
1 Construction of Cubic Splines

The cubic splines are piecewise cubic polynomials on [0, 1]. We denote the
set of cubic splines by Sh(3, 1). The cubic splines can be used to interpolate
simultaneously both pointwise values of a function and pointwise values of
the derivatives on a set of knots {xj}nj=1. That is, if the values f(xj) and
f ′(xj) are known, then there exists a cubic spline s ∈ Sh(3, 1) satisfies both
s(xj) = f(xj) and s′(xj) = f ′(xj). By a formula derived in the previous set

of notes, the dimension of S
1
n (3, 1) is 2n+ 2.

We construct a basis of functions for S
1
n (3, 1) by first constructing two

interpolating functions. Consider the interval [0, 1] and the problem of finding
a cubic polynomial φ(x) such that φ(0) = 1, and φ(1) = φ′(1) = φ′(0) = 0.
Then, a polynomial of the form

φ(x) = A(x− 1)3 +B(x− 1)2

satisfies φ(1) = φ′(1) = 0. Substituting the values for φ(0) = 1 and φ′(0) = 0
yields −A + B = 1 and 3A − 2B = 0, which has the solution A = 2 and
B = 3. Then, after re-arranging, we see that

φ(x) = 2(x− 1)3 + 3(x− 1)2 = (x− 1)2(2x+ 1).

We then define

φ(x) =

{
(|x| − 1)2(2|x|+ 1) |x| ≤ 1

0 |x| > 1
(1)

The function φ yields zero derivative data at the endpoints, and is one at
x = 0. The function φ will be used to interpolate the pointwise values of a
function, while yielding zero derivative data on each of the knots.

We next construct a function ψ that takes zero value at the endpoints,
but assumes a derivative value of one at 0. We let ψ be the cubic function

ψ(x) = A(x− 1)3 +B(x− 1)2

which already satisfies ψ(1) = ψ′(1) = 0. The condition ψ(0) = 0 implies
A = B and the condition ψ′(0) = 1 implies 3A − 2B = 1. Combining these
conditions yields the function

ψ(x) = x(x− 1)2.
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We then define

ψ(x) =

{
x(|x| − 1)2 |x| ≤ 1

0 |x| > 1
(2)

We now construct a basis for S
1
n (3, 1) by using shifts and translates of

the φ and ψ functions defined in (??) and (??). We define

φj(x) := φ(nx− j). (3)

Notice that φ0(x) = φ(nx) and φj(x) = φ(n(x − j
n
)) = φ0(x − j

n
). That is,

φj(x) is φ0(x) translated by j
n

and furthermore that φj(x) is supported on

the interval [ j−1
n
, j+1

n
].

To construct the ψj basis functions, we first consider the derivative of
ψ(nx− j). We note that

d

dx

∣∣∣∣
x= j

n

(ψ(nx− j)) = nψ′(nx− j)
∣∣∣∣
x= j

n

= nψ′(0) = n.

From this computation, we see that it is not correct to choose ψj(x) =
ψ(nx− j). We must properly scale it by n. Consequently, we define

ψj(x) =
1

n
ψ(nx− j) (4)

and we see the the support of ψj is also contained in the interval [ j−1
n
, j+1

n
].

2 Interpolation with Cubic Splines

We consider the problem of interpolating a function f at a set of knots
spaced equally by distance 1

n
using cubic splines constructed in the previous

section. In addition to interpolating pointwise values of f at the knots, the
cubic splines allow for interpolation of derivative data of f at the knots. Let
s ∈ S 1

n (3, 1) be the interpolant

s(x) =
n∑
j=0

f(xj)φj(x) + f ′(xj)ψj(x).
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It follows by the formulas from the previous section that s( j
n
) = f( j

n
) and

s′( j
n
) = f ′( j

n
). This demonstrates that the cubic splines can be used to

simultaneously interpolate pointwise values of f and pointwise values of f ′.
We have not demonstrated that the set of functions {φj, ψj}nj=0 are a basis

for S
1
n (3, 1). We note that there are n + 1 of each, which gives 2n + 2 total

functions, which is the dimension of S
1
n (3, 1). Therefore, it suffices to show

that the set {φj, ψj}nj=0 are linearly independent. Suppose not. Then, there

exists an s(x) ∈ S
1
n (3, 1) such that s( j

n
) = s′( j

n
) = 0 for j = 0, . . . , n but

s 6= 0. Consider an interval [ j
n
, j+1

n
]. On this interval, we know that s is a

cubic polynomial of the form

s(x) = A(x− j

n
)2(Cx+D)

since s and s′ both have zeros at j
n
. Alternatively, we may express s(x) =

A(x− j
n
)3 +B(x− j

n
)2. Substituting x = j+1

n
yields

0 =
A

n2
+
B

n
= 0

and

0 =
3A

n2
+

2B

n
= 0

by using s′( j+1
n

) = 0. This yields a solution of A = B = 0. Therefore, the

set {φj, ψj}nj=0 is linearly independent, and hence spans S
1
n (3, 1).

3 Finite Element Methods and Galerkin Meth-

ods

Consider the problem of finding the “smoothest” function in S
1
n (3, 1) such

that at the knots xj, s(xj) = fj for j = 0, . . . , n. To define “smoothest”, we
seek a function s that minimizes

‖s‖2 :=

∫ 1

0

(s′′(x))2 dx (5)

over all s ∈ S 1
n (3, 1) in which s(xj) = fj for j = 0, . . . , n.
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Since s is a piecewise cubic function, s′′ exists and is piecewise continuous.
Therefore, the equation (??) is well defined for all of s ∈ S 1

n (3, 1). In fact, it

can be shown that (??) is an inner product on the set of functions in S
1
n (3, 1)

which are zero at the endpoints.
Any function s ∈ S 1

n (3, 1) such that s(xj) = fj can be written in the form

s(xj) =
n∑
j=0

fjφj(x)−
n∑
j=0

αjψj(x).

Let f =
∑n

j=0 fjφj(x). We seek to find coefficients α that minimize the norm
of s. That is, we want to solve the problem

min
g∈span(ψj)

‖f − g‖. (6)

This is a least-squares problem which can be solved by solving the normal
equations. We expand g =

∑n
j=0 αjψj and we seek to find coefficients αj

such that

〈f − g, ψk = 0〉 (7)

for k = 1, . . . , n. Expanding g in terms of the ψk functions, we see this yields
a system of equations

n∑
j=0

αj〈ψj, ψk〉 = 〈f, ψk〉.

Due to the compact support of ψk, we see that

〈ψj, ψk〉 =

∫ 1

0

ψ′′j (x)ψ′′k(x) dx =

∫
[ j−1

n
, j+1

n
]∩[ k−1

n
, k+1

n
]

ψ′′j (x)ψ′′k(x) dx. (8)

This integral is nonzero only for k = j− 1, k = j or k = j+ 1. Therefore the
matrix Gjk = 〈ψj, ψk〉, G is a tridiagonal matrix.
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