Test II

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

1. (10 pts.) Define these: (a) Linearly independent vectors. (b) Basis.
2. (20 pts.) For the matrix A below, find bases for the column space, row space and null space of A. What are the rank and nullity of A ?

$$
A=\left(\begin{array}{cccc}
1 & -3 & -1 & -3 \\
-1 & 3 & 2 & 4 \\
2 & -6 & 4 & 0
\end{array}\right)
$$

3. (15 pts.) Determine whether each of the sets below is linearly dependent or linearly independent, and whether or not it is a basis for P_{4}.

$$
\begin{aligned}
& S_{1}=\left\{1-x, 1+x^{2}, 1-x+x^{3}, 1+x^{2}-5 x^{3}, x-x^{3}\right\} \\
& S_{2}=\left\{x+1,1-x, x^{2}+x^{3}\right\} \\
& S_{3}=\left\{1+x^{2}, 1-x^{3}, x, 1-x^{2}\right\}
\end{aligned}
$$

4. (15 pts.) $E=\{1-x, 2 x+1\}$ and $F=\{1+x, x-2\}$ are bases for P_{2}. Find the transition matrix $S_{E \rightarrow F}$. (Hint: E and F can be expressed in terms of a third basis, $G=\{1, x\}$.)
5. Let $L: P_{3} \rightarrow P_{3}$ be defined by $L(p)=p^{\prime \prime}+(x+1) p^{\prime}-p$.
(a) (5 pts.) Show that L is linear.
(b) (5 pts.) Find the matrix of L relative to the basis $E=\left\{1, x, x^{2}\right\}$.
(c) (10 pts.) Find $p \in P_{3}$ that solves the differential equation $L(p)=$ $4+2 x+x^{2}$.
6. (15 pts.) Do one of these.
(a) (10 pts.) Show that if $V=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}\right)$, where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent, then $\mathbf{v} \in V$ can be written in only one way as a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
(b) Prove that a linear system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if $\operatorname{rank}(\mathrm{A})=\operatorname{rank}(\mathrm{A} \mid \mathbf{b})$.
(c) Let $L: V \rightarrow V$ be linear, and suppose that $E=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $F=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ are bases for V. If A_{E} and A_{F} are matrices representing L relative E and F, show that A_{E} and A_{F} are similar.
