Name_____ 1

Test II

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

- 1. (10 pts.) Define these: (a) Linearly independent vectors. (b) Basis.
- 2. (20 pts.) For the matrix A below, find bases for the column space, row space and null space of A. What are the rank and nullity of A?

$$A = \left(\begin{array}{rrrrr} 1 & -3 & -1 & -3 \\ -1 & 3 & 2 & 4 \\ 2 & -6 & 4 & 0 \end{array}\right)$$

3. (15 pts.) Determine whether each of the sets below is linearly dependent or linearly independent, and whether or not it is a basis for P_4 .

$$S_1 = \{1 - x, 1 + x^2, 1 - x + x^3, 1 + x^2 - 5x^3, x - x^3\}$$

$$S_2 = \{x + 1, 1 - x, x^2 + x^3\}$$

$$S_3 = \{1 + x^2, 1 - x^3, x, 1 - x^2\}.$$

- 4. (15 pts.) $E = \{1 x, 2x + 1\}$ and $F = \{1 + x, x 2\}$ are bases for P_2 . Find the transition matrix $S_{E \to F}$. (Hint: *E* and *F* can be expressed in terms of a *third* basis, $G = \{1, x\}$.)
- 5. Let $L: P_3 \to P_3$ be defined by L(p) = p'' + (x+1)p' p.
 - (a) (5 pts.) Show that L is linear.
 - (b) (5 pts.) Find the matrix of L relative to the basis $E = \{1, x, x^2\}$.
 - (c) (10 pts.) Find $p \in P_3$ that solves the differential equation $L(p) = 4 + 2x + x^2$.
- 6. (15 pts.) Do <u>one</u> of these.
 - (a) (10 pts.) Show that if $V = \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$, where $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent, then $\mathbf{v} \in V$ can be written in only one way as a linear combination of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$.
 - (b) Prove that a linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}|\mathbf{b})$.
 - (c) Let $L: V \to V$ be linear, and suppose that $E = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ and $F = {\mathbf{w}_1, \dots, \mathbf{w}_n}$ are bases for V. If A_E and A_F are matrices representing L relative E and F, show that A_E and A_F are similar.