$\qquad$

## Test 2

Instructions: Show all work in your bluebook. Cell phones, laptops, calculators that do linear algebra or calculus, and other such devices are not allowed.

1. State the theorem and the definitions below.
(a) (10 pts.) Sampling Theorem and Nyquist frequency.
(b) (5 pts.) Z-transform
2. (20 pts.) Consider the filter $L[f]=f * h$, where $h(t)$ is given below. Find the system function, $\hat{h}$, and the Fourier transform, $\widehat{L[f]}(\lambda)$. Is $L$ causal? Explain. (You don't need to find $f * h$ here.)

$$
h(t):=\left\{\begin{array}{lc}
1 & 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

3. Let $\mathcal{F}_{n}$ be the DFT for $n$-periodic sequences (signals).
(a) (5 pts.) If a signal has $2^{10}$ samples, how many operations does it take to find the DFT using the FFT algorithm? How many via the matrix multiplication method?
(b) (10 pts.) Find $\mathcal{F}_{4}[a]$ if $a=(1,-2,1,3)$. Note: for $n=4, \bar{w}=-i$.
(c) ( $\mathbf{1 0}$ pts.) Explain how you would use the FFT to approximate the $\widehat{f}(\lambda)$, given samples $f(k T), k=0, \ldots, 2^{n}-1$ ? (I'm not asking for formulas here, just a description of the process.)
4. (25 pts.) For the Haar MRA, the decomposition formulas are given by $a_{k}^{j}=\left(a_{2 k}^{j+1}+a_{2 k+1}^{j+1}\right) / 2$ and $b_{k}^{j}=\left(a_{2 k}^{j+1}-a_{2 k+1}^{j+1}\right) / 2$. Given that $L[x]_{k}=$ $\frac{1}{2}\left(x_{k}+x_{k+1}\right)$ and $H[x]_{k}=\frac{1}{2}\left(x_{k}-x_{k+1}\right)$, find the impulse responses $\ell$ and $h$ for $L$ and $H$, respectively. What is $2 \downarrow$ ? Why is it needed in Figure 1?


Figure 1: Haar decomposition diagram.
Please turn over
5. (15 pts.) Do one of the following. (No extra credit for doing more.)
(a) State and prove the convolution theorem for the DFT.
(b) Derive the decomposition formulas in problem 4, starting with $a_{k}^{j}=$ $2^{j} \int_{-\infty}^{\infty} f(x) \phi\left(2^{j} x-k\right) d x$ and $b_{k}^{j}=2^{j} \int_{-\infty}^{\infty} f(x) \psi\left(2^{j} x-k\right) d x$.

## Fourier Transform Properties

1. $\hat{f}(\lambda)=\mathcal{F}[f](\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i x \lambda} d x$.
2. $\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}=\mathcal{F}^{-1}[\hat{f}](x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\lambda) e^{i x \lambda} d \lambda$.
3. $\mathcal{F}\left[x^{n} f(x)\right](\lambda)=i^{n} \hat{f}^{(n)}(\lambda)$.
4. $\mathcal{F}\left[f^{(n)}(x)\right](\lambda)=(i \lambda)^{n} \hat{f}(\lambda)$.
5. $\mathcal{F}[f(x-a)](\lambda)=e^{-i \lambda a} \hat{f}(\lambda)$.
6. $\mathcal{F}[f(b x)](\lambda)=\frac{1}{b} \hat{f}\left(\frac{\lambda}{b}\right)$.
7. $\mathcal{F}[f * g]=\sqrt{2 \pi} \hat{f}(\lambda) \hat{g}(\lambda)$ and $\mathcal{F}^{-1}[\hat{f}(\lambda) \hat{g}(\lambda)]=\frac{1}{\sqrt{2 \pi}} f * g$

## Integrals

1. $\int e^{a t} d t=\frac{1}{a} e^{a t}+C$
2. $\int t^{n} e^{a t} d t=\frac{1}{a} t^{n} e^{a t}-\frac{n}{a} \int t^{n-1} e^{a t} d t$
3. $\int t \sin (t) d t=\sin (t)-t \cos (t)+C$
4. $\int t \cos (t) d t=\cos (t)+t \sin (t)+C$
5. $\int e^{a t} \cos (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \cos (b t)+b \sin (b t))+C$
6. $\int e^{a t} \sin (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \sin (b t)-b \cos (b t))+C$
7. $\int \cos (a t) \cos (b t) d t=\frac{\sin ((a+b) t)}{2(a+b)}+\frac{\sin ((a-b) t)}{2(a-b)}+C, a \neq b$
8. $\int \sin (a t) \sin (b t) d t=\frac{\sin ((a+b) t)}{2(a+b)}-\frac{\sin ((a-b) t)}{2(a-b)}+C, a \neq b$
9. $\int \sin (a t) \cos (b t) d t=-\frac{\cos ((a+b) t)}{2(a+b)}-\frac{\cos ((a-b) t)}{2(a-b)}+C, a \neq b$
