1 Construction of Cubic Splines

The cubic splines are piecewise cubic polynomials on [0,1]. We denote the
set of cubic splines by S"(3,1). The cubic splines can be used to interpolate
simultaneously both pointwise values of a function and pointwise values of
the derivatives on a set of knots {z;}7_;. That is, if the values f(z;) and
f'(z;) are known, then there exists a cubic spline s € S"(3,1) satisfies both
s(xzj) = f(z;) and §'(z;) = f'(z;). By a formula derived in the previous set
of notes, the dimension of S#(3,1) is 2n + 2.

We construct a basis of functions for S %(3, 1) by first constructing two
interpolating functions. Consider the interval [0, 1] and the problem of finding
a cubic polynomial ¢(z) such that ¢(0) = 1, and ¢(1) = ¢'(1) = ¢'(0) =0
Then, a polynomial of the form

¢(x) = Az — 1)> + B(x — 1)

satisfies ¢(1) = ¢/(1) = 0. Substituting the values for ¢(0) = 1 and ¢'(0) = 0
yields —A + B = 1 and 3A — 2B = 0, which has the solution A = 2 and
B = 3. Then, after re-arranging, we see that

d(x) =2(x — 1) +3(x — 1)? = (x — 1)*(2z + 1).

We then define
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The function ¢ yields zero derivative data at the endpoints, and is one at
x = 0. The function ¢ will be used to interpolate the pointwise values of a
function, while yielding zero derivative data on each of the knots.

We next construct a function 1 that takes zero value at the endpoints,
but assumes a derivative value of one at 0. We let 1 be the cubic function

$(x) = Az — 1) + B(x — 1)?

which already satisfies ¥(1) = ¢’(1) = 0. The condition ¥(0) = 0 implies
A = B and the condition ¢’(0) = 1 implies 34 — 2B = 1. Combining these
conditions yields the function

() = 2o — 1)2.
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We then define

() =
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|z| > 1

We now construct a basis for S %(3, 1) by using shifts and translates of
the ¢ and 1 functions defined in (?7) and (?7). We define

¢j(x) := p(nx — j). (3)

Notice that ¢o(z) = ¢(nz) and ¢;(z) = ¢(n(x — 1)) = ¢o(x — £). That is,
¢;(z) is ¢o(z) translated by £ and furthermore that ¢;(x) is supported on
the interval [L1, ZH.

To construct the v; basis functions, we first consider the derivative of

(nx — 7). We note that

d

| @ - ) = —j)  =n(0) =n.
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From this computation, we see that it is not correct to choose ¥;(z) =
t(nx — 7). We must properly scale it by n. Consequently, we define

Uyla) = —plne — j) (@

J’;{ﬂ]

and we see the the support of 1; is also contained in the interval [Z—,

2 Interpolation with Cubic Splines

We consider the problem of interpolating a function f at a set of knots
spaced equally by distance % using cubic splines constructed in the previous
section. In addition to interpolating pointwise values of f at the knots, the
cubic splines allow for interpolation of derivative data of f at the knots. Let
s € Su(3,1) be the interpolant

s(x) = Z f@)di(x) + f'(z);(x).



It follows by the formulas from the previous section that s(%) =f (%) and
s'(£) = f'(£). This demonstrates that the cubic splines can be used to
simultaneously interpolate pointwise values of f and pointwise values of f’.
We have not demonstrated that the set of functions {¢;,1;}7_, are a basis
for S (3,1). We note that there are n + 1 of each, which gives 2n + 2 total
functions, which is the dimension of Sw(3,1). Therefore, it suffices to show
that the set {¢;,; }?:0 are linearly independent. Suppose not. Then, there
exists an s(z) € S (3,1) such that s(2) = s(L) =0for j =0,...,n but
s # 0. Consider an interval [£, Z1]. On this interval, we know that s is a
cubic polynomial of the form

d@:A@—#%%+D)

since s and s’ both have zeros at Z. Alternatively, we may express s(z) =
Az — 1)3 4+ B(z — 1)2. Substituting z = 2 yields
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by using s’ (]%1) = 0. This yields a solution of A = B = 0. Therefore, the

set {¢;, 1} is linearly independent, and hence spans S %(3, 1).

3 Finite Element Methods and Galerkin Meth-
ods

Consider the problem of finding the “smoothest” function in S %(3, 1) such
that at the knots z;, s(z;) = f; for j =0,...,n. To define “smoothest”, we
seek a function s that minimizes

]2 = / (5" (2))? de (5)

over all s € S (3,1) in which s(xj) = fjfor j=0,...,n.



Since s is a piecewise cubic function, s” exists and is piecewise continuous.
Therefore, the equation (??) is well defined for all of s € S#(3,1). In fact, it
can be shown that (??) is an inner product on the set of functions in 57 (3,1)
which are zero at the endpoints.

Any function s € Sw (3,1) such that s(x;) = f; can be written in the form

Let f = Z;L:O fi¢;(x). We seek to find coefficients a that minimize the norm
of s. That is, we want to solve the problem

min )Hf—gl\- (6)
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This is a least-squares problem which can be solved by solving the normal

equations. We expand g = Z?:o a;1; and we seek to find coefficients «;

such that

(f—9,%r=0) (7)

for k =1,...,n. Expanding g in terms of the v, functions, we see this yields
a system of equations

S oW, k) = (f. ).
§=0
Due to the compact support of 1, we see that

1
<¢j,¢k>=/0 Vi (z) k(x)dx:/[jlﬁjzl]m[k_l’w} V()i (x) de. (8)
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This integral is nonzero only for k = j—1, k = j or k = 57+ 1. Therefore the
matrix G, = (¢;,Y), G is a tridiagonal matrix.



