A Resolvent Example

by
Francis J. Narcowich
November, 2013

Problem. Let $k(x, y)=x^{2} y, K u(x)=\int_{0}^{1} k(x, y) u(y) d y$, and $L u=u-\lambda K u$. Assume that L has closed range.

1. Determine the values of λ for which $L u=f$ has a solution for all f. Solve $L u=f$ for these values of λ.
2. For the remaining values of λ, find a condition on f the guarantees a solution to $L u=f$. When f satisfies this condition, solve $L u=f$.

Solution. (1) Because $R(L)$ is closed, the Fredholm alternative applies. We begin by finding $N\left(L^{*}\right)$. First, we have that $L^{*}=I-\bar{\lambda} K^{*}$, where $K^{*} v=\int_{0}^{1} k(y, x) v(y) d y=\int_{0}^{1} y^{2} x v(y) d y$. We want to find all v for which $L^{*} v=v-\bar{\lambda} \int_{0}^{1} y^{2} x v(y) d y=0$. Note that $v=\bar{\lambda} x \int_{0}^{1} y^{2} v(y) d y$, so $v=C x$. Putting this back into the equation for v yields $C x=\bar{\lambda} C x \int_{0}^{1} y^{2} y d y=$ $C(\bar{\lambda} / 4) x$. Thus, $C=(\bar{\lambda} / 4) C$. If $\bar{\lambda} / 4 \neq 1$, then $C=0$ and $N\left(L^{*}\right)=\{0\}$. Thus, if $\bar{\lambda} / 4 \neq 1$ - i.e., $\lambda \neq 4, L u=f$ has a solution for all $f \in L^{2}[0,1]$. To find u, note that $u-\lambda x^{2} \int_{0}^{1} y u(y) d y=f$, and so we only need to find $\int_{0}^{1} y u(y) d y$. The trick for doing this is to multiply $L u=f$ by x and then integrate. Doing this results in $\int_{0}^{1} y u(y) d y-\frac{\lambda}{4} \int_{0}^{1} y u(y) d y=\int_{0}^{1} y f(y) d y$. From this we get $\int_{0}^{1} y u(y) d y=\frac{1}{1-\lambda / 4} \int_{0}^{1} y f(y) d y$. Finally, we arrive at

$$
u(x)=f(x)+\frac{4 \lambda}{4-\lambda} x^{2} \int_{0}^{1} y f(y) d y=u(x)+\frac{4 \lambda}{4-\lambda} K f(x) .
$$

In operator form,

$$
(I-\lambda K)^{-1}=I+\frac{4 \lambda}{4-\lambda} K
$$

The operator $(I-\lambda K)^{-1}$ is called the resolvent of K.
(2) When $\lambda=4, N\left(L^{*}\right)=\operatorname{span}\{x\}$. By the Fredholm alternative, $L u=$ f has a solution if and only if $\int_{0}^{1} x f(x) d x=0$. To solve $u-4 x^{2} \int_{0}^{1} y u(y) d y=$ f for u, we first note that $\int_{0}^{1} y u(y) d y$ is not determined. This is because $\int_{0}^{1} y u(y) d y-\frac{4}{4} \int_{0}^{1} y u(y) d y=\int_{0}^{1} y f(y) d y=0$. This really only says that $0=0$; we only have consistency. The constant $C=\int_{0}^{1} y u(y) d y$ is thus arbitrary. The solution we arrive at has the form $u(x)=f(x)+C x^{2}$.

