Math 141 Review 1 (c) 2015 J.L. Epstein

WEEK 14A REVIEW (8.5 and 8.6)

Many natural and social phenomena produce a continuous distribution with a bell-shaped curve.

Every bell-shaped (NORMAL) curve has the following properties:

- Its peak occurs directly above the mean, μ
- The curve is symmetric about a vertical line through μThe curve never touches the x-axis. It extends indefinitely in both directions.
- The area between the curve and the x-axis is always 1 (total probability is 1).

The probability that a data value will fall between x = a and x = b is given by the area under the curve between x = a and x = b.

The standard normal curve has $\mu = 0$ and $\sigma = 1$ and uses Z

Calculator commands are

- normalcdf(a, b, μ, σ) to get $P(a \le x \le b) = P(a < x < b)$
- invNorm (p, μ, σ) to get the c value for $p = P(x \le c)$

area to the left

Math 141 Review (c) 2015 J.L. Epstein

Example: Given that Z is the standard normal variable, find

(a) P(Z > 0.65)

normal cdf (- 1E99,1) =. 8413

(c)
$$P(-1.2 < Z < 0)$$

normal cdf(-1.2,0)=.3849

= normal cdf(-1.2,0,0,1)

(d) value of d such that $P(Z \le d) = 0.25$

(f) a value of f such that $P(-f \le Z \le f) = 0.72$

Math 141 Review 3 (c) 2015 J.L. Epstein

Example: Suppose that the course scores are normally distributed with a mean of 73 and a standard deviation of 12.

(a) What is the probability that a student earns a C by scoring between 70 and 80? (70,80,73)=0.3189

(b) What is the minimum exam grade required for a student to score in the 90th percentile?

INV Norm (.9,73,12) = 86, 3786

(c) What grades bracket the middle 50% of the students?

mun = inv Norm (.25, 73,12) = 64,91 max = inv Norm (.75, 73,12) = 81.09