Bounded Operators

by Francis J. Narcowich November, 2013

1 Bounded operators & examples

Let V and W be Banach spaces. We say that a linear transformation $L: V \to W$ is bounded if and only there is a constant K such that $||Lv||_W \leq K||v||_V$ for all $v \in V$. Equivalently, L is bounded whenever

$$||L||_{op} := \sup_{v \neq 0} \frac{||Lv||_W}{||v||_V}$$
(1.1)

is finite. $||L||_{op}$ is called the norm of L. Frequently, the same operator may map another space $\widetilde{V} \to \widetilde{W}$, rather than $V \to W$. When this happens, we will need to note which spaces are involved. For instance, if V and W are the spaces involved, we will use the notation $||L||_{V\to W}$ for the operator norm. In addition to the expression given in (1.1), it is easy to show that $||L||_{op}$ is also given by

$$||L||_{op} := \inf\{K > 0 \colon ||Lv||_W \le K||v||_V \ \forall v \in V\}. \tag{1.2}$$

As usual, we say $L: V \to W$ is continuous at $v \in V$ if and only if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $||Lu - Lv||_W < \varepsilon$ whenever $||u - v||_V < \delta$. Of course, this is just the standard definition of continuity. Be aware that it holds whether or not L is linear. When L is linear, the distinction between u, v becomes irrelevant, because $||Lu - Lv||_W = ||L(u - v)||_W$. From this it immediately follows that L will be continuous at every $v \in V$ whenever it is continuous at v = 0. The proposition below connects boundedness and continuity for linear transformations. The proof is left as an exercise.

Proposition 1. A linear transformation $L: V \to W$ is continuous if and only if it is bounded.

We will now provide a number of examples of bounded operators and unbounded operators.

Example 1. Let $L: C[0,1] \to C[0,1]$ be given by $Lu(x) = \int_0^1 k(x,y)u(y)dy$, where $k \in C(R)$, $R = [0,1] \times [0,1]$. We have that $|Lu(x)| \le \int_0^1 |k(x,y)| |u(y)|dy$, so $|Lu(x)| \le |k|_{C(R)} ||u||_{C([0,1])}$. Consequently, $||L||_{C \to C} \le ||k||_{C(R)} ||u||_{C([0,1])}$

Example 2. Again let $R = [0,1] \times [0,1]$. If $k \in L^2(R)$, then k is called a Hilbert-Schmidt kernel. The linear operator $Lu(x) = \int_0^1 k(x,y)u(y)dy$ maps $L^2[0,1] \to L^2[0,1]$ and is bounded. Moreover, $||L||_{L^2 \to L^2} \le ||k||_{L^2(R)}$.

Proof. We will first show that $k(x,y)u(y) \in L^1(R)$. To see this, observe that, by Schwarz's inequality,

$$\int_{0}^{1} \int_{0}^{1} |k(x,y)u(y)| dxdy \le ||k||_{L^{2}(R)} \left(\int_{0}^{1} \int_{0}^{1} |u(y)| 2|^{2} dxdy \right)^{1/2}$$

$$\le ||k||_{L^{2}(R)} ||u||_{L^{2}[0,1]}.$$

Consequently, $k(x,y)u(y)\in L^1(R)$. By the Fubini-Tonelli Theorem, we have that, as function of x, $\int_0^1 k(x,y)u(y)dy\in L^1[0,1]$ and, as function of y, $\int_0^1 k(x,y)u(y)dx\in L^1[0,1]$. In any event, Lu(x) is in $L^1[0,1]$. Next, because $k\in L^2(R)$, the integral $\int_0^1 \int_0^1 |k(x,y)|^2 dxdy=\|k\|_{L^2(R)}^2$ is finite. Thus $|k(x,y)|^2\in L^1([0,1])$. The Fubini-Tonelli Theorem then implies that for almost every x, $|k(x,y)|^2\in L^1[0,1]$. Thus, applying Schwarz's inequality yields

$$|Lu(x)|^2 \le \left| \int_0^1 |k(x,y)|u(y)|dy \right|^2 \le ||u||_{L^2[0,1]}^2 \int_0^1 |k(x,y)|^2 dy.$$

Another application of the Fubini-Tonelli Theorem implies that the right side above is in $L^1[0,1]$. Integrating this in x yields

$$\int_0^1 Lu(x)|^2 dx \le \|u\|_{L^2[0,1]}^2 \int_0^1 |k(x,y)|^2 dy dx = \|k\|_{L^2(R)}^2 \|u\|_{L^2[0,1]}^2.$$

It follows that $Lu \in L^2[0,1]$ and $||L||_{L^2 \to L^2} \le ||k||_{L^2(R)}$.

Example 3. Let $\mathcal{H} = L^2[0,1]$. The differentiation operator $D = \frac{d}{dx}$ is defined on all $f \in C^1[0,1]$, which is dense in \mathcal{H} because it contains the set of polynomials. The question is whether D is bounded, or at least can be extended to a bounded operator on \mathcal{H} . The answer is no. Let $u_n(x) :=$

 $\sqrt{2}\sin(n\pi x)$. These functions are in $C^1[0,1]$ and they satisfy $||u_n||_{\mathcal{H}}=1$. Since $Du_n=n\pi\sqrt{2}\cos(n\pi x)$, $||Du_n||_{\mathcal{H}}=n\pi$. Consequently,

$$\frac{\|Du_n\|_{\mathcal{H}}}{\|u_n\|_{\mathcal{H}}} = n\pi \to \infty, \text{ as } n \to \infty.$$

Thus D is an unbounded operator.

The situation changes if we use a different space. Consider the Sobolev space $H^1[0,2\pi]:=\{f\in L^2[0,2\pi]\colon f'\in L^2[0,2\pi], \text{ where } f'\text{ is computed in a distributional sense. } H^1[0,2\pi] \text{ has the inner product } \langle f,g\rangle=\int_0^{2\pi}f(x)\overline{g(x)}dx.$ The operator $D:H^1\to L^2$ turns out to be bounded. In fact, $\|D\|_{H^1\to L^2}=1$.

2 Closed subspaces

The usual definition of subspace holds for Banach spaces and for Hilbert spaces. Such subspaces inherit norms and/or inner products from the larger spaces. They are said to be *closed* if they contain all of their limit points.

Finite dimensional subspaces are always closed. Earlier, when we discussed completeness of an orthonormal set $U = \{u_n\}_{n=1}^{\infty}$ in a Hilbert space \mathcal{H} , we saw that the space $\mathcal{H}_U = \{f \in \mathcal{H}: f = \sum_n \langle f, u_n \rangle u_n \}$ is closed in \mathcal{H} . When C[0,1] is considered to be a subspace of $L^2[0,1]$, it is not closed. However, C[0,1] is a closed subspace of $L_{\infty}[0,1]$.

Given a subspace V of a Hilbert space \mathcal{H} , we define the *orthogonal complement* of V to be

$$V^{\perp} := \{ f \in \mathcal{H} \colon \langle f, g \rangle \ \forall g \in V \}.$$

Proposition 2. V^{\perp} is a closed subspace of \mathcal{H} .

Proof. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in V^{\perp} that converges to a function $f \in \mathcal{H}$. Since each f_n is in V^{\perp} , $\langle f_n, g \rangle = 0$ for every $g \in V$. Also, because the inner product is continuous, $\lim_{n \to \infty} \langle f_n, g \rangle = \langle f, g \rangle$. It immediately follows that $\langle f, g \rangle = 0$. so $f \in V^{\perp}$. Consequently, V^{\perp} is closed in \mathcal{H} .

Bounded linear operators mapping $V \to W$, where V and W are Banach spaces, have all of the usual subspaces associated with them. Let $L: V \to W$ be bounded and linear. The domain of L is D(L) = V. The range of L is defined as $R(L) := \{w \in W \colon \exists v \in W \text{ for which } Lv = W\}$. Finally, the null space (or kernel) of L is $N(L) := \{v \in V \colon Lv = 0\}$.

Proposition 3. If $L: V \to W$ be bounded and linear, then the null space N(L) is a closed subspace of V.

Proof. The proof again relies on the continuity of L. If $\{f_n\}_{n=1}^{\infty}$ is a sequence in N(L) that converges to $f \in V$. By Proposition 1, L is continuous, so $\lim_{n\to\infty} Lf_n = Lf$. But, because $f_n \in N(L)$, $Lf_n = 0$. Combining this with $\lim_{n\to\infty} Lf_n = Lf$, we see that Lf = 0 and so $f \in N(L)$. Thus, N(L) is a closed subspace of V.