Test II

Instructions: Show all work in your bluebook. Cell phones, laptops, calculators that do linear algebra or calculus, and other such devices are not allowed.

- 1. **(10 pts.)** Determine whether or not $S = \{ f \in C[2,5] | f(2) = f(5) \}$ is a subspace of C[2,5].
- 2. (5 pts.) For the subsets of \mathcal{P}_3 below, which *cannot* be linearly independent? Which *cannot* span? Briefly explain how you are getting your answers.
 - (a) $\{1-2x, x^2, x+x^3\}$
 - (b) $\{x^2, x^3, 1 3x + 10x^2 5x^3\}$
 - (c) $\{1, x^2 2, x^2 6\}$
 - (d) $\{x-3x^2, x^3, x^2-3x+2, x-1, 5x^2-7\}$
 - (e) $\{1, x, x^3, x x^2, 3x 1, 2x^3\}.$
- 3. (10 pts.) Let $B = \{1, e^x, e^{2x}\}$. Show that B is LI and find the coordinates of $f(x) = (1 3e^x)^2$.
- 4. **(15 pts.)** Find bases for the column space, null space, and row space of C, and state the rank and nullity of C. What should these sum to? Do they?

$$C = \left(\begin{array}{rrrr} 1 & -2 & -1 & -3 \\ -1 & 2 & 2 & 4 \\ 2 & -4 & -3 & -7 \end{array}\right)$$

- 5. Let $L: \mathcal{P}_2 \to \mathcal{P}_2$ be defined by $L[p] = (x^2 1)p'' + (x + 3)p' 4p$.
 - (a) (5 pts.) Show that L is linear.
 - (b) **(5 pts.)** Find the matrix A of L relative to the basis $B = \{1, x, x^2\}$.
 - (c) (5 pts.) Find a basis for the null space of L. What is the rank of L?

6. (15 pts.) Consider the matrix A below. Find the eigenvalues and eigenvectors of A. Also, find a diagonal matrix Λ and an invertible matrix S for which $A = S\Lambda S^{-1}$.

$$A = \left(\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{array}\right) .$$

- 7. **(15 pts.)** Consider the inner product $\langle f,g\rangle=\int_0^\pi f(x)g(x)dx$ on continuous functions $C[0,\pi]$. Use the Gram-Schmidt process to turn $\{1,\cos(x),\cos^2(x)\}$ into an orthogonal set relative to this inner product. (Hint: $\int \cos^n(x)dx = \frac{1}{n}\cos^{n-1}(x)\sin(x) + \frac{n-1}{n}\int \cos^{n-2}(x)dx$.)
- 8. Consider the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$ on continuous functions C[-1,1].
 - (a) (5 pts.) Find the Gram matrix A for $\{1, x, x^2\}$.
 - (b) (10 pts.) Use A and the given inner product to find the best quadratic fit to f(x) = |x|.