Change of Basis

Coordinate vectors. This are notes covering changing bases/coordinates. Here is the setup for all of the problems. We begin with a vector space V that has an ordered basis $E = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$. (We always keep the same order for vectors in the basis.) By the "coordinate theorem," if $\mathbf{v} \in V$, then we can always express $\mathbf{v} \in V$ in one and only one way as a linear combination of the the vectors in E. Specifically, for any $\mathbf{v} \in V$ there are scalars x_1, \ldots, x_n such that

$$\mathbf{v} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n \,. \tag{1}$$

Moreover, by the same theorem, we have an isomorphism between V and \mathbb{R}^n :

$$[\mathbf{v}]_E = \left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right).$$

The column vector $[\mathbf{v}]_E$ is the coordinate vector of \mathbf{v} relative to E, and the x_j 's are the coordinates of \mathbf{v} . The isomorphism just means that these properties hold:

$$[\mathbf{v} + \mathbf{w}]_E = [\mathbf{v}]_E + [\mathbf{w}]_E$$
 and $[c\mathbf{v}]_E = c[\mathbf{v}]_E$. (2)

Examples. Let $V = \mathcal{P}_3$ and $E = \{1, x, x^2\}$. What is the coordinate vector $[5 + 3x - x^2]_B$? Answer:

$$[5+3x-x^2]_E = \begin{pmatrix} 5\\ 3\\ -1 \end{pmatrix}.$$

If we ask the same question for $[5 - x^2 + 3x]_E$, the answer is the *same*, because to find the coordinate vector we have to *order* the basis elements so that they are in the same order as E.

Let's turn the question around. Suppose that we are given

$$[p]_E = \begin{pmatrix} 3\\ 0\\ -4 \end{pmatrix},$$

then what is p? Answer: $p(x) = 3 \cdot 1 + 0 \cdot x + (-4) \cdot x^2 = 3 - 4x^2$.

Let's try another space. Let $V = \text{span}\{e^x, e^{-x}\}$, which is a subspace of $C(-\infty, \infty)$. Here, we will take $E = \{e^x, e^{-x}\}$. What are coordinate

vectors for $\sinh(x)$ and $\cosh(x)$? Solution: Since $\sinh(x) = \frac{1}{2}e^t - \frac{1}{2}e^{-x}$ and $\cosh(x) = \frac{1}{2}e^x + \frac{1}{2}e^{-x}$, these vectors are

$$[\sinh(x)]_E = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \quad \text{and} \quad [\cosh(x)]_E = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}. \tag{3}$$

Change of basis Suppose that $F = [\mathbf{w}_1, \dots, \mathbf{w}_n]$ is a second basis for V. How do we relate coordinates relative to E to those of F? How do we change from one set of coordinates to another?

Suppose that we know the *E*-coordinate vector of \mathbf{v} , $\mathbf{x} := [\mathbf{v}]_E$ and we want *F*-coordinate vector $\mathbf{y} := [\mathbf{v}]_F$. To do this, we first find the *F*-coordinates of the *E*-basis vectors; these are just the column vectors below.

$$\mathbf{s}_1 = [\mathbf{v}_1]_F, \ \mathbf{s}_2 = [\mathbf{v}_2]_F, \ \dots, \ \mathbf{s}_n = [\mathbf{v}_n]_F.$$

Now, in the representation (1) for \mathbf{v} in the *E*-basis, take the *F*-coordinates of both sides to get

$$\mathbf{y} = [\mathbf{v}]_F = [x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n]_F.$$

Using the properties of coordinate vectors in (2), we see that

$$\mathbf{y} = [\mathbf{v}]_F = x_1[\mathbf{v}_1]_F + x_2[\mathbf{v}_2]_F + \dots + x_n[\mathbf{v}_n]_F$$
$$= x_1\mathbf{s}_1 + x_2\mathbf{s}_2 + \dots + x_n\mathbf{s}_n$$
$$= \underbrace{[\mathbf{s}_1 \ \mathbf{s}_2 \cdots \mathbf{s}_n]}_S \mathbf{x} = S\mathbf{x}$$

The matrix S is the transition matrix from E-coordinates to F-coordinates. When we want to emphasize this, we will write $S_{E\to F}$, instead of just S.

Examples. Start out with $V = P_3$. Let $E = [x + 1, x - 1, 1 + x + x^2]$ and let $F = [1, x, x^2]$. To find the change of basis matrix $S_{E \to F}$, we need the F coordinate vectors for the E basis. These are easy to find.

$$\mathbf{s}_1 = [1+x]_F = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \mathbf{s}_2 = [x-1]_F = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \mathbf{s}_3 = [1+x+x^2]_F = \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

By what we said above, the transition matrix is

$$S_{E \to F} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

To get the transition matrix in the reverse direction, $F \to E$, we just need to calculate $S_{F\to E} = S_{E\to F}^{-1}$. In this example, the answer is

$$S_{F \to E} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

To clarify this, start with $[p]_E = (1 \ -2 \ 5)^T$ - so that $p(x) = 1 \cdot (1+x) + (-2) \cdot (x-1) + 5 \cdot (1+x+x^2)$. Then $[p]_F = S_{E \to f}[p]_E = (8 \ 4 \ 5)^T$, or $p(x) = 8 \cdot 1 + 4 \cdot x + 5 \cdot x^2$.

Let's look at a second example. Let $V = \text{span}\{e^x, e^{-x}\}$. The set $E = [e^x, e^{-x}]$ is linearly independent, and therefor a basis. A second basis is $F = [\cosh(x), \sinh(x)]$. By definition of cosh and sinh, we have $\cosh(x) = \frac{1}{2}(e^x + e^{-x} \text{ and } \sinh(x) = \frac{1}{2}(e^x - e^{-x})$. However, this is a problem, because what we need is the *E*-basis vectors in terms of *F*-coordinates. What we have is *F*-basis vectors in *E*-coordinates. To deal with this situation, which is pretty common, we first find $S_{F \to E}$ and then invert to get $S_{E \to F}$. Using $[\cosh(x)]_E$ and $[\sinh(x)]_E$ from (3), we have

$$S_{F \to E} = \begin{bmatrix} [\cosh(x)]_E \ [\sinh(x)]_E \end{bmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}$$

Finding the inverse of this matrix gives us the transition matrix that we wanted in the first place:

$$S_{E \to F} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Here is our final example $V = P_3$, $E = [1, x, x^2]$ and $F = [1, x, \frac{1}{2}(3x^2-1)]$. Again we want $S_{E \to F}$. However, we are in the same situation as the last problem. We know the *F*-basis in *E*-coordinates, not the *E*-basis in *F*-coordinates. As before, we first find

$$S_{F \to E} = \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 3/2 \end{pmatrix}.$$
 (4)

We then find the inverse of this matrix to get the transition matrix from E to F:

$$S_{E \to F} = \begin{pmatrix} 1 & 0 & 1/3 \\ 0 & 1 & 0 \\ 0 & 0 & 2/3 \end{pmatrix}$$
(5)

Change of basis for matrices for linear transformations. The matrix A that represents a linear transformation $L: V \to V$ relative to a basis $E = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ is

$$A = \left[\left[L(\mathbf{v}_1) \right]_E \left[L(\mathbf{v}_2) \right]_E \cdots \left[L(\mathbf{v}_n) \right]_E \right]$$

The equation $L(\mathbf{v}) = \mathbf{w}$ is completely equivalent to the matrix equation $A[\mathbf{v}]_E = [\mathbf{w}]_E$. Of course, we could have used another basis $F = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$, with another matrix

$$B = \left[[L(\mathbf{w}_1)]_F [L(\mathbf{w}_2)]_F \cdots [L(\mathbf{w}_n)]_F \right]$$

representing L. If we know A and want to find B, start with $A[\mathbf{v}]_E = [\mathbf{w}]_E$. Use $[\mathbf{v}]_E = S_{FtoE}[\mathbf{v}]_F$ to get $AS_{F\to E}[\mathbf{v}]_F = [\mathbf{w}]_E$. Then, note that $[\mathbf{w}]_F = S_{E\to F}[\mathbf{w}]_E$. Combining this with the previous equation gives $S_{F\to E}AS_{F\to E}[\mathbf{v}]_F = [\mathbf{w}]_F$. Letting $S = S_{F\to E}$, we obtain this relation between A and B:

$$B = S^{-1}AS$$

An example. Let $V = P_3$ and take $E = [1, x, x^2]$ and $F = [1, x, \frac{1}{2}(3x^2 - 1)]$. The linear transformation for this example is $L(p) = ((x^2 - 1)p')'$. To find the matrix A that represents L, we first apply L to each of the basis vectors in B.

$$L(1) = 0$$
, $L(x) = 2x$, and $L(x^2) = -2 + 6x^2$.

Next, we find the *E*-basis coordinate vectors for each of these.

$$[0]_E = \begin{pmatrix} 0\\0\\0 \end{pmatrix} \quad [2x]_E = \begin{pmatrix} 0\\2\\0 \end{pmatrix} \quad [-2+6x^2]_E = \begin{pmatrix} -2\\0\\6 \end{pmatrix},$$

and so them matrix that represents L is

$$A = \left(\begin{array}{rrr} 0 & 0 & -2 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{array}\right)$$

We have already calculated the transition matrices, which are given in (4) and (5). Thus, since $B = S_{E \to F} A S_{S \to E}$, we have

$$B = \begin{pmatrix} 1 & 0 & 1/3 \\ 0 & 1 & 0 \\ 0 & 0 & 2/3 \end{pmatrix} \begin{pmatrix} 0 & 0 & -2 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 3/2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$