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Throughout these notes, H denotes a separable Hilbert space and B(H)
denotes the set of bounded linear operators on H. We also note that B(H)
is a Banach space under the usual operator norm. (See problem 6(a) on the
Final Exam.)

1 Compact and Precompact Subsets of H

Definition 1.1. A subset S of H is said to be compact if and only if it is
closed and every sequence inS has a convergent subsequence. S is said to be
precompact if its closure is compact.

Proposition 1.2. Here are some important properties of compact sets.

1. Every compact set is bounded.

2. A bounded set S is precompact if and only if every bounded sequence
has a convergent subsequence.

3. Let H be finite dimensional. Every closed, bounded subset of H is
compact.

4. In an infinite dimensional space, closed and bounded is not enough.

Proof. Properties 2 and 3 are left to the reader. For property 1, assume
that S is an unbounded compact set. Since S is unbounded, we may select
a sequence {vy, }°° ; such that |jv,|| — 0 as n — co. Since S is compact, this
sequence will have a convergent subsequence, say {vi}32,;, which will still
be unbounded. This sequence is Cauchy, so there is a positive integer K for
which [|vy — vy, || < 1/2 for all £,m > K. Fix ¢ and note that by the triangle
inequality ||v,|| < 1/2 + ||ve]]. Now, the right side is bounded, because ¢ is
fixed. However, ||vy,|| — oo as m — oco. This is a contradiction, so S must
be bounded. For property 4, let S = {f € H: | f| < 1}. Every o.n. basis
{#,}22, is in S. However, for such a basis ||y, — én| = V2, n # m. Again,
this means there are no Cauchy subsequences in {¢, }>2 ;, and consequently,
no convergent subsequences. Thus, S is not compact. O



2 Compact Operators

Definition 2.1. Let K : H — H be linear. K is said to be compact if and
only if K maps bounded sets into precompact sets. Equivalently, if {vn}22 4
is bounded, then the sequence {Kv,}22 | has a convergent subsequence. We
denote the set of compact operators on H by C(H).

Proposition 2.2. If K € C(H), then K is bounded — i.e., C(H) C B(H).
In addition, C(H) is a subspace of B(H).

Proof. We leave this as an exercise for the reader. O

We now turn to giving some examples of compact operators. We start
with the finite-rank operators. If the range of an operator K is finite di-
mensional, then we say that K is a finite-rank operator. For bounded set
B € H, the K|g is a bounded subset of a finite dimensional space and is
therefore precompact. It follows that K is in C(H).

To describe K explicitly, let {¢x}}_; be a basis for R(K). Then, K f =
> p_q axdr. We want to see how the ay’s depend on f. Consider (K f, ¢;) =
(f,K*¢j) = Y p_y an(dr, ¢5). Next let ¢ = K*¢;, so that (f, K*¢;) =
(f, ;). Because {¢p}}_; is a basis, it is linear independent. Hence, the
Gram matrix G = (¢, ¢;) is invertible, and so we can solve the system of
equations (f, ;) = > p_; Gjrax. Doing so yields a;, = Z?Zl(Gfl)k,ﬂf; ;).
The ay’s are obviously linear in f. Of course, a different basis will give a
different representation.

Let H = L?[0,1]. A particularly important set of finite rank opera-
tors in C(H) are ones given by finite rank or degenerate kernels, k(x,y) =
S opeq Pr(x)y ( ), where the functions involved are in L2. The operator

is then K f(x fo y)dy. In the example that we did for re-
solvents the kernel was k(a: y) = 2%y, and the operator was Ku(z) =
fo y)dy. We will show that the Hilbert-Schmidt kernels also yield

Compact operators. This will follow as a corollary to our next theorem,
which is especially important.

Theorem 2.3. C(H) is a closed subspace of B(H).

Proof. Suppose that {K,}22, is a sequence in C(H) that converges to K €
B(H), in the operator norm. We want to show that K is compact. Assume
the {v;} is a bounded sequence in H, with ||vg|| < C for all k. Compactness
will follow if we can prove that {Kv} has a convergent subsequence. The
technique for doing this is often called a diagonalization argument. We
start with the full sequence and form {Kjvy}. Since K is compact, we can



select a subsequence {v,il)} such that {K 1%1 } is convergent. We may carry
out the same procedure with {ngk )} selecting a subsequence of {ngl,(f )}
that is convergent. Call it {v,(C )}. Since this is a subsequence of {Uk s
{K 11),5:2)} is convergent. Continuing in this way, we construct subsequences
{fu(j)} for which {Kmvk' } is convergent for all 1 < m < j. Next, we let
{u] = v } the “diagonal” sequence. This is a subsequence of all of the

{vk )} S. Consequently, for n fixed, {Knu;}32; will be convergent. To finish
up, we will use an “up, over, and around” argument. Note that for all £, m,

| Kup — Kup|| < ||Kup — Kpug|| + [ Knue — Kpu || + | Kptim — K|

Since ||Kup — Knpu|| < [|K — Ky llopllue|| < 2C||K — Ky||op and, similarly,
| Kum — Knpum|| < 2C||K — Ky op, so we have ||Kup — Kuy| < 4C|K —
Kpllop + || Knue — Kpum||. Let € > 0. First choose N such that for n > N,
| K — Kpllop < €/(8C). Fix n. Because {K,u,} is convergent, it is Cauchy.
Choose N’ so large that ||Kpus — Kyup| < /2 for all £,m > N’. Putting
these two together yields ||Kuy — K,u|| < €, provided ¢,m > N’. Thus
{Kuy} is is Cauchy and therefore convergent. O

Corollary 2.4. Hilbert-Schmidt operators are compact.

Proof. Let H = L?[0,1] and suppose k(z,y) € LQ(R) R = [ 1] x [0,1].
The associated Hilbert-Schmidt operator is Ku fo y)dy. Let
{#,}22, be an o.n. basis for L2[0,1]. With a little work, one can show that
{On(@)dm(y) }oom=1 is an o.n. basis for L?(R). Also, from example 2 in the
notes on Bounded Operators (11/7/13), we have that [|[K|op < [|k|12(r)
Expand k(z,y) in the o.n. basis {¢n(z)om(y)}55n=1

y) = Z U@ ()P (Y), i = <k($7y)7¢n(x)¢m(y)>L2(R)

n,m=1

Next, let kn(z,y) = ng 1 Omn®n(2)Pm(y) and also Kn be the finite

rank operator Kyu(z fo kn(z,y)u(y)dy. By Parseval’s theorem, we
have that ||k — kNHLz (R) = D mm=N+1 |tm.n|? and by example 2 mentioned

above, [|[K — Ky||2, < ||k — kN”LQ(R)’ 50

o0

1K~ Exl2, < >

n,m=N+1




Because the series on the right above converges to 0 as N — oo, we have
limy o0 ||[K — Kn|| = 0. Thus K is the limit in B(L?[0,1]) of finite rank
operators, which are compact. By the theorem above, K is also compact. [J

We now turn to some of the algebraic properties of C(H).

Proposition 2.5. Let K € C(H) and let L € B(H). Then both KL and
LK are in C(H).

Proof. Let {v;} be a bounded sequence in H. Since L is bounded, the
sequence {Lwvg} is also bounded. Because K is compact, we may find a
subsequence of {K Lu} that is convergent, so KL € C(H). Next, again
assuming {vy} is a bounded sequence in H, we may extract a convergent
subsequence from {Kw}, which, with a slight abuse of notation, we will
denote by {Kv;}. Because L is bounded, it is also continuous. Thus {LKv;}
is convergent. It follows that LK is compact. O

Proposition 2.6. K is compact if and only if K* is compact.

Proof. Because K is compact, it is bounded and so is its adjoint K*, in fact
| K*||op = || K|lop- By Proposition 2.5, we thus have that K K* is compact.
It follows that if {u,} be a bounded sequence in H, then we may extract a
subsequence {u;} such that the sequence { K K*v;} is convergent. This of
course means that this sequence is also Cauchy. Note that

(KK*(v; —vg), v — vg) = (K*(v; — vg), K*(v; — vp)) = || K* (v — v |1%.

From and the fact that {v;} is bounded, we see that (K K*(vj—uvy), vj—vg) <
[vj = vl [ KK (vj — op)l| < CIIKE* (v — )| Thus,

1 (v — o) [I* < CIEK* (v — v |

Since { K K*v;} is Cauchy, for every ¢ > 0, we can find N such that whenever
jk > N, |[KK*(v; —vg)| < €2/C. Tt follows that |[K*(v; —vg)| < e, if
J,k > N. This implies that { K*v;} is Cauchy and therefore convergent. [

We want to put this in more algebraic language. Taking L to be compact
in Proposition 2.5, we have that the product of two compact operators is
compact. Since C(H) is already a subspace, this implies that it is an algebra.
Moreover, by taking L to be just a bounded operator, we have that C(H) is
a two-sided ideal in the algebra B(H). Since K being compact implies K™ is
compact, C(H) is closed under the operation of taking adjoints; thus, C(H)
is a *-ideal. Finally, including the result of Theorem 2.3, we have that C(H)
is a closed under limits. We summarize these results as follows.

Theorem 2.7. C(H) is a closed, two-sided, *-ideal in B(H).



