Coordinate Vectors and Examples

Francis J. Narcowich
Department of Mathematics
Texas A\&M University

June 2013

Coordinate vectors. This is a brief discussion of coordinate vectors and the notation for them that I presented in class. Here is the setup for all of the problems. We begin with a vector space V that has a basis $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ - i.e., a spanning set that is linearly independent. We always keep the same order for vectors in the basis. Technically, this is called an ordered basis. The following theorem, Theorem 3.2, p. 139, in the text gives the necessary ingredients for making coordinates:

Theorem 1 (Coordinate Theorem) Let $V=\operatorname{Span}(B)$, where the set $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Then, every $\mathbf{v} \in V$ can represented in exactly one way as linear combination of the \mathbf{v}_{j} 's if and only if $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent - hence, B is a basis, since it spans. In particular, if B is a basis, there are unique scalars x_{1}, \ldots, x_{n} such that

$$
\begin{equation*}
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n} . \tag{1}
\end{equation*}
$$

This theorem allows us to assign coordinates to vectors, provided we don't change the order of the vectors in B. That is, B is is an ordered basis. When order matters we write $B=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$. (For example, for \mathcal{P}_{3}, the ordered basis $\left[1, x, x^{2}\right]$ is different than $\left[x, x^{2}, 1\right]$.) If the basis is ordered, then the coefficient x_{j} in equation (1) corresponds to \mathbf{v}_{j}, and we say that the x_{j} 's are the coordinates of \mathbf{v} relative to B. We collect them into the coordinate vector

$$
[\mathbf{v}]_{B}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Isomorphisms. The correspondence between a vector \mathbf{v} in V and $[\mathbf{v}]_{B}$, its coordinate vector $[\mathbf{v}]_{B}$ in \mathbb{R}^{n}, has some nice properties. First, the correspondence is one-to-one and onto. This means that for every \mathbf{v} there is exactly one column vector $[\mathbf{v}]_{B}$, and, conversely, every column vector $\left(x_{1} x_{2} \cdots x_{n}\right)^{T}$ in \mathbb{R}^{n} corresponds to $\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}$. Second, the correspondence preserves vector addition and multiplication by a scalar: If $\mathbf{v} \leftrightarrow \mathbf{x}:=[\mathbf{v}]_{B}$ and $\mathbf{w} \leftrightarrow \mathbf{y}:=[\mathbf{w}]_{B}$, then

$$
\mathbf{v}+\mathbf{w} \leftrightarrow \mathbf{x}+\mathbf{y} \text { and } c \mathbf{v} \leftrightarrow c \mathbf{x} .
$$

A one-to-one, onto correspondence between vector spaces that preserves the operations of addition and multiplication by a scalar is called an isomorphism. As far as vector operations go, two spaces that are isomorphic are equivalent. We can put this another way: $[\mathbf{v}]_{B}+[\mathbf{w}]_{B}=[\mathbf{v}+\mathbf{w}]_{B}$ and $[c \mathbf{v}]_{B}=c[\mathbf{v}]_{B}$. In terms of a linear combinations, we have $[a \mathbf{v}+b \mathbf{w}]_{B}=$ $a[\mathbf{v}]_{B}+b[\mathbf{w}]_{B}$.

Examples. Here are some examples. Let $V=\mathcal{P}_{2}$ and $B=\left\{1, x, x^{2}\right\}$. What is the coordinate vector $\left[5+3 x-x^{2}\right]_{B}$? Answer:

$$
\left[5+3 x-x^{2}\right]_{B}=\left(\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right)
$$

If we ask the same question for $\left[5-x^{2}+3 x\right]_{B}$, the answer is the same, because to find the coordinate vector we have to order the basis elements so that they are in the same order as B.

Let's turn the question around. Suppose that we are given

$$
[p]_{B}=\left(\begin{array}{c}
3 \\
0 \\
-4
\end{array}\right)
$$

then what is p ? Answer: $p(x)=3 \cdot 1+0 \cdot x+(-4) \cdot x^{2}=3-4 x^{2}$.
We want to illustrate the isomorphism between \mathcal{P}_{2} and \mathbb{R}^{3}. For example, if $p(x)=1-4 x+5 x^{2}$ and $q(x)=-4+x+x^{2}$, the the polynomial $p+q$ is $p(x)+q(x)=-3-3 x+6 x^{2}$. The coordinate vectors for these in \mathbb{R}^{3} are

$$
[p]_{B}=\left(\begin{array}{c}
1 \\
-4 \\
5
\end{array}\right),[q]_{B}=\left(\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right),[p+q]_{B}=\left(\begin{array}{c}
-3 \\
-3 \\
6
\end{array}\right)=[p]_{B}+[q]_{B}
$$

The last equation is exactly what we mean by "preserving vector addition." Similar examples hold for multiplication by a scalar.

We now want to use this isomorphism to determine whether or not a set of polynomials are linearly dependent or linearly independent. Let $S=$ $\left\{x+1, x^{2}, x^{2}+x+1\right\}$. We need to look at the homogeneous equation

$$
c_{1}(x+1)+c_{2} x^{2}+c_{3}\left(x^{2}+x+1\right) \equiv 0
$$

Because linear combinations of vectors are equivalent to linear combinations of coordinate vectors, we have

$$
c_{1}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We may put this system in augmented form and row reduce it:

$$
\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \Leftrightarrow\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This system has the solution $c_{1}=-t, c_{2}=-t$, and $c_{3}=t$. If we take $t=1$, then $c_{1}=-1, c_{2}=-1$, and $c_{3}=1$. Thus, the original homogeneous system involving polynomials has a nonzero solution and so S is linearly dependent.

Let's try another space. Let $V=\left\{y \in C^{(2)} \mid y^{\prime \prime}-y=0\right\}$. This is the space of solutions to $y^{\prime \prime}-y=0$. This ODE has solutions that are linear combinations of two linearly independent solutions, e^{t}, e^{-t}. Thus $B=$ $\left\{e^{t}, e^{-t}\right\}$ is a basis for V. It follows that every solution $y=c_{1} e^{t}+c_{2} e^{-t}$ has the coordinate representation

$$
[y]_{B}=\binom{c_{1}}{c_{2}}
$$

To be more definite, if y is a solution that satisfies $y(0)=3$ and $y^{\prime}(0)=1$, then $y(x)=2 e^{t}+e^{-t}$, which has the coordinate vector

$$
\left[2 e^{t}+e^{-t}\right]_{B}=\binom{2}{1}
$$

Suppose that we have a synthesizer that can produce two frequencies, ν_{1} and ν_{2}. The sounds that it can produce are superpositions of sines and cosines with these frequencies; they are thus in the vector space

$$
V=\operatorname{Span}\left\{\cos \left(2 \pi \nu_{1} t\right), \sin \left(2 \pi \nu_{1} t\right), \cos \left(2 \pi \nu_{2} t\right), \sin \left(2 \pi \nu_{2} t\right)\right\}
$$

It's not hard to show that the four functions involved are linearly independent and so any possible sound has the form

$$
s(t)=c_{1} \cos \left(2 \pi \nu_{1} t\right)+c_{2} \sin \left(2 \pi \nu_{1} t\right)+c_{3} \cos \left(2 \pi \nu_{2} t\right)+c_{4} \sin \left(2 \pi \nu_{2} t\right),
$$

and it can be represented by the coordinate vector

$$
[s(t)]=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)
$$

Mathematically, mixing frequencies is simply a matter of forming linear combinations of column vectors with four entries.

