1 Construction of Cubic Splines

The cubic splines are piecewise cubic polynomials on $[0,1]$. We denote the set of cubic splines by $S^{h}(3,1)$. The cubic splines can be used to interpolate simultaneously both pointwise values of a function and pointwise values of the derivatives on a set of knots $\left\{x_{j}\right\}_{j=1}^{n}$. That is, if the values $f\left(x_{j}\right)$ and $f^{\prime}\left(x_{j}\right)$ are known, then there exists a cubic spline $s \in S^{h}(3,1)$ satisfies both $s\left(x_{j}\right)=f\left(x_{j}\right)$ and $s^{\prime}\left(x_{j}\right)=f^{\prime}\left(x_{j}\right)$. By a formula derived in the previous set of notes, the dimension of $S^{\frac{1}{n}}(3,1)$ is $2 n+2$.

We construct a basis of functions for $S^{\frac{1}{n}}(3,1)$ by first constructing two interpolating functions. Consider the interval $[0,1]$ and the problem of finding a cubic polynomial $\phi(x)$ such that $\phi(0)=1$, and $\phi(1)=\phi^{\prime}(1)=\phi^{\prime}(0)=0$. Then, a polynomial of the form

$$
\phi(x)=A(x-1)^{3}+B(x-1)^{2}
$$

satisfies $\phi(1)=\phi^{\prime}(1)=0$. Substituting the values for $\phi(0)=1$ and $\phi^{\prime}(0)=0$ yields $-A+B=1$ and $3 A-2 B=0$, which has the solution $A=2$ and $B=3$. Then, after re-arranging, we see that

$$
\phi(x)=2(x-1)^{3}+3(x-1)^{2}=(x-1)^{2}(2 x+1) .
$$

We then define

$$
\phi(x)= \begin{cases}(|x|-1)^{2}(2|x|+1) & |x| \leq 1 \tag{1}\\ 0 & |x|>1\end{cases}
$$

The function ϕ yields zero derivative data at the endpoints, and is one at $x=0$. The function ϕ will be used to interpolate the pointwise values of a function, while yielding zero derivative data on each of the knots.

We next construct a function ψ that takes zero value at the endpoints, but assumes a derivative value of one at 0 . We let ψ be the cubic function

$$
\psi(x)=A(x-1)^{3}+B(x-1)^{2}
$$

which already satisfies $\psi(1)=\psi^{\prime}(1)=0$. The condition $\psi(0)=0$ implies $A=B$ and the condition $\psi^{\prime}(0)=1$ implies $3 A-2 B=1$. Combining these conditions yields the function

$$
\psi(x)=x(x-1)^{2} .
$$

We then define

$$
\psi(x)= \begin{cases}x(|x|-1)^{2} & |x| \leq 1 \tag{2}\\ 0 & |x|>1\end{cases}
$$

We now construct a basis for $S^{\frac{1}{n}}(3,1)$ by using shifts and translates of the ϕ and ψ functions defined in (??) and (??). We define

$$
\begin{equation*}
\phi_{j}(x):=\phi(n x-j) . \tag{3}
\end{equation*}
$$

Notice that $\phi_{0}(x)=\phi(n x)$ and $\phi_{j}(x)=\phi\left(n\left(x-\frac{j}{n}\right)\right)=\phi_{0}\left(x-\frac{j}{n}\right)$. That is, $\phi_{j}(x)$ is $\phi_{0}(x)$ translated by $\frac{j}{n}$ and furthermore that $\phi_{j}(x)$ is supported on the interval $\left[\frac{j-1}{n}, \frac{j+1}{n}\right]$.

To construct the ψ_{j} basis functions, we first consider the derivative of $\psi(n x-j)$. We note that

$$
\left.\frac{d}{d x}\right|_{x=\frac{j}{n}}(\psi(n x-j))=\left.n \psi^{\prime}(n x-j)\right|_{x=\frac{j}{n}}=n \psi^{\prime}(0)=n .
$$

From this computation, we see that it is not correct to choose $\psi_{j}(x)=$ $\psi(n x-j)$. We must properly scale it by n. Consequently, we define

$$
\begin{equation*}
\psi_{j}(x)=\frac{1}{n} \psi(n x-j) \tag{4}
\end{equation*}
$$

and we see the the support of ψ_{j} is also contained in the interval $\left[\frac{j-1}{n}, \frac{j+1}{n}\right]$.

2 Interpolation with Cubic Splines

We consider the problem of interpolating a function f at a set of knots spaced equally by distance $\frac{1}{n}$ using cubic splines constructed in the previous section. In addition to interpolating pointwise values of f at the knots, the cubic splines allow for interpolation of derivative data of f at the knots. Let $s \in S^{\frac{1}{n}}(3,1)$ be the interpolant

$$
s(x)=\sum_{j=0}^{n} f\left(x_{j}\right) \phi_{j}(x)+f^{\prime}\left(x_{j}\right) \psi_{j}(x) .
$$

It follows by the formulas from the previous section that $s\left(\frac{j}{n}\right)=f\left(\frac{j}{n}\right)$ and $s^{\prime}\left(\frac{j}{n}\right)=f^{\prime}\left(\frac{j}{n}\right)$. This demonstrates that the cubic splines can be used to simultaneously interpolate pointwise values of f and pointwise values of f^{\prime}. We have not demonstrated that the set of functions $\left\{\phi_{j}, \psi_{j}\right\}_{j=0}^{n}$ are a basis for $S^{\frac{1}{n}}(3,1)$. We note that there are $n+1$ of each, which gives $2 n+2$ total functions, which is the dimension of $S^{\frac{1}{n}}(3,1)$. Therefore, it suffices to show that the set $\left\{\phi_{j}, \psi_{j}\right\}_{j=0}^{n}$ are linearly independent. Suppose not. Then, there exists an $s(x) \in S^{\frac{1}{n}}(3,1)$ such that $s\left(\frac{j}{n}\right)=s^{\prime}\left(\frac{j}{n}\right)=0$ for $j=0, \ldots, n$ but $s \neq 0$. Consider an interval $\left[\frac{j}{n}, \frac{j+1}{n}\right]$. On this interval, we know that s is a cubic polynomial of the form

$$
s(x)=A\left(x-\frac{j}{n}\right)^{2}(C x+D)
$$

since s and s^{\prime} both have zeros at $\frac{j}{n}$. Alternatively, we may express $s(x)=$ $A\left(x-\frac{j}{n}\right)^{3}+B\left(x-\frac{j}{n}\right)^{2}$. Substituting $x=\frac{j+1}{n}$ yields

$$
0=\frac{A}{n^{2}}+\frac{B}{n}=0
$$

and

$$
0=\frac{3 A}{n^{2}}+\frac{2 B}{n}=0
$$

by using $s^{\prime}\left(\frac{j+1}{n}\right)=0$. This yields a solution of $A=B=0$. Therefore, the set $\left\{\phi_{j}, \psi_{j}\right\}_{j=0}^{n}$ is linearly independent, and hence spans $S^{\frac{1}{n}}(3,1)$.

3 Finite Element Methods and Galerkin Methods

Consider the problem of finding the "smoothest" function in $S^{\frac{1}{n}}(3,1)$ such that at the knots $x_{j}, s\left(x_{j}\right)=f_{j}$ for $j=0, \ldots, n$. To define "smoothest", we seek a function s that minimizes

$$
\begin{equation*}
\|s\|^{2}:=\int_{0}^{1}\left(s^{\prime \prime}(x)\right)^{2} d x \tag{5}
\end{equation*}
$$

over all $s \in S^{\frac{1}{n}}(3,1)$ in which $s\left(x_{j}\right)=f_{j}$ for $j=0, \ldots, n$.

Since s is a piecewise cubic function, $s^{\prime \prime}$ exists and is piecewise continuous. Therefore, the equation (??) is well defined for all of $s \in S^{\frac{1}{n}}(3,1)$. In fact, it can be shown that (??) is an inner product on the set of functions in $S^{\frac{1}{n}}(3,1)$ which are zero at the endpoints.

Any function $s \in S^{\frac{1}{n}}(3,1)$ such that $s\left(x_{j}\right)=f_{j}$ can be written in the form

$$
s\left(x_{j}\right)=\sum_{j=0}^{n} f_{j} \phi_{j}(x)-\sum_{j=0}^{n} \alpha_{j} \psi_{j}(x) .
$$

Let $f=\sum_{j=0}^{n} f_{j} \phi_{j}(x)$. We seek to find coefficients α that minimize the norm of s. That is, we want to solve the problem

$$
\begin{equation*}
\min _{g \in \operatorname{span}\left(\psi_{j}\right)}\|f-g\| . \tag{6}
\end{equation*}
$$

This is a least-squares problem which can be solved by solving the normal equations. We expand $g=\sum_{j=0}^{n} \alpha_{j} \psi_{j}$ and we seek to find coefficients α_{j} such that

$$
\begin{equation*}
\left\langle f-g, \psi_{k}=0\right\rangle \tag{7}
\end{equation*}
$$

for $k=1, \ldots, n$. Expanding g in terms of the ψ_{k} functions, we see this yields a system of equations

$$
\sum_{j=0}^{n} \alpha_{j}\left\langle\psi_{j}, \psi_{k}\right\rangle=\left\langle f, \psi_{k}\right\rangle
$$

Due to the compact support of ψ_{k}, we see that

$$
\begin{equation*}
\left\langle\psi_{j}, \psi_{k}\right\rangle=\int_{0}^{1} \psi_{j}^{\prime \prime}(x) \psi_{k}^{\prime \prime}(x) d x=\int_{\left[\frac{j-1}{n}, \frac{j+1}{n}\right] \cap\left[\frac{k-1}{n}, \frac{k+1}{n}\right]} \psi_{j}^{\prime \prime}(x) \psi_{k}^{\prime \prime}(x) d x \tag{8}
\end{equation*}
$$

This integral is nonzero only for $k=j-1, k=j$ or $k=j+1$. Therefore the matrix $G_{j k}=\left\langle\psi_{j}, \psi_{k}\right\rangle, G$ is a tridiagonal matrix.

