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Throughout these notes, H denotes a separable Hilbert space and B(H)
denotes the set of bounded linear operators on H. We also note that B(H)
is a Banach space under the usual operator norm. (See problem 6(a) on the
Final Exam.)

1 Compact and Precompact Subsets of H

Definition 1.1. A subset S of H is said to be compact if and only if it is
closed and every sequence inS has a convergent subsequence. S is said to be
precompact if its closure is compact.

Proposition 1.2. Here are some important properties of compact sets.

1. Every compact set is bounded.

2. A bounded set S is precompact if and only if every bounded sequence
has a convergent subsequence.

3. Let H be finite dimensional. Every closed, bounded subset of H is
compact.

4. In an infinite dimensional space, closed and bounded is not enough.

Proof. Properties 2 and 3 are left to the reader. For property 1, assume
that S is an unbounded compact set. Since S is unbounded, we may select
a sequence {vn}∞n=1 such that ‖vn‖ → 0 as n→∞. Since S is compact, this
sequence will have a convergent subsequence, say {vk}∞k=1, which will still
be unbounded. This sequence is Cauchy, so there is a positive integer K for
which ‖v`− vm‖ ≤ 1/2 for all `,m ≥ K. Fix ` and note that by the triangle
inequality ‖vm‖ ≤ 1/2 + ‖v`‖. Now, the right side is bounded, because ` is
fixed. However, ‖vm‖ → ∞ as m → ∞. This is a contradiction, so S must
be bounded. For property 4, let S = {f ∈ H : ‖f‖ ≤ 1}. Every o.n. basis
{φn}∞n=1 is in S. However, for such a basis ‖φm−φn‖ =

√
2, n 6= m. Again,

this means there are no Cauchy subsequences in {φn}∞n=1, and consequently,
no convergent subsequences. Thus, S is not compact.
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2 Compact Operators

Definition 2.1. Let K : H → H be linear. K is said to be compact if and
only if K maps bounded sets into precompact sets. Equivalently, if {vn}∞n=1

is bounded, then the sequence {Kvn}∞n=1 has a convergent subsequence. We
denote the set of compact operators on H by C(H).

Proposition 2.2. If K ∈ C(H), then K is bounded – i.e., C(H) ⊂ B(H).
In addition, C(H) is a subspace of B(H).

Proof. We leave this as an exercise for the reader.

We now turn to giving some examples of compact operators. We start
with the finite-rank operators. If the range of an operator K is finite di-
mensional, then we say that K is a finite-rank operator. For bounded set
B ∈ H, the K|S is a bounded subset of a finite dimensional space and is
therefore precompact. It follows that K is in C(H).

To describe K explicitly, let {φk}nk=1 be a basis for R(K). Then, Kf =∑n
k=1 akφk. We want to see how the ak’s depend on f . Consider 〈Kf, φj〉 =

〈f,K∗φj〉 =
∑n

k=1 ak〈φk, φj〉. Next let ψj = K∗φj , so that 〈f,K∗φj〉 =
〈f, ψj〉. Because {φk}nk=1 is a basis, it is linear independent. Hence, the
Gram matrix Gj,k = 〈φk, φj〉 is invertible, and so we can solve the system of
equations 〈f, ψj〉 =

∑n
k=1Gj,kak. Doing so yields ak =

∑n
j=1(G

−1)k,j〈f, ψj〉.
The ak’s are obviously linear in f . Of course, a different basis will give a
different representation.

Let H = L2[0, 1]. A particularly important set of finite rank opera-
tors in C(H) are ones given by finite rank or degenerate kernels, k(x, y) =∑n

k=1 φk(x)ψk(y), where the functions involved are in L2. The operator

is then Kf(x) =
∫ 1
0 k(x, y)f(y)dy. In the example that we did for re-

solvents, the kernel was k(x, y) = x2y, and the operator was Ku(x) =∫ 1
0 k(x, y)u(y)dy. We will show that the Hilbert-Schmidt kernels also yield

compact operators. This will follow as a corollary to our next theorem,
which is especially important.

Theorem 2.3. C(H) is a closed subspace of B(H).

Proof. Suppose that {Kn}∞n=1 is a sequence in C(H) that converges to K ∈
B(H), in the operator norm. We want to show that K is compact. Assume
the {vk} is a bounded sequence in H, with ‖vk‖ ≤ C for all k. Compactness
will follow if we can prove that {Kvk} has a convergent subsequence. The
technique for doing this is often called a diagonalization argument. We
start with the full sequence and form {K1vk}. Since K1 is compact, we can

2



select a subsequence {v(1)k } such that {K1v
(1)
k } is convergent. We may carry

out the same procedure with {K2v
(1)
k }, selecting a subsequence of {K2v

(1)
k }

that is convergent. Call it {v(2)k }. Since this is a subsequence of {v(1)k },
{K1v

(2)
k } is convergent. Continuing in this way, we construct subsequences

{v(j)k } for which {Kmv
(j)
k } is convergent for all 1 ≤ m ≤ j. Next, we let

{uj := v
(j)
j }, the “diagonal” sequence. This is a subsequence of all of the

{v(j)k }’s. Consequently, for n fixed, {Knuj}∞j=1 will be convergent. To finish
up, we will use an “up, over, and around” argument. Note that for all `,m,

‖Ku` −Kum‖ ≤ ‖Ku` −Knu`‖+ ‖Knu` −Knum‖+ ‖Knum −Kum‖

Since ‖Ku` − Knu`‖ ≤ ‖K − Kn‖op‖u`‖ ≤ 2C‖K − Kn‖op and, similarly,
‖Kum − Knum‖ ≤ 2C‖K − Kn‖op, so we have ‖Ku` − Kum‖ ≤ 4C|K −
Kn‖op + ‖Knu` −Knum‖. Let ε > 0. First choose N such that for n ≥ N ,
‖K −Kn‖op < ε/(8C). Fix n. Because {Knu`} is convergent, it is Cauchy.
Choose N ′ so large that ‖Knu` −Knum‖ < ε/2 for all `,m ≥ N ′. Putting
these two together yields ‖Ku` − Knu`‖ ≤ ε, provided `,m ≥ N ′. Thus
{Ku`} is is Cauchy and therefore convergent.

Corollary 2.4. Hilbert-Schmidt operators are compact.

Proof. Let H = L2[0, 1] and suppose k(x, y) ∈ L2(R), R = [0, 1] × [0, 1].
The associated Hilbert-Schmidt operator is Ku =

∫ 1
0 k(x, y)u(y)dy. Let

{φn}∞n=1 be an o.n. basis for L2[0, 1]. With a little work, one can show that
{φn(x)φm(y)}∞n,m=1 is an o.n. basis for L2(R). Also, from example 2 in the
notes on Bounded Operators (11/7/13), we have that ‖K‖op ≤ ‖k‖L2(R).
Expand k(x, y) in the o.n. basis {φn(x)φm(y)}∞n,m=1:

k(x, y) =

∞∑
n,m=1

αm,nφn(x)φm(y), αm,n = 〈k(x, y), φn(x)φm(y)〉L2(R)

Next, let kN (x, y) =
∑N

n,m=1 αm,nφn(x)φm(y) and also KN be the finite

rank operator KNu(x) =
∫ 1
0 kN (x, y)u(y)dy. By Parseval’s theorem, we

have that ‖k − kN‖2L2(R) =
∑∞

n,m=N+1 |αm,n|2 and by example 2 mentioned

above, ‖K −KN‖2op ≤ ‖k − kN‖2L2(R), so

‖K −KN‖2op ≤
∞∑

n,m=N+1

|αm,n|2
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Because the series on the right above converges to 0 as N → ∞, we have
limN→∞ ‖K − KN‖ = 0. Thus K is the limit in B(L2[0, 1]) of finite rank
operators, which are compact. By the theorem above, K is also compact.

We now turn to some of the algebraic properties of C(H).

Proposition 2.5. Let K ∈ C(H) and let L ∈ B(H). Then both KL and
LK are in C(H).

Proof. Let {vk} be a bounded sequence in H. Since L is bounded, the
sequence {Lvk} is also bounded. Because K is compact, we may find a
subsequence of {KLvk} that is convergent, so KL ∈ C(H). Next, again
assuming {vk} is a bounded sequence in H, we may extract a convergent
subsequence from {Kvk}, which, with a slight abuse of notation, we will
denote by {Kvj}. Because L is bounded, it is also continuous. Thus {LKvj}
is convergent. It follows that LK is compact.

Proposition 2.6. K is compact if and only if K∗ is compact.

Proof. Because K is compact, it is bounded and so is its adjoint K∗, in fact
‖K∗‖op = ‖K‖op. By Proposition 2.5, we thus have that KK∗ is compact.
It follows that if {un} be a bounded sequence in H, then we may extract a
subsequence {uj} such that the sequence {KK∗vj} is convergent. This of
course means that this sequence is also Cauchy. Note that

〈KK∗(vj − vk), vj − vk〉 = 〈K∗(vj − vk),K∗(vj − vk)〉 = ‖K∗(vj − vk)‖2.

From and the fact that {vj} is bounded, we see that 〈KK∗(vj−vk), vj−vk〉 ≤
‖vj − vk‖ ‖KK∗(vj − vk)‖ ≤ C‖KK∗(vj − vk)‖. Thus,

‖K∗(vj − vk)‖2 ≤ C‖KK∗(vj − vk)‖

Since {KK∗vj} is Cauchy, for every ε > 0, we can find N such that whenever
j, k ≥ N , ‖KK∗(vj − vk)‖ < ε2/C. It follows that ‖K∗(vj − vk)‖ < ε, if
j, k ≥ N . This implies that {K∗vj} is Cauchy and therefore convergent.

We want to put this in more algebraic language. Taking L to be compact
in Proposition 2.5, we have that the product of two compact operators is
compact. Since C(H) is already a subspace, this implies that it is an algebra.
Moreover, by taking L to be just a bounded operator, we have that C(H) is
a two-sided ideal in the algebra B(H). Since K being compact implies K∗ is
compact, C(H) is closed under the operation of taking adjoints; thus, C(H)
is a ∗-ideal. Finally, including the result of Theorem 2.3, we have that C(H)
is a closed under limits. We summarize these results as follows.

Theorem 2.7. C(H) is a closed, two-sided, ∗-ideal in B(H).
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