Final Examination

This take-home exam is due at 4 pm on Wednesday, May 8. You may consult any written or online source. You may not consult any person, either a fellow student or faculty member, except your instructor

1. ($\mathbf{1 5}$ pts.) Let T be a bounded self-adjoint operator on a Hilbert space \mathcal{H}. In addition, suppose that 0 is in the continuous spectrum of T. If $\mathcal{R}=\operatorname{Range}(T)$, show that $L=T^{-1}$, with domain $\mathcal{D}=\mathcal{R}$, is a self-adjoint operator.
2. Consider the self adjoint operator $L u=-u^{\prime \prime}, 0<x<\infty$, with $D_{L}=$ $\left\{u \in L^{2}([0, \infty)): u^{\prime \prime} \in L^{2}([0, \infty)), u^{\prime}(0)=0\right\}$.
(a) (10 pts.) Find the Green's function for L.
(b) (15 pts.) Use Stone's formula to find the associated spectral transform.
3. (20 pts.) Let \mathcal{H} be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, and let L be a self-adjoint operator with domain \mathcal{D}. Show that if $c:=\inf _{f \in \mathcal{D},\|f\|=1}\langle L f, f\rangle,-\infty<c<\infty$, then $c \in \sigma(L)$ and $(-\infty, c) \subset \rho(L)$. Equivalently, $c=\min \sigma(L)$.
4. Suppose f is a band-limited signal, with $\widehat{f}(\omega)=0$ for $|\omega| \geq \Omega$. In addition, for $a>1$, let $g_{a}=\mathcal{F}^{-1}\left(\widehat{g}_{a}\right)$, where \widehat{g}_{a} is the function whose graph is given by Figure 1. In addition, let f be sampled at the rate $a \Omega / \pi$ which is higher that the Nyquist rate, Ω / π. This means that we are oversampling f.
(a) (5 pts.) Show that, on $|\omega| \leq a \Omega, \widehat{f}(\omega)$, which is 0 for $|\omega| \geq \Omega$, can be represented by the $2 a \Omega$ periodic Fourier series,

$$
\begin{equation*}
\widehat{f}(\omega)=\sum_{n=-\infty}^{\infty} c_{-n} e^{-i n \pi \omega / a \Omega} \quad \text { with } c_{-n}=\frac{\pi}{a \Omega} f\left(\frac{n \pi}{a \Omega}\right) \tag{1}
\end{equation*}
$$

In addition, $\widehat{f}(\omega)=\sum_{n=-\infty}^{\infty} c_{-n} e^{-i n \pi \omega / a \Omega} \widehat{g}_{a}(\omega)$, on $[-a \Omega, a \Omega]$, because $\widehat{g}_{a}(\omega)=1$ on $[-\Omega, \Omega]$ and $\widehat{f}(\omega)=0$ on $|\omega| \geq \Omega$.

Figure 1: Graph of \widehat{g}_{a}
(b) (5 pts.) Show that

$$
\begin{equation*}
g_{a}(t)=\frac{\cos (\Omega t)-\cos (a \Omega t)}{\pi(a-1) \Omega t^{2}} \tag{2}
\end{equation*}
$$

(c) (5 pts.) Use the previous two parts to show that

$$
\begin{equation*}
f(t)=\sum_{n=-\infty}^{\infty} \frac{\pi}{a \Omega} f\left(\frac{n \pi}{a \Omega}\right) g_{a}\left(t-\frac{n \pi}{a \Omega}\right) . \tag{3}
\end{equation*}
$$

(d) (10 pts.) Applying Parseval's theorem to the Fourier series (1), show that $\sum_{n \in \mathbb{Z}}\left|f\left(\frac{n \pi}{a \Omega}\right)\right|^{2}=\frac{a \Omega}{2 \pi^{2}}\|f\|_{L^{2}(\mathbb{R})}^{2}$. For all $|t| \leq \frac{N \pi}{2 a \Omega}$, show that $\left|f(t)-\sum_{|n| \leq N-1} \frac{\pi}{a \Omega} f\left(\frac{n \pi}{a \Omega}\right) g_{a}\left(t-\frac{n \pi}{a \Omega}\right)\right| \leq C\|f\|_{L^{2}(\mathbb{R})} N^{-3 / 2}$. What is the rate for the standard sampling series? Does oversampling improve the rate of convergence?
5. (15 pts.) Consider the sum $S(n)=\sum_{k=0}^{n} k!\binom{n}{k} n^{-k}$. Show that for large n we have that $S(n) \sim \sqrt{\frac{n \pi}{2}}$. Hint: $k!n^{-k-1}=\int_{0}^{\infty} e^{-n x} x^{k} d x$.

