The Closed Range Theorem

by
Francis J. Narcowich
November, 2013
Let \mathcal{H} be a separable Hilbert space, and let $\mathcal{B}(\mathcal{H})$ and $\mathcal{C}(\mathcal{H})$ denote the bounded linear operators on \mathcal{H} and the compact operators on \mathcal{H}, respectively.

Our aim here is to prove that the range of an operator of the form $L=I-\lambda K$, where K is compact, is closed. We will begin with this lemma.
Lemma 0.1. Let $K \in \mathcal{C}(\mathcal{H}), \lambda \in \mathbb{C}$, and $L=I-\lambda K$. If $f \in \overline{R\left(L^{*}\right)}$, then there is a constant $c>0$, independent of f, such that $\|L f\| \geq c\|f\|$.
Proof. If not, then there exists a sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \overline{R\left(L^{*}\right)}$ such that $\left\|f_{n}\right\|=1$ and $\left\|L f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Note that $L f_{n}=f_{n}-\lambda K f_{n}$, so $f_{n}=\lambda K f_{n}+L f_{n}$. Since the f_{n} 's are bounded and K is compact, we may choose a subsequence $\left\{f_{n_{k}}\right\}$ such that $\left\{K f_{n_{k}}\right\}$ is convergent. Thus, $\lim _{k \rightarrow \infty} f_{n_{k}}=\lambda \lim _{k \rightarrow \infty} K f_{n_{k}}+\lim _{k \rightarrow \infty} L f_{n_{k}}$. Both terms on the right are convergent, so $f_{n_{k}}$ is also convergent. Let $f=\lim _{k \rightarrow \infty} f_{n_{k}}$. By the previous equation, we have that $f=\lambda K f$, so $L f=0$ - i.e., $f \in N(L)$. In addition, because $\overline{R\left(L^{*}\right)}$ is closed, $f \in \overline{R\left(L^{*}\right)}$. Since these spaces are orthogonal, f is orthogonal to itself and, consequently, $f=0$. However, $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|=1=\|f\|$. This is a contradiction.

Theorem 0.2 (Closed Range Theorem). If $K \in \mathcal{C}(\mathcal{H})$ and $\lambda \in \mathbb{C}$, then the range of the operator $L=I-\lambda K$ is closed.
Proof. We want to show that if there is sequence $\left\{g_{n}\right\} \subset R(L)$ such that $g_{n} \rightarrow g$, then $g=L f$ for some $f \in \mathcal{H}$. To begin, note that the solution f_{n} to $g_{n}=L f_{n}$ is not unique if $N(L) \neq\{0\}$. Since $\mathcal{H}=N(L) \oplus \overline{R\left(L^{*}\right)}$, with the two spaces being orthogonal, we may make a unique choice by requiring that f_{n} be in $\overline{R\left(L^{*}\right)}$. Lemma 0.1 then implies that $\left\|g_{n}-g_{m}\right\|=L\left(f_{n}-f_{m}\right) \| \geq$ $c\left\|f_{n}-f_{m}\right\|$. Because the convergent sequence $\left\{g_{n}\right\}$ is Cauchy, this inequality also implies that $\left\{f_{n}\right\}$ is Cauchy. Thus, $\left\{f_{n}\right\}$ is convergent to some $f \in \mathcal{H}$. It follows that $g=\lim _{n \rightarrow \infty} L f_{n}=L f$, so $g \in R(L)$.

The Closed Range Theorem allows us to apply the Fredholm alternative to equations of the form $u-\lambda K u=f$. Thus, we have the following result, which applies, for example, to finite rank or Hilbert-Schmidt operators.

Corollary 0.3. Let $K \in \mathcal{C}(\mathcal{H})$ and $\lambda \in \mathbb{C}$. The equation $u-\lambda K u=f$ has a solution if and only if $f \in N\left(I-\bar{\lambda} K^{*}\right)^{\perp}$.

