Several Important Theorems

by Francis J. Narcowich November, 2013

1 The Projection Theorem

Let \mathcal{H} be a Hilbert space. When V is a finite dimensional subspace of \mathcal{H} and $f \in \mathcal{H}$, we can always find a unique $p \in V$ such that $\|p-f\| = \min_{v \in V} \|v-f\|$. This fact is the foundation of least-squares approximation. What happens when we allow V to be infinite dimensional? We will see that the minimization problem can be solved if and only if V is closed.

Theorem 1.1 (The Projection Theorem). Let \mathcal{H} be a Hilbert space and let V be a subspace of \mathcal{H} . For every $f \in \mathcal{H}$ there is a unique $p \in V$ such that $\|p - f\| = \min_{v \in V} \|v - f\|$ if and only if V is a closed subspace of \mathcal{H} .

To prove that the converse is true, we need the following lemma.

Lemma 1.2 (Polarization Identity). Let \mathcal{H} be a Hilbert space. For every pair $f, g \in \mathcal{H}$, we have

$$||f + g||^2 + ||f - g||^2 = 2(||f||^2 + ||g||^2).$$

Proof. Adding the \pm identities $||f \pm g||^2 = ||f||^2 \pm \langle f, g \rangle \pm \langle g, f \rangle + ||g||^2$ yields the result.

The polarization identity is an easy consequence of having an inner product. It is surprising that if a *norm* satisfies the polarization identity, then the norm *comes* from an inner product.

Proof. (Projection Theorem) Showing that the existence of minimizer implies that V is closed is left as an exercise. So we assume that V is closed. For $f \in \mathcal{H}$, let $\alpha := \inf_{v \in V} ||v - f||$. It is a little easier to work with this in an equivalent form, $\alpha^2 = \inf_{v \in V} ||v - f||^2$. Thus, for every $\varepsilon > 0$ there is a $v_{\varepsilon} \in V$ such that $\alpha^2 \leq ||v_{\varepsilon} - f||^2 < \alpha^2 + \varepsilon$. By choosing $\varepsilon = 1/n$, where n is a positive integer, we can find a sequence $\{v_n\}_{n=1}^{\infty}$ in V such that

$$0 \le ||v_n - f||^2 - \alpha^2 < \frac{1}{n}$$
(1.1)

Of course, the same inequality holds for a possibly different integer $m, 0 \leq ||v_m - f||^2 - \alpha^2 < \frac{1}{m}$. Adding the two yields this:

$$0 \le ||v_n - f||^2 + ||v_m - f||^2 - 2\alpha^2 < \frac{1}{n} + \frac{1}{m}.$$
 (1.2)

By polarization identity and a simple manipulation, we have

$$||v_n - v_m||^2 + 4||f - \frac{v_n + v_m}{2}||^2 = 2||f - v_n||^2 + ||f - v_m||^2.$$

We can subtract $4\alpha^2$ from both sides and use (1.2) to get

$$\|v_n - v_m\|^2 + 4(\|f - \frac{v_n + v_m}{2}\|^2 - \alpha^2) = 2(\|f - v_n\|^2 + \|f - v_m\|^2 - 2\alpha^2) < \frac{2}{n} + \frac{2}{m}.$$

Because $\frac{1}{2}(v_n + v_m) \in V$, $||f - \frac{v_n + v_m}{2}||^2 \ge \inf_{v \in V} ||v - f||^2 = \alpha^2$. It follows that the second term on the left is nonnegative. Dropping it makes the left side smaller:

$$||v_n - v_m||^2 < \frac{2}{n} + \frac{2}{m}.$$
(1.3)

As $n, m \to \infty$, we see that $||v_n - v_m|| \to 0$. Thus $\{v_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{H} and is therefore convergent to a vector $p \in \mathcal{H}$. Since V is closed, $p \in V$. Furthermore, taking limits in (1.1) implies that $||p - f|| = \inf_{v \in V} ||v - f||$. The uniqueness of p is left as an exercise. \Box

There are two important corollaries to this theorem. We list them below. In all of them, we will use the notation from Theorem 1.1.

Corollary 1.3. There is a bounded operator P such that for every $f \in \mathcal{H}$, Pf = p. Moreover, $P^2 = P$ and ||P|| = 1. Finally, $P^* = P$.

Although we haven't established the existence of the adjoint P^* , we include it in the corollary above, for the sake of completeness.

Corollary 1.4. $\mathcal{H} = V \oplus V^{\perp}$ and $(V^{\perp})^{\perp} = V$.

2 The Riesz Representation Theorem

Theorem 2.1 (The Riesz Representation Theorem). Let \mathcal{H} be a Hilbert space and let $\Phi : \mathcal{H} \to \mathbb{C}$ (or \mathbb{R}) be a bounded linear functional on \mathcal{H} . Then, there is a unique $g \in \mathcal{H}$ such that, for all $f \in \mathcal{H}$, $\Phi(f) = \langle f, g \rangle$. Proof. The functional Φ is a bounded operator that maps \mathcal{H} into the scalars. It follows from our discussion of bounded operators that the null space of Φ , $N(\Phi)$, is closed. If $N(\Phi) = \mathcal{H}$, then $\Phi(f) = 0$ for all $f \in \mathcal{H}$, hence $\Phi = 0$. Thus we may take g = 0. If $N(\Phi) \neq \mathcal{H}$, then, since $N(\Phi)$ is closed, we have that $\mathcal{H} = N(\Phi) \oplus N(\Phi)^{\perp}$. In addition, since $N(\Phi) \neq \mathcal{H}$, there exists a nonzero vector $h \in N(\Phi)^{\perp}$. Moreover, $\Phi(h) \neq 0$, because h is not in the null space $N(\Phi)$. Next, note that for $f \in \mathcal{H}$, the vector $w := \Phi(h)f - \Phi(f)h$ is in $N(\Phi)$. To see this, observe that

$$\Phi(w) = \Phi(\Phi(h)f - \Phi(f)h) = \Phi(h)\Phi(f) - \Phi(f)\Phi(h) = 0$$

Because $w = \Phi(h)f - \Phi(f)h \in V$, it is orthogonal to $h \in N(\Phi)^{\perp}$, we have that

$$0 = \langle \Phi(h)f - \Phi(f)h, h \rangle = \Phi(h)\langle f, h \rangle - \Phi(f)\underbrace{\langle h, h \rangle}_{\|h\|^2}.$$

Solving this equation for $\Phi(f)$ yields $\Phi(f) = \langle f, \frac{\Phi(h)}{\|h\|^2}h \rangle$. The vector $g := \frac{\Phi(h)}{\|h\|^2}h$ then satisfies $\Phi(f) = \langle f, g \rangle$. To show uniqueness, suppose $g_1, g_2 \in \mathcal{H}$ satisfy $\Phi(f) = \langle f, g_1 \rangle$ and $\Phi(f) = \langle f, g_2 \rangle$. Subtracting these two gives $\langle f, g_2 - g_1 \rangle = 0$ of for all $f \in \mathcal{H}$. Letting $f = g_2 - g_1$ results in $\langle g_2 - g_1, g_2 - g_1 \rangle = 0$. Consequently, $g_2 = g_1$.

We now turn the problem of showing that an adjoint for a bounded operator always exists. This is just a corollary of the Riesz Representation Theorem.

Corollary 2.2. Let $L : \mathcal{H} \to \mathcal{H}$ be a bounded linear operator. Then there exists a bounded linear operator $L^* : \mathcal{H} \to \mathcal{H}$, called the adjoint of L, such that $\langle Lf, h \rangle = \langle f, L^*h \rangle$, for all $f, h \in \mathcal{H}$.

Proof. Fix $h \in \mathcal{H}$ and define the linear functional $\Phi_h(f) = \langle Lf, h \rangle$. Using the boundedness of L and Schwarz's inequality, we have $|\Phi_h(f)| \leq ||L|| ||f|| ||h|| = K||f||$, and so Φ_h is bounded. By Theorem 2.1, there is a unique vector g in \mathcal{H} for which $\Phi_h(f) = \langle f, g \rangle$. The vector g is uniquely deterred by Φ_h ; thus $g = g_h$ a function of h. We claim that g_h is a linear function of h. Consider $h = ah_1 + bh_2$. Note that $\Phi_h(f) = \langle Lf, ah_1 + bh_2 \rangle = \bar{a}\Phi_{h_1}(f) + \bar{b}\Phi_{h_2}(f)$. Since $\Phi_{h_1}(f) = \langle f, g_1 \rangle$ and $\Phi_{h_2}(f) = \langle f, g_2 \rangle$, we see that

$$\Phi_h(f) = \langle f, g_h \rangle = \bar{a} \Phi_{h_2}(f) + \bar{b} \Phi_{h_2}(f) = \langle f, ag_{h_1} + bg_{h_2} \rangle.$$

It follows that $g_h = ag_{h_1} + bg_{h_2}$ and that g_h is a linear function of h. It is also bounded. If $f = g_h$, then $\Phi_h(g_h) = ||g_h||^2$. From the bound $|\Phi_h(f)| \leq ||L|| ||f|| ||h||$, we have $||g_h||^2 \leq |L|| ||g_h|| ||h||$. Dividing by $||g_h||$ then yields $||g_h|| \leq ||L|| ||h||$. Thus the correspondence $h \to g_h$ is a bounded linear function on \mathcal{H} . Denote this function by L^* . Since $\langle Lf, h \rangle = \langle f, g_h \rangle$, we have that $\langle Lf, h \rangle = \langle f, L^*h \rangle$.

Corollary 2.3. $||L^*|| = ||L||$.

Proof. By problem 4 in Assignment 8, $||L|| = \sup_{f,h} |\langle Lf, h \rangle|$, where ||h|| = ||f|| = 1. On the other hand, $||L^*|| = \sup_{f,h} |\langle L^*h, f \rangle|$. Since $\langle L^*h, f \rangle = \overline{\langle f, L^*h \rangle}$, we have that $\sup_{f,h} |\langle L^*h, f \rangle| = \sup_{f,h} |\langle Lf, h \rangle|$. It immediately follows that $||L^*|| = ||L||$.

3 The Fredholm Alternative

Theorem 3.1 (The Fredholm Alternative). Let $L : \mathcal{H} \to \mathcal{H}$ be a bounded linear operator whose range, R(L), is closed. Then, the equation Lf = gand be solved if and only if $\langle g, v \rangle = 0$ for all $v \in N(L^*)$. Equivalently, $R(L) = N(L^*)^{\perp}$.

Proof. Let $g \in R(L)$, so that there is an $h \in \mathcal{H}$ such that g = Lh. If $v \in N(L^*)$, then $\langle g, v \rangle = \langle Lh, v \rangle = \langle h, L^*v \rangle = 0$. Consequently, $R(L) \subseteq N(L^*)^{\perp}$. Let $f \in N(L^*)^{\perp}$. Since R(L) is closed, the projection theorem, Theorem 1.1, and Corollary 1.3, imply that there exists an orthogonal projection P onto R(L) such that $Pf \in R(L)$ and $f' = f - Pf \in R(L)^{\perp}$. Moreover, since f and Pf are both in $N(L^*)^{\perp}$, we have that $f' \in R(L)^{\perp} \cap N(L^*)^{\perp}$. Hence, $\langle Lh, f' \rangle = 0 = \langle h, L^*f' \rangle$, for all $h \in \mathcal{H}$. Setting $h = L^*f'$ then yields $L^*f' = 0$, so $f' \in N(L^*)$. But $f' \in N(L^*)^{\perp}$ and is thus orthogonal to itself; hence, f' = 0 and $f = Pf \in R(L)$. It immediately follows that $N(L^*)^{\perp} \subseteq R(L)$. Since we already know that $R(L) \subseteq N(L^*)^{\perp}$, we have $R(L) = N(L^*)^{\perp}$.

We want to point out that R(L) being closed is crucial for the theorem to be true. If it is not closed, then the projection \underline{P} will not exist and the proof breaks down. In that case, one actually has $\overline{R(L)} = N(L^*)^{\perp}$, but not $R(L) = N(L^*)^{\perp}$