Name_____ 1

Final Exam

Instructions. This test is due on 12/11/13. You may get help on the test *only* from your instructor, and no one else. You *may* use my notes, other books, the web, etc. If you do so, quote the source. Use this test paper as a cover sheet when you turn in the exam.

Notation. \mathcal{H} denotes a separable Hilbert space; $\mathcal{B}(\mathcal{H})$, the bounded linear operators on \mathcal{H} ; $\mathcal{C}(\mathcal{H})$, the compact operators in $\mathcal{B}(\mathcal{H})$.

1. Let $f \in C[0, 2\pi]$. In assignment 5, if you scale the integrals involved, you derived the trapezoidal rule for numerically approximating $\int_0^{2\pi} f(x)dx$. If a = 0, $b = 2\pi$ and f is 2π periodic, this has the form $Q_{trap}(f) = \frac{2\pi}{n} \left(\sum_{k=0}^{n-1} f(\frac{2\pi k}{n}) \right)$. Let $E_n = \left| \int_0^{2\pi} f(x)dx - Q_n(f) \right|$.

(a) (5 pts.) Show that
$$Q_{trap}(e^{ikx}) = \begin{cases} 0 & k \not\equiv 0 \mod n \\ 2\pi & k \equiv 0 \mod n \end{cases}$$

- (b) (10 pts.) Let f(x) be the 2π -periodic function that equals $x^2(2\pi x)^2$ when $x \in [0, 2\pi]$. Show that $\int_0^{2\pi} f(x) dx = 16\pi^5/15$. Prove that $E_n \leq Cn^{-4}$. (Hint: $f = \frac{8\pi^4}{15} \frac{24}{\pi} \sum_{k \neq 0} e^{ikx} k^{-4}$.)
- (c) (5 pts.) Use Matlab or some other program to plot $\log(E_n)$ vs. $\log n$, for n = 16, 64, 256, 1024. This should be a straight line. What is its slope? Does it agree with what you found in part (b)?
- 2. Let \mathcal{H} be a *complex* Hilbert space, with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, and let $L \in \mathcal{B}(\mathcal{H})$
 - (a) (5 pts.) Verify that $\langle L(u + e^{i\alpha}v), u + e^{i\alpha}v \rangle \langle L(u e^{i\alpha}v), u e^{i\alpha}v \rangle = 2e^{-i\alpha} \langle Lu, v \rangle + 2e^{i\alpha} \langle Lv, u \rangle$. (You will need this below.)
 - (b) (10 pts.) Show that if $L = L^*$, then $||L|| = \sup_{||u||=1} |\langle Lu, u \rangle|$.
 - (c) (10 pts.) Show that if $M = \sup_{\|u\|=1} |\langle Lu, u \rangle$, then $M \leq \|L\| \leq 2M$, whether or not L is self adjoint. Give an example that shows this result is *false* in a *real* Hilbert space.
- 3. (10 pts.) Let $K \in \mathcal{C}(\mathcal{H})$ be self adjoint. Show that the only possible limit point of the set of eigenvalues of K is 0; i.e., the non-zero eigenvalues of K are isolated.

- 4. (5 pts.) Let $K \in C(\mathcal{H})$ be self adjoint. Suppose the range of K contains a dense subset of \mathcal{H} , and that an o.n. basis has been chosen for the eigenspace of each nonzero eigenvalue of K. Show that the set of all of these eigenvectors form a complete, orthonormal set.
- 5. Let $\mathcal{H} = L^2[0, 1]$. Consider the boundary value problem,

$$Lu := \frac{d}{dx} \left((1+x)\frac{du}{dx} \right) = f(x), \ u(0) = 0, \ u'(1) = 0.$$
(1)

- (a) (5 pts.) Find G(x, y), the Green's function for (1).
- (b) (5 pts.) Let $Gf(x) = \int_0^1 G(x, y) f(y) dy$. Show that the range of G contains a dense set in \mathcal{H} . (Hint: show that every $v \in C^2[0, 1]$ with support in (0, 1) is in the range of G. Explain why this is dense in \mathcal{H} .)
- (c) (5 pts.) Use it and the previous problem to show that the eigenfunctions for $\frac{d}{dx}\left((1+x)\frac{du}{dx}\right) + \lambda u = 0$, u(0) = 0, u'(1) = 0 form a complete orthogonal set.
- 6. Let $\|\cdot\|_{op}$ be the operator norm for $\mathcal{B}(\mathcal{H})$.
 - (a) (5 pts.) Show that in $\|\cdot\|_{op}$, then $\mathcal{B}(\mathcal{H})$ is a Banach space.
 - (b) (10 pts.) Consider the operator $L = I \lambda M$, with $M \in \mathcal{B}(\mathcal{H})$. Show that if $|\lambda| < ||M||_{op}^{-1}$, then, in the operator norm, $\sum_{k=0}^{\infty} \lambda^k M^k = (I - \lambda M)^{-1}$. (This series is called a Neumann expansion for $(I - \lambda M)^{-1}$.)
- 7. (10 pts.) Show that B, B^{-1} are in $\mathcal{B}(\mathcal{H})$, and $K \in \mathcal{C}(\mathcal{H})$, then the range of $L = B + \lambda K$ is closed.