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X-ray Tomography. An important part of X-ray tomography – the CAT
scan – is solving a mathematical problem that goes back to the earlier twen-
tieth century work of the mathematician Johann Radon: Suppose that there
is a function f(x, y) defined in a region of the plane and that all we know
about f is the collection of line integrals

∫
L
f(x(s), y(s)ds over each line L

that intersects the region. (See Figure. 1.) The problem is to find f , given
this information.

Figure 1: The region where f is defined and a typical line L cutting the
region are shown. L is specified by ρ and the angle θ.

We will assume that the region is a disk D := {|x| ≤ 1}. The unit vector
n that is normal to L and points away from the origin is n = cos(θ)i+sin(θ)j.
The tangent1 pointing upward is t = − sin(θ)i + cos(θ)j. If we let s ≥ 0 be

1In class we used ϕ instead of θ.
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the arc length starting at the point ρn, then any point x above ρn is specified
by x = st + ρn. If x is below ρn, then it is specified by x = −st + ρn.

We will work with x above ρn. Express x in terms of polar coordinates
(r, φ), x = r cos(φ)i + r sin(φ)j. Of course, r = |x|. Comparing this with
x = st + ρn, we see that r2 = s2 + ρ2 and ρ = x · n = r cos(φ − θ).
Since x is above ρn, we have that φ ≥ θ and thus φ = θ + Cos−1(ρ/r).
When x is below ρn, φ ≤ θ and φ = θ − Cos−1(ρ/r). Breaking the integral∫
L
f(x(s))ds into two pieces, making the change of variables s =

√
r2 − ρ2,

ds = (r2 − ρ2)−1/2rdr, and noting that ρ ≤ r ≤ 1, we have∫
L

f(x(s))ds =

∫
φ≥θ

f(x(s))ds+

∫
θ≥φ

f(x(s))ds

=

∫ 1

ρ

f(r, θ + Cos−1(ρ/r))rdr√
(r2 − ρ2

+

∫ 1

ρ

f(r, θ − Cos−1(ρ/r))rdr√
(r2 − ρ2

=

∫ 1

ρ

(
f(r, θ + Cos−1(ρ/r)) + f(r, θ − Cos−1(ρ/r))

)
rdr√

(r2 − ρ2
.

Assuming the fx) = f(r, φ) is smooth enough, we can expand it in a Fourier
series in φ,

f(r, φ) =
∞∑

n=−∞

f̂n(r)einφ,

and then replace f in the integral on the right above by this series. Again
making the assumption that interchanging sum and integral is possible and
manipulating the resulting expression, we have∫

L

f(x(s))ds = 2
∞∑

n=−∞

einθ
∫ 1

ρ

f̂n(r)
cos(nCos−1(ρ/r))rdr√

r2 − ρ2
. (1)

Since the line L is specified by the angle θ and distance ρ, the integral
over L is a function of θ and ρ, which we denote by F (ρ, θ). In addition, the
expression Tn(ρ/r) := cos(nCos−1(ρ/r)) is actually an nth degree Chebyshev
polynomial. For example, T2(ρ/r) = 2 cos2(Cos−1(ρ/r)) − 1 = 2(ρ/r)2 − 1.
Using these two facts in connection with (1) we have

F (ρ, θ) =
∞∑

n=−∞

einθ
∫ 1

ρ

f̂n(r)
Tn(ρ/r)r√
r2 − ρ2

dr. (2)
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The Fourier series for F (ρ, θ) =
∑∞

n=−∞ F̂n(ρ)einθ. Comparing it with the
series in (2) we arrive at

F̂n(ρ) =

∫ 1

ρ

f̂n(r)
Tn(ρ/r)r√
r2 − ρ2

dr, n ∈ Z. (3)

The point is that F (ρ, θ) =
∫
L
f(x(s))ds is known, and so the Fourier

coefficients F̂n(ρ) are all known. The problem of finding f , given F , is thus

equivalent to solving the integral equations in (3) for the f̂n(r)’s and recov-
ering f(r, φ) from its Fourier series.

Classification of integral equations. Certain types of integral equations
come up often enough that they are grouped into classes, which are described
below. There, the function f and kernel k(x, y) are known, u is the unknown
function to be solved for, and λ is a parameter.The integral equations in (3)
are Volterra equations of the first kind.

Fredholm Equations
1st kind. f(x) =

∫ b
a
k(x, y)u(y)dy.

2nd kind. u(x) = f(x) + λ
∫ b
a
k(x, y)u(y)dy.

Volterra Equations
1st kind. f(x) =

∫ x
a
k(x, y)u(y)dy.

2nd kind. u(x) = f(x) + λ
∫ x
a
k(x, y)u(y)dy.

Acknowledgments Figure 1 is from the article “A small note on Matlab
iradon and the all-at-once vs. the one-at-a-time method,” by Nasser M.
Abbasi. July 17, 2008. The figure was downloaded on November 10, 2013,
from the website

http://12000.org/my_notes/note_on_radon/

note_on_radon/note_on_radon.htm

3


