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1 The Projection Theorem

Let H be a Hilbert space. When V is a finite dimensional subspace of H and
f ∈ H, we can always find a unique p ∈ V such that ‖p−f‖ = minv∈V ‖v−f‖.
This fact is the foundation of least-squares approximation. What happens
when we allow V to be infinite dimensional? We will see that the minimiza-
tion problem can be solved if and only if V is closed.

Theorem 1.1 (The Projection Theorem). Let H be a Hilbert space and let
V be a subspace of H. For every f ∈ H there is a unique p ∈ V such that
‖p− f‖ = minv∈V ‖v − f‖ if and only if V is a closed subspace of H.

To prove that the converse is true, we need the following lemma.

Lemma 1.2 (Polarization Identity). Let H be a Hilbert space. For every
pair f, g ∈ H, we have

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

Proof. Adding the ± identities ‖f ±g‖2 = ‖f‖2±〈f, g〉±〈g, f〉+‖g‖2 yields
the result.

The polarization identity is an easy consequence of having an inner prod-
uct. It is surprising that if a norm satisfies the polarization identity, then
the norm comes from an inner product.

Proof. (Projection Theorem) Showing that the existence of minimizer implies
that V is closed is left as an exercise. So we assume that V is closed. For
f ∈ H, let α := infv∈V ‖v − f‖. It is a little easier to work with this in
an equivalent form, α2 = infv∈V ‖v − f‖2. Thus, for every ε > 0 there is a
vε ∈ V such that α2 ≤ ‖vε − f‖2 < α2 + ε. By choosing ε = 1/n, where n is
a positive integer, we can find a sequence {vn}∞n=1 in V such that

0 ≤ ‖vn − f‖2 − α2 <
1

n
(1.1)
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Of course, the same inequality holds for a possibly different integer m, 0 ≤
‖vm − f‖2 − α2 < 1

m
. Adding the two yields this:

0 ≤ ‖vn − f‖2 + ‖vm − f‖2 − 2α2 <
1

n
+

1

m
. (1.2)

By polarization identity and a simple manipulation, we have

‖vn − vm‖2 + 4‖f − vn + vm
2
‖2 = 2‖f − vn‖2 + ‖f − vm‖2.

We can subtract 4α2 from both sides and use (1.2) to get

‖vn−vm‖2+4(‖f−vn + vm
2
‖2−α2) = 2(‖f−vn‖2+‖f−vm‖2−2α2) <

2

n
+

2

m
.

Because 1
2
(vn + vm) ∈ V , ‖f − vn+vm

2
‖2 ≥ infv∈V ‖v − f‖2 = α2. It follows

that the second term on the left is nonnegative. Dropping it makes the left
side smaller:

‖vn − vm‖2 <
2

n
+

2

m
. (1.3)

As n,m→∞, we see that ‖vn−vm‖ → 0. Thus {vn}∞n=1 is a Cauchy sequence
in H and is therefore convergent to a vector p ∈ H. Since V is closed, p ∈ V .
Furthermore, taking limits in (1.1) implies that ‖p − f‖ = infv∈V ‖v − f‖.
The uniqueness of p is left as an exercise.

There are two important corollaries to this theorem. We list them below.
In all of them, we will use the notation from Theorem 1.1.

Corollary 1.3. There is a bounded operator P such that for every f ∈ H,
Pf = p. Moreover, P 2 = P and ‖P‖ = 1. Finally, P ∗ = P .

Although we haven’t established the existence of the adjoint P ∗, we in-
clude it in the corollary above, for the sake of completeness.

Corollary 1.4. H = V ⊕ V ⊥ and (V ⊥)⊥ = V .

2 The Riesz Representation Theorem

Theorem 2.1 (The Riesz Representation Theorem). Let H be a Hilbert space
and let Φ : H → C (or R) be a bounded linear functional on H. Then, there
is a unique g ∈ H such that, for all f ∈ H, Φ(f) = 〈f, g〉.
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Proof. The functional Φ is a bounded operator that maps H into the scalars.
It follows from our discussion of bounded operators that the null space of Φ,
N(Φ), is closed. If N(Φ) = H, then Φ(f) = 0 for all f ∈ H, hence Φ = 0.
Thus we may take g = 0. If N(Φ) 6= H, then, since N(Φ) is closed, we
have that H = N(Φ)⊕N(Φ)⊥. In addition, since N(Φ) 6= H, there exists a
nonzero vector h ∈ N(Φ)⊥. Moreover, Φ(h) 6= 0, because h is not in the null
space N(Φ). Next, note that for f ∈ H, the vector w := Φ(h)f − Φ(f)h is
in N(Φ). To see this, observe that

Φ(w) = Φ
(
Φ(h)f − Φ(f)h

)
= Φ(h)Φ(f)− Φ(f)Φ(h) = 0.

Because w = Φ(h)f − Φ(f)h ∈ V , it is orthogonal to h ∈ N(Φ)⊥, we have
that

0 = 〈Φ(h)f − Φ(f)h, h〉 = Φ(h)〈f, h〉 − Φ(f) 〈h, h〉︸ ︷︷ ︸
‖h‖2

.

Solving this equation for Φ(f) yields Φ(f) = 〈f, Φ(h)
‖h‖2h〉. The vector g := Φ(h)

‖h‖2h

then satisfies Φ(f) = 〈f, g〉. To show uniqueness, suppose g1, g2 ∈ H satisfy
Φ(f) = 〈f, g1〉 and Φ(f) = 〈f, g2〉. Subtracting these two gives 〈f, g2− g1〉 =
0 for all f ∈ H. Letting f = g2 − g1 results in 〈g2 − g1, g2 − g1〉 = 0.
Consequently, g2 = g1.

We now turn the problem of showing that an adjoint for a bounded op-
erator always exists. This is just a corollary of the Riesz Representation
Theorem.

Corollary 2.2. Let L : H → H be a bounded linear operator. Then there
exists a bounded linear operator L∗ : H → H, called the adjoint of L, such
that 〈Lf, h〉 = 〈f, L∗h〉, for all f, h ∈ H.

Proof. Fix h ∈ H and define the linear functional Φh(f) = 〈Lf, h〉. Using the
boundedness of L and Schwarz’s inequality, we have |Φh(f)| ≤ ‖L‖‖f‖‖h‖ =
K‖f‖, and so Φh is bounded. By Theorem 2.1, there is a unique vector g in
H for which Φh(f) = 〈f, g〉. The vector g is uniquely deterred by Φh; thus
g = gh a function of h. We claim that gh is a linear function of h. Consider
h = ah1 + bh2. Note that Φh(f) = 〈Lf, ah1 + bh2〉 = āΦh1(f) + b̄Φh2(f).
Since Φh1(f) = 〈f, g1〉 and Φh2(f) = 〈f, g2〉, we see that

Φh(f) = 〈f, gh〉 = āΦh2(f) + b̄Φh2(f) = 〈f, agh1 + bgh2〉.
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It follows that gh = agh1 + bgh2 and that gh is a linear function of h.
It is also bounded. If f = gh, then Φh(gh) = ‖gh‖2. From the bound
|Φh(f)| ≤ ‖L‖‖f‖‖h‖, we have ‖gh‖2 ≤ |L‖‖gh‖‖h‖. Dividing by ‖gh‖ then
yields ‖gh‖ ≤ ‖L‖‖h‖. Thus the correspondence h→ gh is a bounded linear
function on H. Denote this function by L∗. Since 〈Lf, h〉 = 〈f, gh〉, we have
that 〈Lf, h〉 = 〈f, L∗h〉.

Corollary 2.3. ‖L∗‖ = ‖L‖.

Proof. By problem 4 in Assignment 8, ‖L‖ = supf,h |〈Lf, h〉|, where ‖h‖ =
‖f‖ = 1. On the other hand, ‖L∗‖ = supf,h |〈L∗h, f〉|. Since 〈L∗h, f〉 =

〈f, L∗h〉, we have that supf,h |〈L∗h, f〉| = supf,h |〈Lf, h〉|. It immediately
follows that ‖L∗‖ = ‖L‖.

3 The Fredholm Alternative

Theorem 3.1 (The Fredholm Alternative). Let L : H → H be a bounded
linear operator whose range, R(L), is closed. Then, the equation Lf = g
and be solved if and only if 〈g, v〉 = 0 for all v ∈ N(L∗). Equivalently,
R(L) = N(L∗)⊥.

Proof. Let g ∈ R(L), so that there is an h ∈ H such that g = Lh. If v ∈
N(L∗), then 〈g, v〉 = 〈Lh, v〉 = 〈h, L∗v〉 = 0. Consequently, R(L) ⊆ N(L∗)⊥.
Let f ∈ N(L∗)⊥. Since R(L) is closed, the projection theorem, Theorem 1.1,
and Corollary 1.3, imply that there exists an orthogonal projection P onto
R(L) such that Pf ∈ R(L) and f ′ = f − Pf ∈ R(L)⊥. Moreover, since f
and Pf are both in N(L∗)⊥, we have that f ′ ∈ R(L)⊥ ∩ N(L∗)⊥. Hence,
〈Lh, f ′〉 = 0 = 〈h, L∗f ′〉, for all h ∈ H. Setting h = L∗f ′ then yields L∗f ′ = 0,
so f ′ ∈ N(L∗). But f ′ ∈ N(L∗)⊥ and is thus orthogonal to itself; hence,
f ′ = 0 and f = Pf ∈ R(L). It immediately follows that N(L∗)⊥ ⊆ R(L).
Since we already know that R(L) ⊆ N(L∗)⊥, we have R(L) = N(L∗)⊥.

We want to point out that R(L) being closed is crucial for the theorem
to be true. If it is not closed, then the projection P will not exist and the
proof breaks down. In that case, one actually has R(L) = N(L∗)⊥, but not
R(L) = N(L∗)⊥
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