Math 167 Ch 16 Review 1 (c) Janice Epstein 2014

CHAPTER 16 – IDENTIFICATION NUMBERS

Consider the UPC code on a can of RO★TEL tomatoes

The scanner is not working so the clerk enters the numbers by hand as

0 64144 28263 2

and this is invalid even though the product code for the mild version of this is 28263. What happened?

The UPC codes use a *check digit* to minimize scanning errors. A check digit is a digit included in a code to help detect errors.

For a UPC code $a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}a_{12}$ has a_{12} chosen so that the sum

$$3(a_1 + a_3 + a_5 + a_7 + a_9 + a_{11}) + 1(a_2 + a_4 + a_6 + a_8 + a_{10})$$

is evenly divisibly by 10. What is the check digit for the mild RO★TEL?

$$\frac{12345}{06414428263}$$

$$3(0+4+4+2+2+3)+1(6+1+4+8+6)=70 \implies 90 + a_{12} \text{ divisible by 10}$$

$$\Rightarrow a_{12}=0$$

Math 167 Ch 16 Review 2 (c) Janice Epstein 2014

The numbers 20, 60, and 100 are all evenly divisible by 10 so can we find a way to talk about numbers when we only care about the remainders?

Definition: Congruence Modulo m

Let a, b, and m be integers with $m \ge 2$. Then a is congruent to b modulo m, written

$$a \equiv b \mod m$$

means that m evenly divides a-b.

Determine if the congruences below are true or false:

$$25 \equiv 1 \mod 6$$
 TRUE $100 \equiv 20 \mod 10$ TRUE $\frac{25-1}{6} = 480$ $\frac{100-20}{10} = 880$ $\frac{100-20}{10} = 880$ $\frac{52-0}{10} = 480$ $\frac{$

 $x \mod y$ is equal to the remainder when you divide x by y.

Find the following values:

(a)
$$34 \mod 5 = 4$$
 $3 + 6 + 6 + 4$

(b)
$$78 \mod 11 = \frac{1}{11} = 721$$

(c)
$$13 \mod 15 = \frac{13}{15} = 0 \text{ R13}$$

(d)
$$12 \mod 2 = 0$$
 $13 = 6 \ \text{RO}$

Math 167 Ch 16 Review (c) Janice Epstein 2014

Types of errors when dealing with identification numbers:

- Replacing one digit with a different digit (single digit error)
 - o ac entered rather than ab
- Transposing two adjacent digits (adjacent transposition error)
 - o ba entered rather than ab
- Transposing a sequence of digits (jump transposition error)
 - o cba entered rather than abc

Note that some of the digits in the UPC code are multiplied by 3. Those digits had a weight of 3.

A code $a_1a_2a_3a_4a_5a_6$ uses the last digit as a check digit. The check digit is found using the formula

mula
$$+50s$$

 $a_6 = a_1 + a_3 + 3(a_2 + a_4) \mod 10$

(a) What is the check digit for the code 23714?

$$a_6 = 2 + 7 + 3(3+1) + 4(5) = 41 \mod 10$$

(b) Find the value of the missing digit x in the code 46x782

$$a_6 = 4+ x + 3(6+9) + 5(8) = (83 + x = 92)$$

$$= 2, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102 \dots$$

(c) Will this code find an error if the first digit is entered incorrectly?

 $a_6 = a_1 + a_3 + 3(a_2 + a_4) + 5 a_5 \mod 10$ Check if $a_6 - b_6 = 0 \mod 0$ $b_6 = b_1 + a_3 + 3(a_2 + a_4) + 5 a_5 \mod 10$

$$a_{6} - b_{1} + a_{3} + 3(a_{2} + a_{4}) + 5a_{5} - b_{1} - a_{3} - 3(a_{2} + a_{4}) - 5a_{5} = (a_{1} - b_{1}) \mod 0$$

$$a_{6} - b_{6} = a_{1} + a_{3} + 3(a_{2} + a_{4}) + 5a_{5} - b_{1} - a_{3} - 3(a_{2} + a_{4}) - 5a_{5} = (a_{1} - b_{1}) \mod 0$$

$$= 0?$$

$$a_{1} - b_{1} = 0, 1, 2, ..., 9$$

$$a_{1} + a_{2} = b_{1}$$

$$a_{1} + a_{2} = b_{1}$$

$$a_{2} + a_{3} = b_{1}$$

$$a_{3} + a_{4} = b_{1}$$

$$a_{4} + a_{5} = a_{5}$$

$$a_{5} = a_{5} + a_{5} = a_{5} + a_{5} = a_{5}$$

$$a_{5} = a_{5} + a_{5} = a_{5} + a_{5} = a_{5} = a_{5} + a_{5} = a_{5} =$$

$$9-0=9$$
, $8-4=4$, etc: $|a_1-b_1|=0$, 1 , 2 ,, 9

= 0 only of a1=b1 (ND error) 80 profin ratches all errors in the 1st prostin

Math 167 Ch 16 Review 4 (c) Janice Epstein 2014

A code is given by $a_1a_2a_3$ where a_3 is the check digit and $a_3 = a_1 + 4 a_2 \mod 9$

(a) Will this check digit find all transposition errors? $\Rightarrow a_1 a_2 \text{ endered as } a_2 a_1 \text{ so find if } a_3 = b_3 \text{ (check digits and he same)}$ $a_3 = a_1 + 4a_2 \text{ mod } 9 \text{ and } b_3 = a_2 + 4a_1 \text{ } 0,9,18,27,36,etc}$ $a_3 - b_3 = a_1 + 4a_2 - a_2 - 4a_1 = 3a_2 - 3a_1 = 3(a_2 - a_1) = 0 \text{ mod } 9$ $a_3 - b_3 = a_1 + 4a_2 - a_2 - 4a_1 = 3a_2 - 3a_1 = 3(a_2 - a_1) = 0 \text{ mod } 9$ $a_{-a_1-3} \Rightarrow a_1 = 2 \text{ and } a_2 = 5 \text{ or lado mod}$

(b) Will this check digit find all single digit errors in the first position?

 $a_{1}a_{2}$ entered as $b_{1}a_{2}$ $a_{3} = a_{1}+a_{2}$ mad $a_{3} = b_{1}+a_{2}$ $a_{3}-b_{3} = a_{1}+a_{2}-b_{1}-a_{2} = a_{1}-b_{1}$ mad $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ mad $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ mad $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ mad $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ $a_{3}-b_{3}=a_{1}+a_{2}-b_{1}-a_{2}=a_{1}-b_{1}$ $a_{4}-b_{1}-a_{2}-b_{1}-a_{2}-a_{1}-a_{2}-a_{1}-a_{2}-a_{2}-a_{1}-a_{2}-a_{$

(c) Will this check digit find all single digit errors in the second position? a_1a_1 where a_1a_2 a_1b_2 $a_2=a_1+4a_2$ and $a_3=a_1+4b_2$

 $a_3 - b_3 = a_1 + 4a_2 - a_1 - 4b_2 - 4(a_2 - b_2) = 0$ mod 9] 0.19,18,27,36,45,et

 $Q_3 = Q_1 + 4q_2 \mod 11$? Check dust for 22? $Q_3 = 2 + 4(2) \mod 11 = 10 \mod 11 \Rightarrow 10$ $2 \text{ Diagram} \Rightarrow \text{ use } X$

Math 167 Ch 16 Review

5

(c) Janice Epstein 2014

Jan 31: 031

Data can be encoded in identification numbers.

The last 5 digits of Illinois driver's license numbers are based on the driver's birthday and gender. For a man, the last 5 digits are the birth year followed by the day of the year based on each month having 31 days. For a woman, 600 is added to the number. 31(m-1) + 4

(a) What would the last 5 digits of an of Illinois driver's license number look like for a man born on February 12, 1967?

6 7 6 4 3

$$31(2-1) + 12 = 43$$

(b) What do you know about a person who has the last 5 digits 10642?

Born 1910 or 2010? woman. borth day is 042

Jan 1: 001

Feb 1

Febol: 032

Marl: 063

(c) What do you know about a person who has the last 5 digits 9(37)

Man both 1890 or 1990

Dec 31: 31(12-1)+31=372

Math 167 Ch 16 Review 6 (c) Janice Epstein 2014

SAMPLE EXAM QUESTIONS FROM CHAPTER 16

- 1. Determine the check digit that should be appended to the identification number 634498, if the check digit is the number needed to bring the total of all the digits to a multiple of 10.
- (A) The code is invalid
- (B)
- (C) 8
- (D) 4

(E) None of these

2. Which, if any, of the statements below are true? Mark all correct answers.

$$\sqrt{(A)} \ 101 \equiv 1 \mod 2 : \frac{|b|-1}{2} = 50 \ \text{RO}$$

$$\int (B) 77 \equiv 0 \mod 11 \qquad \frac{\eta \eta - 0}{|I|} = \eta RD$$

$$(C)$$
 49 = 1 mod 12 $\frac{49-1}{12} = \frac{48}{12} = 4 RO$

$$(D) 39 \equiv 5 \mod 5$$
 $\frac{39-5}{5} = 6 R 4$

- (E) None of these are true.
- 3. The number 4320 is accidentally entered as 4320. What type of error is this?
- (A) A transposition error
- (B) A jump transposition error
- (C) A single digit error
- (D) A baseball error
- (E) None of these

Math 167 Ch 16 Review 7 (c) Janice Epstein 2014

- 4. The last three digits of a man's ID number are the birth day of the year based on each month of the year having 35 days. If the person is a woman, 500 is added to the birth day. 35(m-1) ± 1.036
- (a) What are the last three digits of a man's ID number if he was born on October 8^{th} ? 35(10-1)+8=323

(b) What do you know about a person if the last three digits of the person's ID number are 503?

Woman \Rightarrow 003 \Rightarrow Jan 3

(c) What do you know about a person if the last three digits of the person's ID number is 420?

Wan? but Dec 31 is 35(12-1) + 31 = 416Not vaud

Math 167 Ch 16 Review (c) Janice Epstein 2014

- 5. A code is given by $a_1a_2a_3a_4$ where a_4 is the check digit. The check digit is $a_4 = 7a_1 + 2a_2 + 5a_3 \mod 9$.
- (a) Determine the value of x in the code 2x45 given that the check digit is valid.

is valid.

$$04 = 7(2) + 2(x) + 5(4) = (5 \mod 9) = > 5, 14, ... 32, 41, 50, etc$$
 $14 + 2x + 20 = (34 + 2x)$

$$\chi = 0_1 1_1 2_1 3_2 4_1 5_1 6_1 7_1 (8) 9$$

(b) Determine if the check digit will find all single digit errors in the third osition. $a_1a_2a_3$ entered as $a_1a_2b_3$; $a_4=7a_1+2a_2+5a_3$ and $b_4=7a_1+2a_2+5b_3$ position. $a_4 - b_4 = 7a_1 + 2a_2 + 5a_3 - 7a_1 - 2a_2 - 5b_3 = 5(a_3 - b_3) = 0 \mod 9?$ |2, 3, 4, 3, 6, 7, 8, 9 |3, 4, 7, 8, 9 |3, 4, 7, 8

into the atchemors when
$$|a_3-b_3|=9$$

(c) Determine if the check digit will find all transposition errors in the a4= 7a1+2a2+5a3, b4=1a1+2a3+5a2

$$a_4 - b_4 = 7a_1 + 2a_1 + 5a_2 - 7a_1 + 2a_3 + 5a_2 = 3a_3 - 3a_2 = 3(a_3 - a_2) = 0$$
 mod 9

 $a_4 - b_4 = 7a_1 + 2a_1 + 5a_2 - 7a_1 + 2a_3 + 5a_2 = 3(a_3 - a_2) = 0$ mod 9

 $a_4 - b_4 = 7a_1 + 2a_1 + 5a_2 + 5a_3 - 7a_1 + 5a_3 + 5a_2 = 3(a_3 - a_2) = 0$ mod 9

 $a_4 - b_4 = 7a_1 + 2a_1 + 5a_2 + 5a_3 - 7a_1 + 5a_3 + 5a_3 + 5a_3 = 3a_2 = 3(a_3 - a_2) = 0$ mod 9

 $a_4 - b_4 = 7a_1 + 2a_1 + 5a_2 + 5a_3 + 5a_3 + 5a_3 = 3a_3 - 3a_2 = 3(a_3 - a_2) = 0$ mod 9

 $a_4 - b_4 = 7a_1 + 2a_1 + 5a_2 + 5a_3 + 5$