Test II

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

1. Define each space listed and describe the operations of vector addition $(+)$ and scalar multiplication (\cdot) corresponding to it.
(a) $(5 \mathrm{pts}.) \mathcal{P}_{n}$
(b) (5 pts.) $C^{(1)}[0,1]$
2. (15 pts.) Determine whether or not the set S of 2×2 matrices $M=$ $\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ such that $x+w=0$ is a subspace of $\mathcal{M}_{2,2}$.
3. (15 pts.) Determine whether or not the set $\left\{1, e^{x}, e^{2 x}\right\}$ is linearly independent in $C(-\infty, \infty)$.
4. (10 pts.) Consider $G: C(-\infty, \infty) \rightarrow C(-\infty, \infty)$ given by $G u(x)=$ $\int_{0}^{x} e^{t} u(t) d t$. Show that G is linear and that it is one-to-one.
5. (20 pts.) Find bases for the column space, null space, and row space of C, and state the rank and nullity of C. What should these sum to? Do they?

$$
C=\left(\begin{array}{cccc}
1 & -3 & -1 & -3 \\
-1 & 3 & 2 & 4 \\
2 & -6 & 4 & 0
\end{array}\right)
$$

6. Given that $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be defined by $L(p)=x^{2} p^{\prime \prime}-2(x-1) p^{\prime}+3 p$ is a linear transformation, do the following:
(a) (10 pts.) Find the matrix of L relative to the basis $B=\left\{1, x, x^{2}\right\}$.
(b) (5 pts.) Find $\left[2-x+x^{2}\right]_{B}$ and use the matrix from part 6a to solve $L(p)=2-x+x^{2}$ for p.
7. Let $A=\left(\begin{array}{cc}2 & -1 \\ 2 & 5\end{array}\right)$.
(a) (10 pts.) Find the eigenvalues and eigenvectors of A.
(b) (5 pts.) Use the answer to part 7 a to solve $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$.
