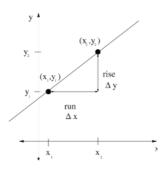
WEEK 2 REVIEW - Lines and Linear Models

<u>SLOPE</u>

A VERTICAL line has NO SLOPE. All other lines have

slope =
$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = m$$



Example

Find the slope of the line passing through the points (-2, 4) and (0, -4)

Answer

Let one pair of points be (x_1, y_1) and the other (x_2, y_2) . Then

$$m = \frac{4 - (-4)}{-2 - 0} = \frac{8}{-2} = -4$$

If we assigned our points the other way we would have

$$M = -\frac{4-4}{0-1-2} = -\frac{8}{2} = -4$$

EQUATIONS OF LINES

The formula for the slope of a line can be rearranged to give us the equation for a line.

$$m = \frac{y - y_1}{x - x_1} \rightarrow y - y_1 = m(x - x_1)$$

This is called the POINT-SLOPE form of a line. If you know a point, (x_1, y_1) that lies on the line and you know the slope, m, of the line, then you can find the equation of the line.

Example

What is the equation of the line passing through the points (-2, 4) and (0, -4)?

Answer

m = -4 (previous example) Let $(x_1, y_1) = (-2, 4)$

$$y-y_{1} = m(x-x_{1})$$

$$y-4 = -4x - 8$$

$$y-4 = (-4)(x-(-2))$$

$$y = -4x - 4$$

$$y - (-4) = -4(x-0) \implies y = -4x - 4$$

When we simplify our point-slope form we are writing the line in the slope-intercept form,

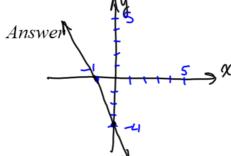
$$y = mx + b$$

Again, m is the slope and now b is the y-intercept.

 (χ_10)

The y-intercept is the place where the line crosses the y-axis. The x-intercept is the place where the line crosses the x-axis.

 $X=0 \Rightarrow y=-4(0)-4=-4(0)-4$ Example $y=0 \Rightarrow 0=-4x-4 \Rightarrow x=-1(-1,0)$ Graph the line y=-4x-4 and find the intercepts.

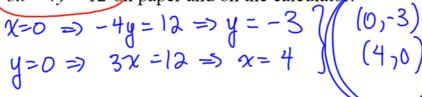


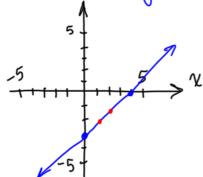
Ax + By = C is the GENERAL FORM of a line.

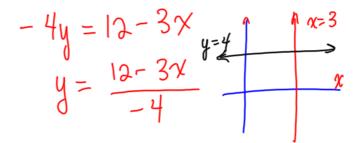
Example

Graph the line 3x - 4y = 12 on paper and on the calculator.

Answer







Two lines are parallel if they have the same slope and different y-intercepts, $m_1 = m_2$ and $b_1 \neq b_2$

Two line are perpendicular if the product of their slopes is -1,

$$m_1 \cdot m_2 = -1 \text{ or } m_1 = \frac{-1}{m_2}$$

Example Given the line L_1 is y = 2x + 4,

- (a) find a line parallel to L_1 that passes through the point (4, 4)
- (b) find a line perpendicular to L_1 that passes through the point (4,4)

Answer
$$m_1 = \lambda \Rightarrow m_2 = 2$$
 so they are $y = (x_1, y_1) = (4, 4)$ $y - y_1 = m(x - x_1) \Rightarrow y - 4 = \lambda(x - 4) \Rightarrow y = 2x - 8 + 4$ $y = 2x - 4$

$$m_1 = 2 \Rightarrow m_2 = \frac{-1}{m_1} = \frac{-1}{2} \quad (x_1, y_1) = /4, 4$$

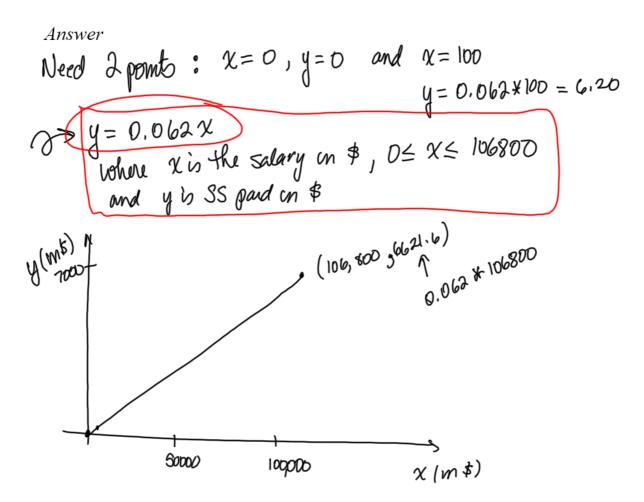
 $y - 4 = -\frac{1}{2}(x - 4) \Rightarrow y = -\frac{1}{2}x + 2 + 4 \Rightarrow y = -\frac{1}{2}x + 6$

APPLICATIONS

Example

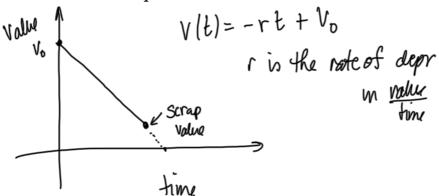
In 2010 for wages less than the maximum taxable wage base, Social Security contributions by employees are 6.2% of the employee's wages.

- a) Find a linear model that expresses the relationship between wages and Social Security contributions for employees earning less than the maximum (\$106,800 in 2010).
- b) Graph this equation and find the social security contribution for an employee earning \$35,000 in wages in a year.

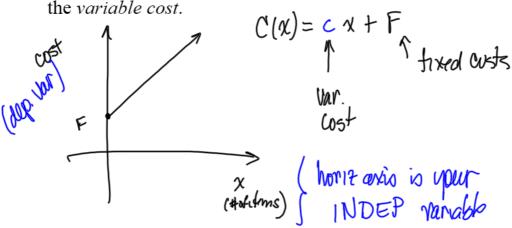


LINEAR BUSINESS MODELS

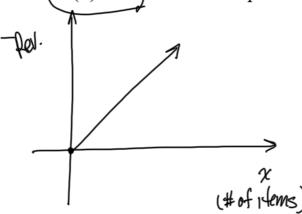
Depreciation: the value, V, of an item decreases linearly with time. The item has an initial value and then the value decreases by the same amount each time period.



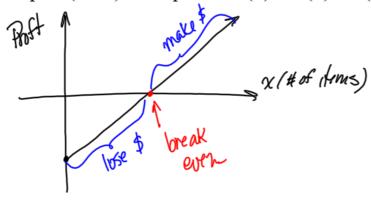
Cost: in a linear cost model the TOTAL cost to make x items is C(x) = cx + F. F represents the *fixed costs*. These are the costs you have even if you make no items. \bigcirc is the cost to make each unit, called the *variable cost*.



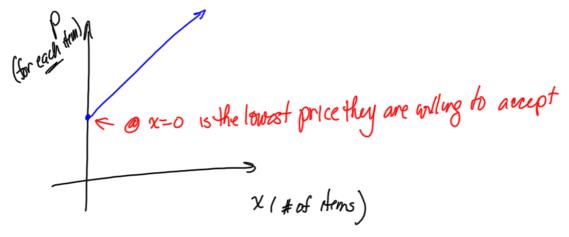
Revenue: in a linear revenue model the revenue from selling x items is R(x) = sx.) s is the sale price of a single item.



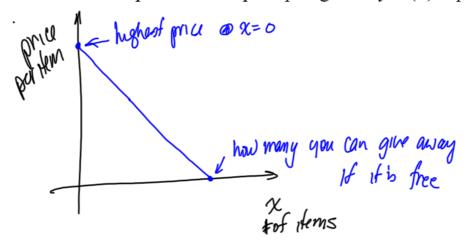
Profit: the difference between the money in (revenue) and the money spent (costs) is the profit. P(x) = R(x) - C(x)



Supply: in a linear supply model the number of items, x, that a company will supply at a price p is given by $S(x) = p = m_S x + b_S$.



Demand: in a linear demand model the number of items, x, that consumers will purchase at a price p is given by $D(x) = p = m_D x + b_D$



DEPRECIATION

Example

A car is purchased for \$18,000 and is kept for 7 years. At the end of 7 years the car is sold for \$4000. Find an equation that models the decrease in the value of the car over time. What is the car worth after 3 years?

Answer
$$(t, v) = (0, 18000)$$
 and $(7, 4000)$

$$V(t) = -2000 t + 18000$$
 where t is time in years and V is value in \$. 0 \le t \le 7

offer Syrans,
$$V(3) = -2000 (3) + 18000 = 12000$$

= $5 (3) + 18000$

Pate of dept is 2000 \$/gr

ALT: (0,18) and (7,4) where t is time on years
and V is value in th. of \$

COST, REVENUE and PROFIT

Example

Suppose a company manufactures baseball caps. In a day they can Answer (vost: $(x_1c) = (100, 600)$ and (0,200) y = 4x + 200Tevenue = R(x) = 8x P = R - C = 8x - (4x + 200) = 4x - 200produce 100 caps for a total cost of \$600. If no caps are produced

50

SUPPLY AND DEMAND

Example

A baker is willing to supply 16 jumbo cinnamon rolls to a café at a price of \$1.70 each. If she is offered \$1.50 for each roll, she will supply 4 fewer rolls to the café. At the café, customers will purchase no cinnamon rolls if the cost is \$7.20 each. However, if the price of a cinnamon roll is \$0.80, the café can sell 40 of these rolls.

Find the supply and demand equations for jumbo cinnamon rolls.

Find the supply and demand equations for jumbo cinnamon rolls.

Supply:
$$(x,p) = (16, 1.70)$$
 and $(12, 1.50)$ yr

$$S(x) = p = 0.05x + 0.9$$
 Where $x = 40 \text{ folls}$

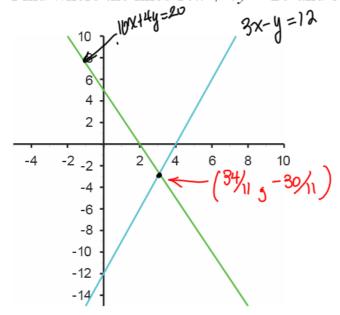
and p is the grow each in \$

Demand: $(x,p) = (0,7.20)$ and $(40,0.80)$ yr

$$D(x) = p = -0.16x + 7.2$$

THE INTERSECTION OF TWO LINES

Find where the lines 10x + 4y = 20 and 3x - y = 12 intersect.



$$y_1 = 5 - 2x = -2x + 5$$

 $y_2 = 3x - 12$

Break-even Point: This is where the cost to produce x items is the same as the revenue brought in from selling these x items. This occurs when R(x) = C(x).



Example

Find and interpret the break-even point for making and selling

baseball caps.

$$R(x) = C(x)$$

$$8x = 4x + 200$$

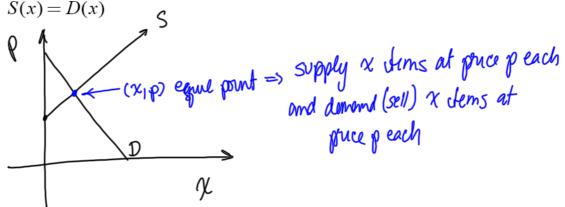
$$4x = 200 \Rightarrow x = 50$$

$$(50) = 400$$

R(50) = 8 (50) = 400 Z/ C(50) = 4(50)+200 = 400)

The company breaks even when 50 caps are made and sold. The total cost to make the cape is \$400 which is equal to the revenue from selling these caps.

Equilibrium Point: This is the price p that the consumer and producer are willing to pay/accept for x items. This occurs when



Example

Find and interpret the equilibrium point for the supply and demand for

jumbo cinnamon rolls.

umbo cinnamon rolls.
$$S(x) = \rho = 0.05x + .9$$

$$D(x) = \rho = -0.16x + 7.2$$

$$\chi = 30$$

$$S(30) = p = 0.05(30) + .9 = 2.4$$
 (30, 2.4)

S(30) = p = 0.05(30) + .9 = 2.4 (30, 2.4) D(30) = p = -0.16(30) + 7.2 = 2.4At a pull of \$2.40 each, 30 rolls will be supplied

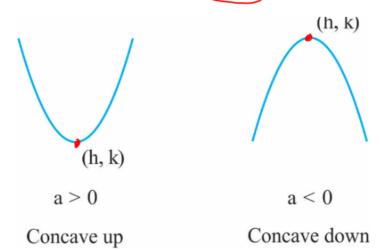
QUADRATICS

A quadratic is a polynomial of order 2:

$$y = ax^2 + bx + c, a \neq 0.$$

Every quadratic function can also be written in standard form:

$$y = a(x-h)^{2} + k$$
 where $h = -\frac{b}{2a}$ and $k = c - \frac{b^{2}}{4a}$



Note the vertex is a min

Note the vertex is a max

The x-intercepts can be found using the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ when } b^2 - 4ac \ge 0$$

Graph the following quadratics and find the intercepts and vertices $v = v^2 + v^{-12}$

$$y = x^2 + x - 12$$

$$y = 4x^2 + 16x + 2$$

$$y = -x^2 + 4x - 5$$

acts and find the intercepts and writes.

$$= 4x^{2} + 16x + 2 y = -x^{2} + 4x - 5$$

$$y = 0 x = -4$$

$$y = -4$$

$$y = -4$$

$$y = -4$$

$$y = -3$$

$$(3,0)$$

$$\chi = 0 \Rightarrow y = -12 \quad (0,-12)$$

$$b = -\frac{1}{2}(x) = -\frac{1}{2}$$

$$h = -\frac{1}{2}(1) = -\frac{1}{2}$$

$$y(-\frac{1}{2}) = (-\frac{1}{2})^2 + (\frac{1}{2}) - 12 = -\frac{12}{2}$$

$$y(-\frac{1}{2}) = (-\frac{1}{2})^2 + (\frac{1}{2}) - 12 = -\frac{12}{2}$$

$$y(-\frac{1}{2}) = (-\frac{1}{2}) = -\frac{1}{2}$$

$$y(-\frac{1}{2}) = (-\frac{1}{2}) = (-\frac{1}{2}) = -\frac{1}{2}$$

$$y(-\frac{1}{2}) = (-\frac{1}{2}) = (-\frac{2$$

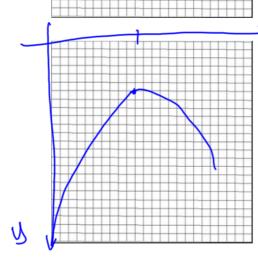
$$\chi = \frac{-16 \pm \sqrt{16^2 - 4(4)(2)^4}}{2(4)} = \frac{-16 \pm \sqrt{934}}{8}$$

$$\approx -.13 \text{ and } -3.9 \Rightarrow (-.13,0), (-3.9,0)$$

$$\approx -.13$$
 and $-3.9 \Rightarrow (-.13,0), (-3.9,0)$

Vertex >
$$h = \frac{-16}{2(4)} = -2$$
 (-25-14)

$$y = 4(-2)^{2} + 16(-2) + 2 = -14$$
 and $(0,2)$



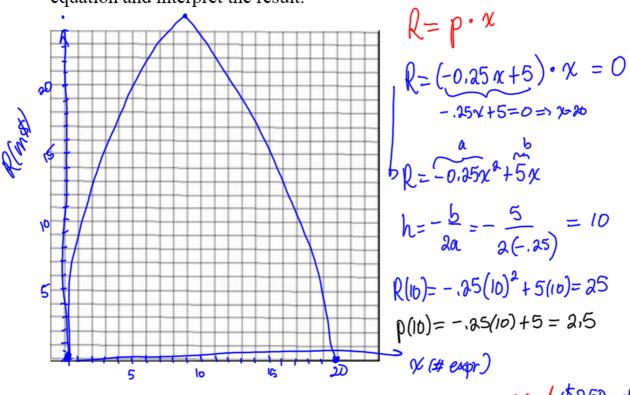
$$\chi = -\frac{4 \pm \sqrt{4^2 + 4(-1)(-5)}}{2(-1)}$$

$$\chi = -\frac{4 \pm \sqrt{4^2 + 4(-1)}}{2(-1)}$$

$$\chi = -\frac{4 \pm \sqrt{4^2 + 4(-1)}}{2(-1)}$$

$$\chi = -\frac{4 \pm \sqrt$$

Example: What is the revenue from selling espressos if the demand equation for selling espressos is p = -0.25x + 5? Graph the revenue equation and interpret the result.



The max revenue is \$25 when 10 expressos are sold at \$2.50 each.