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Coordinate vectors. This is a brief discussion of coordinate vectors and
the notation for them that I presented in class. Here is the setup for all of the
problems. We begin with a vector space V that has a basis B = {v1, . . . ,vn}
– i.e., a spanning set that is linearly independent. We always keep the same
order for vectors in the basis. Technically, this is called an ordered basis.
The following theorem, Theorem 3.2, p. 139, in the text gives the necessary
ingredients for making coordinates:

Theorem 1 (Coordinate Theorem) Let V = Span(B), where the set

B = {v1, . . . ,vn}. Then, every v ∈ V can represented in exactly one way

as linear combination of the vj’s if and only if B = {v1, . . . ,vn} is linearly

independent – hence, B is a basis, since it spans. In particular, if B is a

basis, there are unique scalars x1, . . . , xn such that

v = x1v1 + x2v2 + · · ·+ xnvn . (1)

This theorem allows us to assign coordinates to vectors, provided we
don’t change the order of the vectors in B. That is, B is is an ordered basis.
When order matters we write B = [v1, . . . ,vn]. (For example, for P3, the
ordered basis [1, x, x2] is different than [x, x2, 1].) If the basis is ordered,
then the coefficient xj in equation (1) corresponds to vj , and we say that
the xj ’s are the coordinates of v relative to B. We collect them into the
coordinate vector

[v]B =







x1
...
xn






.
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Isomorphisms. The correspondence between a vector v in V and [v]B,
its coordinate vector [v]B in R

n, has some nice properties. First, the cor-
respondence is one-to-one and onto. This means that for every v there
is exactly one column vector [v]B, and, conversely, every column vector
(x1 x2 · · ·xn)

T in R
n corresponds to v = x1v1 + x2v2 + · · ·+ xnvn. Second,

the correspondence preserves vector addition and multiplication by a scalar:
If v ↔ x := [v]B and w ↔ y := [w]B, then

v +w ↔ x+ y and cv ↔ cx.

A one-to-one, onto correspondence between vector spaces that preserves the
operations of addition and multiplication by a scalar is called an isomor-

phism. As far as vector operations go, two spaces that are isomorphic are
equivalent. We can put this another way: [v]B + [w]B = [v + w]B and
[cv]B = c[v]B. In terms of a linear combinations, we have [av + bw]B =
a[v]B + b[w]B.

Examples. Here are some examples. Let V = P2 and B = {1, x, x2}.
What is the coordinate vector [5 + 3x− x2]B? Answer:

[5 + 3x− x2]B =





5
3
−1



 .

If we ask the same question for [5 − x2 + 3x]B, the answer is the same,
because to find the coordinate vector we have to order the basis elements
so that they are in the same order as B.

Let’s turn the question around. Suppose that we are given

[p]B =





3
0
−4



 ,

then what is p? Answer: p(x) = 3 · 1 + 0 · x+ (−4) · x2 = 3− 4x2.
We want to illustrate the isomorphism between P2 and R

3. For example,
if p(x) = 1− 4x+ 5x2 and q(x) = −4 + x+ x2, the the polynomial p+ q is
p(x) + q(x) = −3− 3x+ 6x2. The coordinate vectors for these in R

3 are

[p]B =





1
−4
5



 , [q]B =





−4
1
1



 , [p+ q]B =





−3
−3
6



 = [p]B + [q]B.
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The last equation is exactly what we mean by “preserving vector addition.”
Similar examples hold for multiplication by a scalar.

We now want to use this isomorphism to determine whether or not a
set of polynomials are linearly dependent or linearly independent. Let S =
{x+ 1, x2, x2 + x+ 1}. We need to look at the homogeneous equation

c1(x+ 1) + c2x
2 + c3(x

2 + x+ 1) ≡ 0.

Because linear combinations of vectors are equivalent to linear combinations
of coordinate vectors, we have

c1





1
1
0



+ c2





0
0
1



+ c3





1
1
1



 =





0
0
0



 .

We may put this system in augmented form and row reduce it:




1 0 1 0
1 0 1 0
0 1 1 1



 ⇔





1 0 1 0
0 1 1 0
0 0 0 0





This system has the solution c1 = −t, c2 = −t, and c3 = t. If we take t = 1,
then c1 = −1, c2 = −1, and c3 = 1. Thus, the original homogeneous system
involving polynomials has a nonzero solution and so S is linearly dependent.

Let’s try another space. Let V = {y ∈ C(2) | y′′ − y = 0}. This is
the space of solutions to y′′ − y = 0. This ODE has solutions that are
linear combinations of two linearly independent solutions, et, e−t. Thus B =
{et, e−t} is a basis for V . It follows that every solution y = c1e

t + c2e
−t has

the coordinate representation

[y]B =

(

c1
c2

)

.

To be more definite, if y is a solution that satisfies y(0) = 3 and y′(0) = 1,
then y(x) = 2et + e−t, which has the coordinate vector

[2et + e−t]B =

(

2
1

)

.

Suppose that we have a synthesizer that can produce two frequencies,
ν1 and ν2. The sounds that it can produce are superpositions of sines and
cosines with these frequencies; they are thus in the vector space

V = Span{cos(2πν1t), sin(2πν1t), cos(2πν2t), sin(2πν2t)}.
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It’s not hard to show that the four functions involved are linearly indepen-
dent and so any possible sound has the form

s(t) = c1 cos(2πν1t) + c2 sin(2πν1t) + c3 cos(2πν2t) + c4 sin(2πν2t),

and it can be represented by the coordinate vector

[s(t)] =









c1
c2
c3
c4









.

Mathematically, mixing frequencies is simply a matter of forming linear
combinations of column vectors with four entries.
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