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1 Bounded operators & examples

Let V and W be Banach spaces. We say that a linear transformation L : V —
W is bounded if and only there is a constant K such that ||Lv|lw < K||v|v
for all v € V. Equivalently, L is bounded whenever
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is finite. ||L||op is called the norm of L. Frequently, the same operator may
map another space vV — W, rather than V' — W. When this happens, we
will need to note which spaces are involved. For instance, if V' and W are
the spaces involved, we will use the notation || L||y_w for the operator norm.
In addition to the expression given in (1.1), it is easy to show that ||L||,, is
also given by

IL|lop == inf{K > 0: ||Lv]|w < K|vlly Yo € V1. (1.2)

As usual, we say L : V — W is continuous at v € V' if and only if for every
e > 0 there is a § > 0 such that ||[Lu — Lv||w < & whenever ||u — v||y < 4.
Of course, this is just the standard definition of continuity. Be aware that it
holds whether or not L is linear. When L is linear, the distinction between
u,v becomes irrelevant, because ||[Lu — Lv||w = ||L(u — v)|lw. From this it
immediately follows that L will be continuous at every v € V whenever it
is continuous at v = 0. The proposition below connects boundedness and
continuity for linear transformations. The proof is left as an exercise.

Proposition 1. A linear transformation L : V — W is continuous if and
only if it is bounded.

We will now provide a number of examples of bounded operators and
unbounded operators.



Example 1. Let L : C[0,1] — C[0, 1] be given by Lu(z) = fol k(x,y)u(y)dy,
where k € C(R), R = [0,1]x]0, 1]. We have that |Lu(z)| < fol |k(z, )| |u(y)|dy,
so [Lu(z)| < [|kllcm llullcqoay. Consequently, |[Lijcwe < [|Kllom llulleqo

Example 2. Again let R = [0,1] x [0,1]. If k € LQ(R) then k is called a
Hilbert-Schmidt kernel. The linear operator Lu(x fo y)dy maps
L?[0,1] — L?[0,1] and is bounded. Moreover, ||L||L2 2 < ||k:||L2(R)

Proof. We will first show that k(z, y)u(y) € L'(R). To see this, observe that,
by Schwarz’s inequality;,
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Consequently, k(z,y)u(y) € L'(R). By the Fubini-Tonelli Theorem, we have
that, as function of =z, fol k(z,y)u(y)dy € L'0,1] and, as function of y,
fol k(z,y)u(y)de € L'0,1]. In any event, Lu(z) is in L'[0,1]. Next, be-
cause k € L*(R), the integral fol fol k(2. y)[Pdvdy = ||k||72 g, is finite. Thus
\k(z,y)[*> € L'(]0,1]). The Fubini-Tonelli Theorem then implies that for
almost every z, |k(z,y)[*> € L'[0,1]. Thus, applying Schwarz’s inequality
yields
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|Lu(z)|* < /Olk(x,y)IU(y)!dy SHUH%Q[O,H/O |k (x, y)|*dy.

Another application of the Fubini-Tonelli Theorem implies that the right side
above is in L'[0,1]. Integrating this in z yields
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/ LU($)|2d$ < ||U||%2[0,1}/ |k(:p,y)|2dydx = ||k||%2(R)||u||2L2[0,1]'
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It follows that Lu € L2[0, 1] and HLHLQHIP < ”k”LQ(R) ]

Example 3. Let H = L?[0,1]. The differentiation operator D = - is
defined on all f € C'[0,1], which is dense in H because it contains the set
of polynomials. The question is whether D is bounded, or at least can be

extended to a bounded operator on H. The answer is no. Let wu,(z) :=



V2sin(nmz). These functions are in C[0,1] and they satisfy ||u, ||y = 1.
Since Du,, = nmv/2cos(nmx), || Duy, || = nm. Consequently,

[ D2

=nmw— 00, as N — Q.

Thus D is an unbounded operator.

The situation changes if we use a different space. Consider the Sobolev
space H'(0,2n] := {f € L*0,2n]: f" € L?[0,27x], where f’is computed in a
distributional sense. H'[0,27] has the inner product (f, g) = OQF f(x)g(z)dz.
The operator D : H' — L? turns out to be bounded. In fact, | D|| g1z = 1.

2 Closed subspaces

The usual definition of subspace holds for Banach spaces and for Hilbert
spaces. Such subspaces inherit norms and/or inner products from the larger
spaces. They are said to be closed if they contain all of their limit points.

Finite dimensional subspaces are always closed. Earlier, when we dis-
cussed completeness of an orthonormal set U = {u,}°, in a Hilbert space
M, we saw that the space Hy = {f € H: f = > (f, un)u,} is closed in
H. When C[0,1] is considered to be a subspace of L*[0, 1], it is not closed.
However, C|0, 1] is a closed subspace of L]0, 1].

Given a subspace V' of a Hilbert space H, we define the orthogonal com-
plement of V' to be

Vii={feH: (f g)VgeV}
Proposition 2. V1 is a closed subspace of H.

Proof. Let {f,}5°; be a sequence in V1 that converges to a function f € H.
Since each f,, is in VX, (f,,g) = 0 for every g € V. Also, because the inner
product is continuous, lim, . (fn,9) = (f,9). It immediately follows that
(f,g) =0. so f € V. Consequently, V+ is closed in H. O

Bounded linear operators mapping V' — W, where V' and W are Banach
spaces, have all of the usual subspaces associated with them. Let L : V — W
be bounded and linear. The domain of L is D(L) = V. The range of L is
defined as R(L) := {w € W: Jv € W for which Lv = W}. Finally, the null
space (or kernel) of L is N(L) := {v € V: Lv = 0}.



Proposition 3. If L : V. — W be bounded and linear, then the null space
N(L) is a closed subspace of V.

Proof. The proof again relies on the continuity of L. If {f,,}°°, is a sequence
in N(L) that converges to f € V. By Proposition 1, L is continuous, so
lim, , Lf, = Lf. But, because f, € N(L), Lf, = 0. Combining this with
lim, oo Lf, = Lf, we see that Lf = 0 and so f € N(L). Thus, N(L) is a
closed subspace of V. O



