
1 Banach spaces and Hilbert spaces

We will first discuss Banach spaces, since much of what we say applies to
Hilbert spaces, without change.

Let V be a normed linear space over either the real or complex numbers.
A sequence of vectors {vj}∞j=1 is a map from the natural numbers to V . We
say that vj converges to v ∈ V if

lim
j→∞
‖vj − v‖ = 0.

A sequence {vj} is said to be Cauchy if for each ε > 0, there exists
a natural number N such that ‖vj − vk‖ < ε for every j, k ≥ N . Every
convergent sequence is Cauchy, but there are many examples of normed linear
spaces V for which there exists non-convergent Cauchy sequences. One such
example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . )
converges to

√
2 which is not a rational number. We say a normed linear

space is complete if every Cauchy sequence is convergent in the space. The
real numbers are an example of a complete normed linear space.

We say that a normed linear space is a Banach space if it is complete. We
call a complete inner product space a Hilbert space. Consider the following
examples:

1. Every finite dimensional normed linear space is a Banach space. Like-
wise, every finite dimensional inner product space is a Hilbert space.

2. Let x = (x1, x2, ..., xn, ...) be a sequence. The following spaces of se-
quences are Banach spaces:

`p = {x :
∞∑
j=1

|xj|p = ‖x‖`p <∞}, 1 ≤ p <∞ (1.1)

`∞ = {x : sup
j
|xj| <∞} (1.2)

c = {x : lim
j→∞

xj exists}, ‖x‖c = ‖x‖∞ (1.3)

c0 = {x : lim
j→∞

xj = 0}, ‖x‖c0 = ‖x‖∞ (1.4)

Except for `∞. the spaces above are separable – i.e., each has a countably
dense subset,
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3. The following function spaces are Banach spaces:

C[0, 1], ‖f‖C[0,1] = max
x∈[0,1]

|f(x)| (1.5)

C(k)[a, b], ‖f‖C(k)[a,b] =
k∑
j=0

sup
x∈[0,1]

|f j(x)| (1.6)

Lp(I), ‖f‖ =

(∫
I

|f(x)|p
) 1

p

(1.7)

L∞(I), ‖f‖L∞(I) = ess-supx∈I |f(x)| (1.8)

There are two Hilbert spaces among the spaces listed: the sequence space
`2 and the function space L2. In the result below, we will show that `∞ is
complete. After that, we will show that C[0, 1] is complete, relative to the
sup-norm, ‖f‖C[0,1] = max |f(x)|. Of course, this means that both of them
are Banach spaces.

Proposition 1.1. The space `∞ is a Banach space.

Proof. The norm on `∞ is given by

‖x‖∞ = sup
j
|x(j)|.

Let {xn}∞n=1 ⊂ `∞ denote a Cauchy sequence of elements in `∞. We show
that this sequence converges to x ∈ `∞. Since {xn} is Cauchy, for each ε > 0,
there exists an N such that for all n,m ≥ N ,

‖xn − xm‖∞ < ε. (1.9)

This implies that |xn(j) − xm(j)| < ε for all j. Therefore, the sequence
{xn(j)} is a Cauchy sequence of real numbers, and hence converges to some
value x(j). That is, limn→∞ xn(j) = x(j) exists. From (1.9), if we choose
ε = 1, then for all n,m ≥ N , we have

‖xn − xm‖∞ < 1.

In particular, it follows that

‖xn‖ < 1 + ‖xm‖, n,m ≥ N.
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Fix m. Then, for all n ≥ N , |xn(j)| ≤ ‖xn‖∞ < 1 +‖xm‖∞. Letting n→∞,
we see that

|x(j)| ≤ 1 + ‖xm‖∞
holds uniformly in j. Therefore, x ∈ `∞. To complete the proof, we need to
show that xn converges to x in norm. We have

|xn(j)− xm(j)| < ε ∀j ∈ N and n,m ≥ N.

Let n→∞. Then, xn(j)→ x(j) so we have that

|x(j)− xm(j)| < ε ∀j ∈ N,m ≥ N.

Since this holds for all j, it follows that ‖x − xm‖∞ < ε for all m ≥ N .
Therefore, the sequence xm converges to x ∈ `∞.

Proposition 1.2. Relative to the sup norm, C[0, 1] is complete and is thus
a Banach space.

Proof. Let {fn(x)}∞n=1 be a Cauchy sequence in C[0, 1]. Then, for every ε > 0,
there exists an N such that ‖fn − fm‖ < ε for all n,m ≥ N . For any fixed
t ∈ [0, 1], this implies that

|fn(t)− fm(t)| < ε ∀m,n ≥ N. (1.10)

Thus, for t fixed, {fn(t)}∞n=1 is a Cauchy sequence of real numbers, and so it
converges. Define f(t) by the pointwise limit of this sequence:

f(t) = lim
n→∞

fn(t), t ∈ [0, 1]. (1.11)

By taking the limit as m→∞ in (1.10), we see that

|fn(t)− f(t)| ≤ ε ∀n ≥ N,

which holds uniformly for all t ∈ [0, 1]. Consequently,

‖fn − f‖ = sup
t∈[0,1]

|fn(t)− f(t)| ≤ ε, ∀n ≥ N,

and so limn→∞ ‖fn − f‖ = 0. What remains is to show that f ∈ C[0, 1]. To
do that, fix t and let ε > 0. Because fn ∈ C[0, 1], there exists a δ > 0 such
that

|fn(t+ h)− fn(t)| < ε

3
∀ |h| < δ,
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assuming, of course, that t+h ∈ [0, 1]. Then applying the triangle inequality
gives

|f(t+ h)− f(t)| ≤ |f(t+ h)− fn(t+ h)|+ |fn(t+ h)− fn(t)|+ |fn(t)− f(t)|.

From (1.11), we may choose n so large that both |f(t + h)− fn(t + h)| < ε
3

and |f(t) − fn(t)| < ε
3
. Once we have found an n such that this holds, we

note that for these n

|f(t+ h)− f(t)| < ε

3
+ |fn(t+ h)− fn(t)|+ ε

3
.

Since the fn are continuous functions, we can find a δ such that |fn(t+ h)−
f(t)| < ε

3
whenever |h| < δ. It follows that, for this choice of δ, we have

|f(t+ h)− f(t)| < ε

3
+
ε

3
+
ε

3
= ε

whenever |h| < δ, which implies that f ∈ C[0, 1].

Just because a space is complete relative to one norm does not mean
that the same space will also be complete in another. The example below
illustrates this for the space of continuous functions, C[0, 1].

Example 1.1. If we replace the sup norm on C[0, 1] with the L1 norm, then
C[0, 1] is not complete.

Proof. To simplify the discussion, we will work with [−1, 1] rather than [0, 1].
Consider the sequence of continuous functions fn ∈ C[−1, 1] defined piece-
wise by

fn(t) =


−1 x ∈ [−1,− 1

n
]

nx x ∈ [− 1
n
, 1
n
]

1 x ∈ [ 1
n
, 1].

Let n > m. We note that |fn(t) − fm(t)| will be symmetric about t = 0.
Using this, we see that

|fn(t)− fm(t)| =


nt−mt t ∈ [0, 1

n
]

1−mt t ∈ [ 1
n
,− 1

m
]

0 t ∈ [ 1
m
, 1]
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Computing the integrals over [0, 1] yields∫ 1

0

|fn(t)− fm(t)| dt =

∫ 1
n

0

(n−m)t dx+

∫ 1
m

1
n

1−mtdx

= (n−m)
1

2n2
+

1

m
− 1

n
− m

2

1

m2
+
m

2

1

n2

=
1

2

[ 1

m
− 1

n

]
Making use of the symmetry in conjunction with the result above then gives
us ‖fn − fm‖L1[−1,1] = 1

m
− 1

n
. Let N > 2

ε
. Then, for m,n ≥ N , we find that

‖fn − fm‖L1[−1,1] <
1

n
+

1

m
<
ε

2
+
ε

2
= ε,

and so the sequence is Cauchy in the L1[−1, 1] norm. However, the limit is
not continuous. A computation shows that, for the step function f(t) defined
by

f(t) =


−1 t ∈ [−1, 0)

0 t = 0

1 t ∈ (0, 1],

we have ‖f − fn‖L1[−,1] = 1
n
, and so

lim
n→∞

‖f − fn‖L1 = 0.

Therefore, the sequence of functions fn ∈ C[−1, 1] converges to a discontin-
uous function under the L1[−1, 1] norm, and, consequently, C[−1, 1] is not
complete under the L1[−1, 1] norm.

2 Approximating Continuous Functions

Modulus of continuity Every f ∈ C[0, 1] is uniformly continuous: for
every ε > 0, there is a δ > 0 such that

|f(t2)− f(t1)| < ε (2.1)

as long as t1, t2 ∈ [0, 1] satisfy |t2 − t1| < δ.
Using this fact, we are able to make the following definition:
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Definition 2.1. Let f ∈ C[0, 1]. The modulus of continuity for f is defined
to be

ω(f, δ) = sup
|t1−t2|≤δ

|f(t1)− f(t2)|, ∀ t1, t2 ∈ [0, 1]. (2.2)

Example 2.1. Let f(x) =
√
x, 0 ≤ x ≤ 1. Show that ω(f, δ) ≤ C

√
δ.

Proof. Let 0 < s < t ≤ 1. We note that

0 <
√
t−
√
s =

t− s√
t+
√
s

=
√
t− s

( √t− s√
t+
√
s

)
=
√
t− s

√
1− s

t

1 +
√

s
t

≤
√
t− s =

√
δ

Hence, ω(f, δ) ≤
√
δ. To get equality, take s = 0 and t = δ.

Example 2.2. Suppose that f ∈ C(1)[0, 1]. Show that ω(f, δ) ≤ ||f ′||∞δ.

Proof. Because f ∈ C(1), we can estimate f(t)− f(s) this way:

|f(t)− f(s)| ≤
∫ t

s

|f ′(x)| dx ≤ (t− s)‖f ′‖∞ ≤ δ‖f ′‖∞, (2.3)

which immediately gives ω(f, δ) ≤ δ‖f ′‖∞.

Linear splines One very effective way to approximate a continuous func-
tion f ∈ C[0, 1], given values of f at a finite set of points in t0 = 0 < t1 <
t2 < · · · < tn = 1, is to use a “connect-the-dots” interpolant. The interpolant
is obtained by joining points (tj, f(tj) by a straight. This procedure results
in a piecwise-linaer, continuous function with corners at the the tj’s. More
formally, this is a called linear spline interpolant. Linear spline interpolants
are used for generating plots in many standard programs, such as Matlab or
Mathematica.

Defining a space of linear splines starts with sequence of points (or par-
tition of [0, 1]) ∆ = {t0 = 0 < t1 < t2 < · · · < tn = 1}. ∆ called a knot
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sequence. Linear splines on [0, 1] with knot sequence ∆ are the set of all
piecewise linear functions that are continuous on [0, 1] and (possibly) have
corners at the knots. As described above, we can interpolate continuous
functions using linear splines. Let f ∈ C[0, 1] and let yj = f(tj). This is
linear spline sf (x) that is constructed by joining pairs of points (tj, yj) and
(tj+1, yj+1) with straight lines; the resulting spline is the unique. The result
below gives an estimate of the error made by replacing f by sf .

Proposition 2.1. Let f ∈ C[0, 1] and let ∆ = {t0 = 0 < t1 < · · · < tn = 1}
be a knot sequence with norm ‖∆‖ = max |tj − tj+1|, j = 0, . . . , n− 1. If sf
is the linear spline that interpolates f at the tj’s, then,

‖f − sf‖∞ ≤ ω(f, ‖∆‖) (2.4)

Proof. Consider the interval Ij = [tj, tj+1]. We have on Ij that sf (t) is a line
joining (tj, f(tj)) and (tj+1, f(tj+1)); it has the form

sf (t) =
tj+1 − t
tj+1 − tj

f(tj) +
t− tj
tj+1 − tj

f(tj+1)

Also, note that we have

tj+1 − t
tj+1 − tj

+
t− tj
tj+1 − tj

= 1.

Using these equations, we see that f(t) − sf (t) for any t ∈ [tj, tj+1] can be
written as

f(t)− sf (t) = f(t)
( tj+1 − t
tj+1 − tj

+
t− tj
tj+1 − tj

)
− sf (t)

= (f(t)− f(tj))
tj+1 − t
tj+1 − tj

+ (f(t)− f(tj+1))
t− tj
tj+1 − tj

.

By the definition of the modulus of continuity, |f(x) − f(y)| ≤ ω(f, δ) for
any x, y such that |x − y| ≤ δ. If we set δj = tj+1 − tj, then we see that on
the interval Ij we have

|f(t)− sf (t)| ≤
∣∣(f(t)− f(tj))

∣∣ tj+1 − t
tj+1 − tj

+
∣∣f(t)− f(tj+1)

∣∣ t− tj
tj+1 − tj

≤
(
tj+1 − t
tj+1 − tj

+
t− tj
tj+1 − tj

)
ω(f, δj) = ω(f, δj).
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Because the modulus of continuity is non decreasing (exercise 4.5(c)) and
δj ≤ ‖∆‖, we have ω(f, δj) ≤ ω(f, ‖∆‖). Consequently, |f(t) − sf (t)| ≤
ω(f, ‖∆‖), uniformly in t. Taking the supremum on the right side of this
inequality then yields (2.4).

3 Basis Splines – B-Splines

For notation, we define

(x)+ =

{
x x ≥ 0

0 x < 0

and

N2(x) = (x)+ − 2(x− 1)+ + (x− 2)+. (3.1)

Let ∆ be an equally spaced knot sequence tj = j
n
, j = 0, . . . , n.

Proposition 3.1. Let B = {N2(nx − j + 1) : j = 0, . . . , n}. Then, B is a

basis for S
1
n (1, 0) provided x ∈ [0, 1].

Proof. Exercise.

Example 3.1. Consider n = 4. Recall that the values at the corners and
endpoints determine the linear spline. So, let yj be given at j = 0, 1, 2, 3, 4.
Then, the interpolating spline is

s(x) =
4∑
j=0

yjN2(4x− j + 1), 0 ≤ x ≤ 1.

Theorem 3.1. There is a countably dense set of continuous functions.

Proof. Consider the functions of the form

n∑
j=0

qjN2(nx− j + 1), x ∈ [0, 1], qj ∈ Q. (3.2)

For each n, there are countably many such splines because the rationals
are a countable set. Since there are countably many n and the union of
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countably many countable sets is countable, the collection of such functions
is countable. We now demonstrate that this is a dense subset of C[0, 1]. Let
f ∈ C[0, 1] and consider the interpolant

sf (x) =
n∑
j=0

f(
j

n
)N2(nx− j + 1

for x ∈ [0, 1]. Then, we have previously shown that ‖f − sf‖∞ ≤ ω(f, 1
n
).

Consider another spline

s̃(x) =
N∑
j=0

qjN2(nx− j + 1) (3.3)

which is a member of the countable set of splines we defined previously. By
computation, it follows that

s(x)− s̃(x) =

( j+1
n
− x

1
n

)(
f
( j
n

)
− qj

)
+

(
x− j

n
1
n

)(
f
(j + 1

n

)
− qj+1

)
.

Therefore, we can bound the maximum pointwise error by

‖s− s̃‖∞ ≤ max
0≤j≤n

|f(
j

n
)− qj|.

Choose each qj to be a rational approximation of f( j
n
). That is, we choose

qj ∈ Q such that |qj − f( j
n
)| < ε

2
for each j = 0, . . . , n. Then, it follows that

‖s− s̃‖∞ < ε
2
. By choosing n large enough so that ω(f, 1

n
) < ε

2
and the qj in

this manner, we find by applying the triangle inequality that

‖f − s̃‖∞ ≤ ‖f − s‖∞ + ‖s− s̃‖∞
≤ ε

2
+
ε

2
= ε.

Therefore, we have constructed a countable set of splines and demonstrated
that they are dense in C[0, 1].

Note that both `∞ and L∞ are not separable. In `∞, consider the un-
countable set A = {x ∈ `∞ : xj ∈ {0, 1}}. If xα, xα′ ∈ A differ, then
‖xα − xα′‖∞ = 1, since they differ in at least one coordinate j, and the only
possibility is for |xα(j) − xα′(j)| = 1. Suppose that `∞ is separable. Then,
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there exists a countable dense subset {vj}∞j=1. In particular, for any x ∈ `∞
and for each ε, there exists at least one vj such that ‖vj − x‖ < ε. Let ε = 1

4
.

Since there are uncountably many xα ∈ A, there exists a vj such that there
exists xα 6= xα′ ∈ A such that both |vj − xα| < ε and |vj − xα′| < ε. Then,
by the triangle inequality, we find

‖xα − xα′‖∞ ≤ ‖xα − vj‖∞ + ‖xα′ − vj‖∞

< ε+ ε =
1

2

which implies that ‖xα− xα′‖∞ < 1
2
, which is a contradicts the computation

‖xα − xα′‖∞ = 1.

4 Finite Element Spaces

Let t0 = 0 < t1 < t2 < · · · < tn = 1. We refer to this as a knot sequence,
which we denote by ∆ = {tj}nj=0. We define the subintervals Ij = [tj, tj+1)
and let πk denote the set of polynomials of degree less than or equal to k.
We define the space of splines as follows:

S∆(k, r) = {φ : [0, 1]→ R : φ|Ij ∈ πk(Ij) and φ ∈ C(r)([0, 1])} (4.1)

When r = −1, φ is discontinuous. The finite element spaces S
1
n (k, r) are

degree k polynomials on each interval and have r ≤ k − 1 derivatives that
match at the interior points. We consider the following question: how many
parameters are required to describe a function in S

1
n (k, r)? That is, what is

the dimension of this linear space?
There are n intervals and on each interval and on each interval there

are k + 1 free parameters since the function is a degree k polynomial on
each interval. Therefore, we have n(k + 1) free parameters. At each of the
n − 1 knots, the polynomials most smoothly join, there are r + 1 equations
that must match (the polynomials across a knot must match and their r
derivatives must match). This yields (n − 1)(r + 1) constraints. Therefore,
we have at least n(k + 1)− (n− 1)(r + 1) = n(k − r) + r + 1 parameters. It

follows that the dimension of S
1
n (k, r) = n(k − r) + r + 1 provided that the

equations at the knots are independent (which can be shown).

For an example, consider k = 1, r = 0. This is the space S
1
n (1, 0) which

has dimension n(1− 0) + 0 + 1 = n+ 1. If we consider k = m− 1, r = m− 2,

then the dimension S
1
n (m−1,m−2) is n(m−1−m+2)+m−2+1 = n+m−1.
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