the d 15 hov | e follow
how
ma
of th | lowings
ony was bar | ng"
rill la
tterie | ist m | ore | than | 18
en 1 | or f
2-c | ewe
hou | r than | n 6 l
d 12 | nou
+c | ırs?
hou | ırs. | Z _ | ; | 5/4 | | U | se Cł
(a)
(b) | heby A Ir Fi | batt
batt
a a band a | v's tery atch val | heo
last
of
ue o | rem
s be
1200
of c | to
twe
0 ba | estinen 9 atter h th | mate
and
ies, | e the d 15 hov | e follow
how
ma
of th | lowings
ony was bar | ng"
rill la
tterie | ist m | ore | than | 18
en 1 | or f
2-c | ewe
hou | r than | n 6 l
d 12 | nou
+c | ırs?
hou | ırs. | Z _ | ; | 5/4 | | U | se Cł
(a)
(b) | heby A Ir Fi | batt
batt
a a band a | v's tery atch val | heo
last
of
ue o | rems be
1200
of c | to
twe
0 ba | esti
en 9
itter | mate
and
ies, | e the d 15 hov | e follow
how
ma
of th | lowings
ony was bar | ng"
rill la
tterie | ist m | ore | than | 18
en 1 | or f
2-c | ewe
hou | r than | n 6 l
d 12 | nou
+c | ırs?
hou | ırs. | z_
6 | | 5/4 | | U | se Cł
(a)
(b) | heby A Ir Fi | ycher batta a band a | v's tery atch val | heo
last
of
ue o | rem
s be
1200
of c | to to twe 0 bassuc | estinen 9 utter h th | mate
and
ies, | e the d 15 hov | follow may of the second secon | lowing when the bar | rill latterie | ist m | ore | than
twee | 18
en 1
2/≤
=18 | or f
2-c
X | iewe
how
= £ | r thanks and | n 6 l
d 12
=
=
 /3 | 101
+c | ırs?
hou | ırs. | z_
6 | ; | 5/4 | | U | se Cł
(a)
(b) | heby A Ir Fi | ycher batta a band a | v's tery atch val | heo
last
of
ue o | rem
s be
1200
of c | to to twe 0 bassuc | estinen 9 atter h th | mate
and
ies, | e the d 15 hov | follow may of the second secon | lowings
ony was bar | rill latterie | ist m | ore | than
twee | 18
en 1
2/≤
=18 | or f
2-c
X | iewe
how
= £ | r than | n 6 l
d 12
=
=
 /3 | 101
+c | ırs?
hou | ırs. | z_
6 | | 5/4 | | a) | se Ch
(a)
(b)
(c) | heby A Ir Fi | ycher batta a band a | v's tery atch val | heo
last
of
ue o | rem
s be
1200
of c | to to twe 0 bassuc | estinen 9 utter h th | mate
and
ies, | e the d 15 hov | follow may of the second secon | lowing when the bar | ng" ill la tterie | es las | ore tt be | than
twee | 18
en 1
2/≤
=18 | or f
2-c
X | iewe
how
= £ | r thanks and | n 6 l
d 12
=
=
 /3 | 101
+c | ırs?
hou | ırs. | z_
(o | = | | | U | se Ch
(a)
(b)
(c) | heby
A) Ir
) F | vcher batt a a band a | v's t
ery :
ery :
val | last of ue o | rements be 1200 of c | to to twe 0 bassuc | estinen 9 atter 9 atter 4 b th | mate
and
ies, | e the d 15 hov | follow may of the second secon | lowing when the bar | ng" ill la tterie | ist m | ore tt be | than
twee | 18
en 1
2/≤
=18 | or f
2-c
X | iewe
how
= £ | r thanks and | n 6 l
d 12
=
=
 /3 | 101
+c | ırs?
hou | ırs. | z_
(o | | | | a) | se Ch
(a)
(b)
(c) | heby
A) Ir
) F | ycher batta a band a | v's tery atch val | last of ue o | rements be 1200 of c | to to twe 0 bassuc | estinen 9 atter 9 atter 4 b th | mate
and
ies, | e the d 15 hov | follow may of the second secon | lowing when the bar | ng" ill la tterie | es las | ore tt be | than
twee | 18
en 1
2/≤
=18 | or f
2-c
X | iewe
how
= £ | r thanks and | n 6 l
d 12
=
=
 /3 | 101
+c | ırs?
hou | ırs. | z_
(o | = | | | U | se Cł
(a)
(b) | heby A Ir Fi | ycher batta a band a | v's tery atch val | heo
last
of
ue o | rem
s be
1200
of c | to to twe 0 bassuc | estinen 9 utter h th | mate
and
ies, | e the d 15 hov | follow may of the second secon | lowing when the bar | rill latterie | ist m | ore | than
twee | 18
en 1
2/≤
=18 | or f
2-c
X | iewe
how
= £ | r thanks and | n 6 l
d 12
=
=
 /3 | 101
+c | ırs?
hou | ırs. | z_
6 | | 5 | 7. $$P = 3/3+11 = 3/14$$ 3. $6/1+.6 = 3/2 \Rightarrow 3.2 \text{ or } 3 + 0.2$ 9. The following data is the recorded daily high temperature in College Station for March 2006: 83, 81, 77, 74, 77, 83, 80, 82, 79, 85, 2×274.58 mad = 76, 86, 86, 75, 72, 69, 77, 72, 69, 76, 76, 65, 58, 51, 61, 69, 74, 72, 67, 73, 81, 82 = 8.1430 mode 69, 72) 77 Find the mean, median, mode and standard deviation for the daily high temperature. | | Fault | Alpha | Beta | Gamma | Delta | | |--------|--|---|---|---------------------|---------------------------------------|---------------------------------------| | | probability | 15% | 13% | 9% | 8% | , | | | a) What is the prob b) What is the prob 15 2 13 8 185 8 7 8 | pability that none of pability that exactly | one of the faults w $P(a^{c} \cap \beta^{c})$ $= 0$ | ill have a quake in | the next 20 years? (1.85)(1.87)(1.91) |)(,9 | | o) F |) ± (1.15)(.87
+ (1.81
= 1.31683 | 5)(187)(191
3(4 |)(108) | | 5)(181)(181)(16 | | | that a | o lo liowii on one | of the two dice? $-3,3-2,4-1$ | That the sum show | 2/4 | e, what is the probabil | ity _ | | 7. T | l i i i i | omey that the first (| m a standard deck card was a diamond | of 52 cards. Given | that the second card i | s a | | | 3/52 D 3/51 | H ₂ c 7 | (D1 1H2) = | | | | | | 26/52 H, 12/51 | 51 H2
H2
A2
H2 | | 3 | 8152)(17151) + (2615 | 2)(13 | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · |