WEEK 14 REVIEW - Finance Part 2 and Markov Chains

AMORTIZATION

Example: A credit card charges 24% annual interest compounded monthly on the unpaid balance. You owe \$4000 on this credit card. To pay it off, you stop using it and make monthly payments of \$100.

- (a) How long until the card is paid off?
- (b) How much was paid in interest charges?
- (c) How much of the first payment was interest?
- (d) How much of the second payment was interest?
- (e) How much is still owed on the credit card after two years of

solve \$1.3 months

=> 82months

a sign change in the \$ making payments? careful PM= 12

100\$/ma * 82 mo = \$200 sent to C.C. _ 4000

#faco cin interest charges

24%/year * 1yar/2000 = 200/mi

19/ms: 4000 x 0.02 = \$80 un interest

=> 100-80 = \$20 to pay of balance

Still owe 4000 - 20 = \$3980

2nd mo: 3180 *0.02 = \$79.60

still owe 3980-79,60 =

e) after 2 years we have made 24 payment 82-24=58 PMT 1090

PV= ? ~> \$344.52 9MT=-100

furance 180,000-29000 = 169000

Example: A house costs \$180,000. You make a down payment of \$20,000 and finance the remainder for 20 years at 5.1% annual interest compounded monthly on the unpaid balance.

- (a) How large are the monthly payments?
- (b) How much interest is paid in all?
- (c) Fill in the blanks on the amortization table below:

a)
$$N = 20 \times 12 = 240$$

 $T = 5.1$
 $PV = 160000$
 $PMT = ?$
 $FV = 0$
 $PV = 12$
 $Solve $ 1064.79$
 $Solve$

b) (240)(\$1064 M)	-[6000] = \$95,54 loan and of ten - what you	9,60 = viterent
Sent the bank	lan ant	owe the bank.

- @ 160000 x 0,00425 = 680
- © 1064,79 680 = 384,79 © 160000 384,79 = 159,615.21
- @ 180000 159615,2

end of period	remaining payments	payment	interest paid	towards principal	outstanding balance	equity
0 N=	24/03050h	n/a	n/a	n/a	C0000AT	20000
1	239	1064,79	680	9384,79	3159615,21	20,384,7
2	138	106479	- 698.36°	=386,43	197,228,18	20,9ં21,92
FV=0		AMI			solyffr	160,000 - F
12	3783	1064.79			155273.87	24726.63
	24D-GO				SOLVEY	180000-P
60	[80=N	1064,79			33,765	46235
					Sourch	
120	18D	1064,79			99929	8001
					Soured	60
180	60	1064,79			562,87	123,913
				1		

① finite stages MARKOV CHAINS ② next stage depends only on current stage

Example

Bob buys a cup of coffee or tea every day. If he buys a cup of coffee, there is a 30% chance he will buy a cup of coffee the next day and a 70% chance he will buy a cup of tea. If he buys a cup of tea, there is a 300% chance that he will buy a cup of tea the next day and a 300% chance he will buy a cup of coffee.

- (a) Is this a Markov process?
- (b) Find the transition matrix.
- (c) On his first day back from vacation, Bob buys a cup of coffee. What is the probability that he buys a cup of coffee 3 days later?
- (d) What are the long term (steady state) probabilities that Bob

Example

In a certain city elections are held every two years for mayor. There are three political parties in this city, A, B and C. If the current mayor is from the A party, there is a 20% chance that the next mayor will be from the A party, 40% from the B party and 40% from the C party. If the current mayor is from the B party, there is a 50% chance the next mayor will be from the A party and a 50% chance that the mayor will be from the C party. If the current mayor is from the C party, there is a 60% chance the next mayor will be from the C party, a 10% chance the next mayor will be from the A party and a 30% chance the next mayor will be from the C party.

- (a) Is this a Markov process?
- (b) Find the transition matrix.
- (c) On the city's first election there is an equal chance that the mayor comes from parties A, B and C. What is the probability that the mayor is from party A in 8 years? >>> 450000
- (d) What is the long term (steady state) distribution of the mayor's political party?

Example

There are three brands of cell phones given to employees of a company. Each year the employee can choose phone brand X, phone brand Y or phone brand Z. If an employee has a brand X phone, he will choose a brand X phone again the next year. If an employee has a brand Y phone, there is an equal chance that he will choose brand X, Y or Z the next year. If a person has a brand Z phone, he will choose a brand X phone 50% of the time, a brand Y phone 25% of the time and a brand Z phone 25% of the time.

- (a) Is this a Markov process? Yes
- (b) Find the transition matrix.
- (c) Initially all employees are given brand Z phones. What is the distribution of phone ownership in 2 years?

regular? In has only positive entries (no zeros)

Example

(not absorbing)

Classify the following matrices as a regular transition matrix, not a

regular transition matrix, or not a transition matrix.

(b)
$$\begin{bmatrix} 0.5 & 0.8 \\ 0.5 & 0.6 \end{bmatrix}$$
 \Rightarrow not a franshin matrix

(c) $\begin{bmatrix} 0.75 & 0 \\ 0.25 & 1 \end{bmatrix}$ $= \begin{bmatrix} 3 \times 10^{-18} & 0 \\ 1 & 1 \end{bmatrix}$ not regular