Test III

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

1. (10 pts.) Find the eigenvalues and eigenvectors of $C=\left(\begin{array}{cc}7 & 9 \\ -4 & -5\end{array}\right)$. Explain why C is not diagonalizable.
2. In the following problem, $A=\left(\begin{array}{cc}-4 & 3 \\ 3 & -12\end{array}\right)$.
(a) (15 pts.) Find the eigenvalues and eigenvectors of A and a matrix X such that $X^{-1} A X$ is diagonal.
(b) (10 pts.) Let $\mathbf{x}(t)=\left[x_{1}(t), x_{2}(t)\right]^{T}$, where x_{1} and x_{2} are the equilibribrium displacements for the masses in the spring system below. Newton's law and Hooke's law yield the equation $m \ddot{\mathbf{x}}=k A \mathbf{x}$. Use the answer to part (a) to find the normal modes for the system.

3. Consider the vector field $\mathbf{F}(\mathbf{x})=2 x y \mathbf{i}+\left(x^{2}+2 y z\right) \mathbf{j}+y^{2} \mathbf{k}$.
(a) (15 pts.) Find the derivative matrix $D \mathbf{F}$, the divergence $\nabla \cdot \mathbf{F}$, and the curl $\nabla \times \mathbf{F}$.
(b) (5 pts.) Is \mathbf{F} conservative - i.e., is $\mathbf{F}=\nabla f$ for a scalar valued function?
4. (10 pts.) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$, and $h=g \circ f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, where

$$
f(x, y)=\left(x y, 3 x-2 y, x^{2} y\right)^{T} \text { and } g(u, v, w)=u w+v^{2}+w^{2}
$$

Use the chain rule to find the direction in which h is increasing most rapidly at $x=y=1$.
5. Let $(x, y)=T(u, v)=(u+2 u v, u v)$, and let D^{*} be the u - v rectangle $1 \leq u \leq 2,0 \leq v \leq 1$.
(a) (5 pts.) Make a rough sketch of the image region $D=T\left(D^{*}\right)$.
(b) (10 pts.) Use Jacobi's Theorem to change variables and compute the double integral $\int_{D} \cos \left(\frac{\pi y}{x-2 y}\right) d x d y$.
6. (20 pts.) Let $\mathbf{G}(\mathbf{x})=2 y \mathbf{i}-3 x \mathbf{j}$ and let C be the circle $x^{2}+y^{2}=1$. Use the divergence form of Green's Theorem to show that $\oint_{C} \mathbf{G} \cdot \mathbf{n} d s=0$, then verify this by direct computation of the line integral.

