X-ray Tomography \& Integral Equations

by
Francis J. Narcowich
November, 2013

X-ray Tomography. An important part of X-ray tomography - the CAT scan - is solving a mathematical problem that goes back to the earlier twentieth century work of the mathematician Johann Radon: Suppose that there is a function $f(x, y)$ defined in a region of the plane and that all we know about f is the collection of line integrals $\int_{L} f(x(s), y(s) d s$ over each line L that intersects the region. (See Figure. 1.) The problem is to find f, given this information.

Figure 1: The region where f is defined and a typical line L cutting the region are shown. L is specified by ρ and the angle θ.

We will assume that the region is a disk $D:=\{|\mathbf{x}| \leq 1\}$. The unit vector \mathbf{n} that is normal to L and points away from the origin is $\mathbf{n}=\cos (\theta) \mathbf{i}+\sin (\theta) \mathbf{j}$. The tangent ${ }^{1}$ pointing upward is $\mathbf{t}=-\sin (\theta) \mathbf{i}+\cos (\theta) \mathbf{j}$. If we let $s \geq 0$ be

[^0]the arc length starting at the point $\rho \mathbf{n}$, then any point \mathbf{x} above $\rho \mathbf{n}$ is specified by $\mathbf{x}=s \mathbf{t}+\rho \mathbf{n}$. If \mathbf{x} is below $\rho \mathbf{n}$, then it is specified by $\mathbf{x}=-s \mathbf{t}+\rho \mathbf{n}$.

We will work with \mathbf{x} above $\rho \mathbf{n}$. Express \mathbf{x} in terms of polar coordinates $(r, \phi), \mathbf{x}=r \cos (\phi) \mathbf{i}+r \sin (\phi) \mathbf{j}$. Of course, $r=|\mathbf{x}|$. Comparing this with $\mathbf{x}=s \mathbf{t}+\rho \mathbf{n}$, we see that $r^{2}=s^{2}+\rho^{2}$ and $\rho=\mathbf{x} \cdot \mathbf{n}=r \cos (\phi-\theta)$. Since \mathbf{x} is above $\rho \mathbf{n}$, we have that $\phi \geq \theta$ and thus $\phi=\theta+\operatorname{Cos}^{-1}(\rho / r)$. When \mathbf{x} is below $\rho \mathbf{n}, \phi \leq \theta$ and $\phi=\theta-\operatorname{Cos}^{-1}(\rho / r)$. Breaking the integral $\int_{L} f(\mathbf{x}(s)) d s$ into two pieces, making the change of variables $s=\sqrt{r^{2}-\rho^{2}}$, $d s=\left(r^{2}-\rho^{2}\right)^{-1 / 2} r d r$, and noting that $\rho \leq r \leq 1$, we have

$$
\begin{aligned}
\int_{L} f(\mathbf{x}(s)) d s & =\int_{\phi \geq \theta} f(\mathbf{x}(s)) d s+\int_{\theta \geq \phi} f(\mathbf{x}(s)) d s \\
& =\int_{\rho}^{1} \frac{f\left(r, \theta+\operatorname{Cos}^{-1}(\rho / r)\right) r d r}{\sqrt{\left(r^{2}-\rho^{2}\right.}}+\int_{\rho}^{1} \frac{f\left(r, \theta-\operatorname{Cos}^{-1}(\rho / r)\right) r d r}{\sqrt{\left(r^{2}-\rho^{2}\right.}} \\
& =\int_{\rho}^{1} \frac{\left(f\left(r, \theta+\operatorname{Cos}^{-1}(\rho / r)\right)+f\left(r, \theta-\operatorname{Cos}^{-1}(\rho / r)\right)\right) r d r}{\sqrt{\left(r^{2}-\rho^{2}\right.}}
\end{aligned}
$$

Assuming the $f \mathbf{x})=f(r, \phi)$ is smooth enough, we can expand it in a Fourier series in ϕ,

$$
f(r, \phi)=\sum_{n=-\infty}^{\infty} \widehat{f}_{n}(r) e^{i n \phi}
$$

and then replace f in the integral on the right above by this series. Again making the assumption that interchanging sum and integral is possible and manipulating the resulting expression, we have

$$
\begin{equation*}
\int_{L} f(\mathbf{x}(s)) d s=2 \sum_{n=-\infty}^{\infty} e^{i n \theta} \int_{\rho}^{1} \widehat{f}_{n}(r) \frac{\cos \left(n \operatorname{Cos}^{-1}(\rho / r)\right) r d r}{\sqrt{r^{2}-\rho^{2}}} \tag{1}
\end{equation*}
$$

Since the line L is specified by the angle θ and distance ρ, the integral over L is a function of θ and ρ, which we denote by $F(\rho, \theta)$. In addition, the expression $T_{n}(\rho / r):=\cos \left(n \operatorname{Cos}^{-1}(\rho / r)\right)$ is actually an $n^{\text {th }}$ degree Chebyshev polynomial. For example, $T_{2}(\rho / r)=2 \cos ^{2}\left(\operatorname{Cos}^{-1}(\rho / r)\right)-1=2(\rho / r)^{2}-1$. Using these two facts in connection with (1) we have

$$
\begin{equation*}
F(\rho, \theta)=\sum_{n=-\infty}^{\infty} e^{i n \theta} \int_{\rho}^{1} \widehat{f}_{n}(r) \frac{T_{n}(\rho / r) r}{\sqrt{r^{2}-\rho^{2}}} d r \tag{2}
\end{equation*}
$$

The Fourier series for $F(\rho, \theta)=\sum_{n=-\infty}^{\infty} \widehat{F}_{n}(\rho) e^{i n \theta}$. Comparing it with the series in (2) we arrive at

$$
\begin{equation*}
\widehat{F}_{n}(\rho)=\int_{\rho}^{1} \widehat{f}_{n}(r) \frac{T_{n}(\rho / r) r}{\sqrt{r^{2}-\rho^{2}}} d r, n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

The point is that $F(\rho, \theta)=\int_{L} f(\mathbf{x}(s)) d s$ is known, and so the Fourier coefficients $\widehat{F}_{n}(\rho)$ are all known. The problem of finding f, given F, is thus equivalent to solving the integral equations in (3) for the $\widehat{f}_{n}(r)$'s and recovering $f(r, \phi)$ from its Fourier series.

Classification of integral equations. Certain types of integral equations come up often enough that they are grouped into classes, which are described below. There, the function f and kernel $k(x, y)$ are known, u is the unknown function to be solved for, and λ is a parameter. The integral equations in (3) are Volterra equations of the first kind.

Fredholm Equations

$$
\begin{aligned}
& 1^{\text {st }} \text { kind. } f(x)=\int_{a}^{b} k(x, y) u(y) d y \\
& 2^{\text {nd }} \text { kind. } u(x)=f(x)+\lambda \int_{a}^{b} k(x, y) u(y) d y
\end{aligned}
$$

Volterra Equations

$1^{s t}$ kind. $f(x)=\int_{a}^{x} k(x, y) u(y) d y$.
$2^{\text {nd }}$ kind. $u(x)=f(x)+\lambda \int_{a}^{x} k(x, y) u(y) d y$.

Acknowledgments Figure 1 is from the article "A small note on Matlab iradon and the all-at-once vs. the one-at-a-time method," by Nasser M. Abbasi. July 17, 2008. The figure was downloaded on November 10, 2013, from the website
http://12000.org/my_notes/note_on_radon/
note_on_radon/note_on_radon.htm

[^0]: ${ }^{1}$ In class we used φ instead of θ.

