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1 Introduction

In the definition of the Riemann integral of a function f(z), the z-axis is
partitioned and the integral is defined in terms of limits of the Riemann
sums Z;:é f(z3)A;, where Aj = x4 — ;. The basic idea for the Lebesgue
integral is to partition the y-axis, which contains the range of f, rather than
the z-axis.

This seems like a “dumb” idea at first. Shouldn’t the two ways end up
giving the same integral? Most of time this is the case, but Lebesgue was
after integrating some functions for which the Riemann integral doesn’t exist;
for example, the Dirichlet function, which is defined on [0, 1]:

() = 0 x rational,
X\T)=191 1 2 irrational.

Lebesgue’s reasoning was that there were uncountably many irrationals ver-
sus countably many rationals, so the “area” should be 1. It is is easy to show
that the Riemann integral doesn’t exist for y. The integral Lebesgue came
up with not only integrates this function but many more. It also has the
property that every Riemann integrable function is also Lebesgue integrable.

Many of the common spaces of functions, for example the square inte-
grable functions on an interval, turn out to complete spaces — Hilbert spaces
or Banach spaces — if the Riemann integral is replaced by the Lebesgue inte-
gral. The idea of splitting the range (y-axis) rather than the domain (z-axis)
turns out to be invaluable in dealing with integrating functions over domains
that aren’t just real numbers. Such integrals arise in many fields, probability
theory for instance. Lebesgue’s idea turns out to be a brilliant “dumb” idea.

We now turn to the technical details involved in the Lebesgue integral,
starting with Lebesgue sums. Choose an increasing sequence of points P =
{c <y <wy1 <ya < - <y, < d}, where the range of f is contained in
[c,d]. As usual, we set ||P|| := maxo<j<n—1(yj+1 — y;). Let E; = {x € [a,}] :
y; < f(z) <wyjma} = f([y5, ¥j41))) and choose a point yF from each interval



[yj>yj+1]- (Note that we can have y; = y;,1.) The corresponding Lebesgue
sum is

Lp-(7) = Y ujn(E) )

where p(E;) denotes the “measure” or “length” of the set E; and Y* =
{y; };L;& For this sum to make sense, we need a concept of measure for more
sets than just intervals. For example, x~([1/2,3/2)) is the set of all irrational
numbers between 0 and 1. It doesn’t contain any intervals at all. This leads
to the question of how to extend the concept of measure to subsets of the
real line that are much more complicated than simple intervals.

2 Measurable Sets

The ordinary idea of the measure/length of an interval can be thought of as
a function that assigns to an interval a nonnegative number. In addition, u
satisfies standard properties; for example, if [ and J are disjoint intervals,
then p(IUJ) = pu(l) + p(J).

An appropriate generalization of u would satisfy the same properties,
but for a wider class of subsets of [a, b] than just the collection of intervals.
Suppose that X is a collection of subsets of [a, b] and that we have a function
@ X — R. This is called a set function, because its domain consists of
subsets of [a, b]. To go further and require that p satisfies the same properties
as those of length on intervals, we have to put conditions on ¥. For example,
if we want u to satisfy (AU B) = u(A) + p(B) for AN B =0, then AU B
must be in X. Here is a list of conditions that we will require ¥ to satisfy:

1. X is non-empty. It will always contain both () and [a, b].
2. X is closed under complementation: A € ¥ if and only if A% € X.
3. X is closed under countable unions: {A; € ¥}32, then U, A; € %.

A collection of subsets > that satisfies that satisfies these conditions is called
a o-algebra.

We can now specify the properties that a set function p : ¥ — [0, 00)
requires so that it mimics length for intervals. We say that u is a (o-finite)
measure if and only if



1. u([a,b)) =b—a and p(d) = 0.
2. Non-negativity: pu(A) >0 VA € 3.
3. Monotonicity: If A C B, then u(A) < u(B).

4. Countable Additivity: If {A; € ¥}, with A;N A; =0, i # j, then
(U A;) = 3272 i(Ay).

These are fairly general conditions and they form the basis of the field of
measure theory. Our aim here is simply to construct the Lebesgue measure.
We note that the most natural choice for the class > would be the one com-
prising all subsets of [a,b]. Unfortunately, a theorem whose proof employs
the axiom of choice shows that there is no measure for this class. Instead,
we will use a procedure that simultaneously constructs p and .

We start with the outer measure of a set, which can be defined for arbi-
trary subsets of [a, b]. Every open set G in [a, b is the disjoint union of inter-
vals, G = U;(a;, b;) and we define the outer measure to be p*(G) = . (bi—a;).
This is of course the natural generalization of length to open sets.

We now turn to the general case. Let A C [a, b] for some finite a # b € R.
We define the outer measure p*(A) by

p*(A) =inf{p*(G): AC G,G is open in [a, b]}.
We can also define the inner measure p.(A):

1(A) = b—a— " ([a,H)\A).

If 4. (A) = p*(A), then we say that A is Lebesque measurable. The class X
is then just defined as all the collection of all Lebesgue measurable sets and
the Lebesgue measure of A € ¥ is defined as pu(A) := p.(A) = p*(A). It is
not hard to show that all open sets and all closed sets are measurable, and
that if A is measurable, so is its complement AS. With more work one can
show that the measurable sets form a o-algebra and the Lebesgue measure
is a non-negative measure defined on . When we are dealing only with
intervals, the Lebesgue measure coincides with the usual concept of length.

It is always true that both the inner and outer measure are positive and
that p*(A) > u.(A), so that to verify A is measurable only requires showing
that p*(A) < p.(A). For instance, a set has measure 0 if and only if, for
every € > 0, there is an open set G D A such that u(G) < e. Here is a specific
case.



Example 1. Every countable set has measure 0.

Proof. Let A = {x1,9,...,2n,...}. Let I} = (v; — 5%, %; + 557). Then,
we see that A C UI;, and hence

p(A) =inf{u"(G): AC G,G is open}

< p(Uil;)

€ €
:Z(ﬁ—i_xj_xj—i_ﬁ)
J
€

= -— = €
— 2
J

Since this holds for arbitrary e > 0, we see that p*(A) = 0. O

3 The Lebesgue Integral

We briefly introduce the concept of the Lebesgue integral in this section and
discuss some important theorems for convergence. The Lebesgue integral on
a measurable set A will be denoted by either [, f(z)dx or [, f(x) du(x). We
say that a function f : A — R is measurable if for every measurable £ C R,
f7YE) is a measurable subset of A. This is analogous to the concept of
continuity, where a function is said to be continuous if the pre-image of any
open set is open. Let A be a measurable set. We define the characteristic
function of A (or indicator function of A) by

we={y 254

We say a function is simple if it is a finite linear combination of characteristic
functions. We define the Lebesgue integral for simple functions by

N n
/sd,u:/chXAjdu:chu(AﬂEj).
E B j=1 j=1

For non-negative measurable functions, the Lebesgue integral on a measur-
able set A can be defined by

/fd,u:sup{/sduzogsgfandsis simple}.
A A
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We say that a function f is integrable on A if [, |f|du < oo. Let A, B denote
measurable sets of finite measure.

1. If f is a bounded and measurable function, then the integral exists.

2. Integration is a linear operation. That is, if f and g are both integrable
and a,b € R, then [, (af +bg)dp=a [, fdu+b [, gdpu.

3. If [, f(x)*dx and [, g(x)? dz both exist, then [, f(x)g(x) dx and [,(f(x)+
g(z))? dr exist.

4. [, fdu= [, fdu+ [ fdp, where u(AN B) = 0.
5. If f =g almost everywhere, then [, fdu = [, gdpu.

6. If the Riemann integral of f exists, then the Lebesgue integral exists
and the integrals are equal.

Theorem 1. (Monotone Convergence Theorem): Let { f;} be a collection of
measurable functions on A that satisfy 0 < f1 < fo <--- < f, < ... almost
everywhere. Define f as the pointwise limit f(x) = lim f;(x). Then, f is

measurable and
lim/fjd,u:/fdu.
A A

Theorem 2. (Dominated Convergence Theorem): Let {f;} be a set of mea-
surable functions that converges pointwise to a function f and assume there
exists an integrable function g such that |f;(z)| < g(x) almost everywhere.

Then, f is integrable and
lim/fjd,u:/fdu.
A A

Theorem 3. (Fubini’s Theorem): Let f be measurable on A x B. If

/ eyl d(z,y) < oo
AxB

then [, [ f(x,y) du(z)dy/(y) exists and the order of integration may be
switched.



We define the space LP([a, b]) to be the space of p integrable functions for
1 <p < oo. That is,

7([a,b) = {/ - / @) < oo},

The space LP([a,b]) is a normed space when it is equipped with the norm

D=

b
£ = ([ 1@ Pdutz).
For the case p = 0o, we define

[fllse = ess sup|f| = inf{a € R: u({z : |f|(x) > a}) = 0}

and we define

L([a,0]) = {f : Iflloc < 00}

Example 2. Just because a function is in L* doesn’t necessarily mean that
it is bounded in the usual sense. Here is an example of this.

() = {1 e ©)

— P
q t=,

where § is reduced to lowest terms and ¢ > 0. This function is unbounded,
but

| flle = esssup|f(z)| =1

because the set of rational numbers has measure zero. This implies that,
although f is unbounded, f € L*.

Theorem 4. The space L*([a,b]) is a complete space for 1 < p < oco.

This theorem implies that L?([a,b]) is a Banach space. In the special case
of p=2, L?([a,b]) is a Hilbert space.

4 Examples

Example 3. Suppose f,(z) = \/% for x € [0,1] and n > 1. Let f denote

the pointwise limit of f,,. Show that f is integrable.



Proof. We see that fn+1( ) = = fu(x) holds for all n and

& +n+1 \/ +5

lim,, o0 fr(z) = —5 almost everywhere. Then, by the monotone convergence

theorem, \lf is 1ntegrable and

Example 4. Define
= / f(t)e ™t dt (3)

where f € L'(R). Then, f is a continuous function.

Proof. By a straightforward computation, we see that

f(w + h / f —z (w+h)t e—iwt) dt

_ /_ f(t)e—iwt<€—iht o 1)dt

The integrand is bounded above by 2|f(t)| almost everywhere, and since
f € L, 2|f(t)| is integrable. Then, an application of the dominated conver-
gence theorem implies that limy, o f (w+h) = f (w) which implies that fis
continuous. O



