A Resolvent Example

by

Francis J. Narcowich November, 2013

Problem. Let $k(x,y)=x^2y$, $Ku(x)=\int_0^1 k(x,y)u(y)dy$, and $Lu=u-\lambda Ku$. Assume that L has closed range.

- 1. Determine the values of λ for which Lu = f has a solution for all f. Solve Lu = f for these values of λ .
- 2. For the remaining values of λ , find a condition on f the guarantees a solution to Lu = f. When f satisfies this condition, solve Lu = f.

Solution. (1) Because R(L) is closed, the Fredholm alternative applies. We begin by finding $N(L^*)$. First, we have that $L^* = I - \bar{\lambda} K^*$, where $K^*v = \int_0^1 k(y,x)v(y)dy = \int_0^1 y^2xv(y)dy$. We want to find all v for which $L^*v = v - \bar{\lambda} \int_0^1 y^2xv(y)dy = 0$. Note that $v = \bar{\lambda} x \int_0^1 y^2v(y)dy$, so v = Cx. Putting this back into the equation for v yields $Cx = \bar{\lambda} Cx \int_0^1 y^2ydy = C(\bar{\lambda}/4)x$. Thus, $C = (\bar{\lambda}/4)C$. If $\bar{\lambda}/4 \neq 1$, then C = 0 and $N(L^*) = \{0\}$. Thus, if $\bar{\lambda}/4 \neq 1$ – i.e., $\lambda \neq 4$, Lu = f has a solution for all $f \in L^2[0,1]$. To find u, note that $u - \lambda x^2 \int_0^1 yu(y)dy = f$, and so we only need to find $\int_0^1 yu(y)dy$. The trick for doing this is to multiply Lu = f by x and then integrate. Doing this results in $\int_0^1 yu(y)dy - \frac{\lambda}{4} \int_0^1 yu(y)dy = \int_0^1 yf(y)dy$. From this we get $\int_0^1 yu(y)dy = \frac{1}{1-\lambda/4} \int_0^1 yf(y)dy$. Finally, we arrive at

$$u(x) = f(x) + \frac{4\lambda}{4-\lambda}x^2 \int_0^1 yf(y)dy = u(x) + \frac{4\lambda}{4-\lambda}Kf(x).$$

In operator form,

$$(I - \lambda K)^{-1} = I + \frac{4\lambda}{4 - \lambda} K$$

The operator $(I - \lambda K)^{-1}$ is called the *resolvent* of K.

(2) When $\lambda=4$, $N(L^*)=\mathrm{span}\{x\}$. By the Fredholm alternative, Lu=f has a solution if and only if $\int_0^1 x f(x) dx=0$. To solve $u-4x^2 \int_0^1 y u(y) dy=f$ for u, we first note that $\int_0^1 y u(y) dy$ is not determined. This is because $\int_0^1 y u(y) dy - \frac{4}{4} \int_0^1 y u(y) dy = \int_0^1 y f(y) dy=0$. This really only says that 0=0; we only have consistency. The constant $C=\int_0^1 y u(y) dy$ is thus arbitrary. The solution we arrive at has the form $u(x)=f(x)+Cx^2$.