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Abstract

This article studies the approximate recovery of low-rank matrices acquired through binary

measurements. Two types of recovery algorithms are considered, one based on hard singular

value thresholding and the other one based on semidefinite programming. In case no thresholds

are introduced before binary quantization, it is first shown that the direction of the low-rank

matrices can be well approximated. Then, in case nonadaptive thresholds are incorporated,

it is shown that both the direction and the magnitude can be well approximated. Finally,

by allowing the thresholds to be chosen adaptively, we exhibit a recovery procedure for which

low-rank matrices are fully approximated with error decaying exponentially with the number

of binary measurements. In all cases, the procedures are robust to prequantization error. The

underlying arguments are essentially deterministic: they rely only on an unusual restricted

isometry property of the measurement process, which is established once and for all for Gaussian

measurement processes.

Key words and phrases: low-rank recovery, one-bit compressive sensing, quantization, hard singular
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1 Introduction

Low-rank matrices appear throughout science and engineering in topics as diverse as recommender

systems, system identification, quantum-state tomography, etc. The encountered matrices may be

gigantic but can only be acquired via a seemingly incomplete set of measurements. Nonetheless,

a growing bank of research is showing that it is possible to exploit the low-rank structure when

designing efficient algorithms to fully recover these matrices from the few measurements. We refer

the reader to the survey [6] for a more in-depth discussion of applications and approaches.

Oftentimes, the few measurements also need to be quantized, i.e., mapped to only a finite set of

possibilities. In the extreme case, there are only two possibilities, say +1 and −1. In the sparse-

vector rather than low-rank-matrix setting, this scenario has given rise to the theory of one-bit
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compressive sensing, which is by now well established [1, 9, 10, 7]. The setting of low-rank matrices

is worthy of attention, too. Just as one example, many websites and services incorporate a basic

upvote/downvote system when recommending relevant content based on already gathered votes.

The goal of this paper is provide some theoretical justification for easy-to-implement algorithms

to recover low-rank matrices from few binary measurements. We shall consider the problem of

recovering low-rank matrices X ∈ Rn1×n2 from m binary measurements y1, . . . , ym, each of them

given as the sign of a linear functional applied to X, i.e., as

(1) yi = sgn(〈Ai,X〉F ), 〈Ai,X〉F := tr(A∗iX) =

n1∑
k=1

n2∑
`=1

(Ai)k,`Xk,l,

for some A1, . . . ,Am ∈ Rn1×n2 . In short, we write

(2) y = sgn(AX) ∈ {±1}m,

where A : Rn1×n2 → Rm is the linear map defined by (AZ)i =
∑n1

k=1

∑n2
`=1(Ai)k,`Zk,l, i ∈ J1 : mK.

We shall also allow for thresholds τ1, . . . , τm ∈ R to be incorporated before binary quantization,

leading to

(3) y = sgn(AX− τ ) = [sgn(〈Ai,X〉F − τi)]mi=1 ∈ {±1}m.

This scenario of low-rank matrix recovery from binary measurements is a natural extension to

the scenario of the sparse vector recovery from binary measurements (and of one-bit compressive

sensing) and the techniques used here are adapted from the ones used there. In fact, general results

on recovery of structured signals from nonlinear observations, such as the ones from [12], are already

informative when particularized to our situation. But our contribution to the specific setting of

low-rank matrix recovery from binary measurements goes further in several directions:

• the recovery procedure is not a generalized Lasso, instead it is either a hard singular value

thresholding algorithm or a semidefinite program in the spirit of [9] (rather than of [10]);

• it can be enhanced to estimate not only the direction of low-rank matrices but also their

magnitudes, thanks to the presence of thresholds;

• it can handle adversarial prequantization error;

• perhaps most importantly, probabilistic arguments and deterministic arguments are separated

owing to an unusual restricted isometry property for the measurement map A : Rn1×n2 → Rm

(this parallels simplified arguments put forward in [7, Section 8.4] for one-bit compressive

sensing, which incidentally enables the removal of a logarithmic factor from the number of

binary measurements obtained by adapting directly the techniques of [9]).
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In Section 2, we will first establish the main theoretical tool at the basis of all the forthcoming

arguments. In Section 3, we will prove that the direction of low-rank matrices X ∈ Rn1×n2 can

be well estimated for measurements of the type (2) using reconstruction procedures based on hard

singular value thresholding and on semidefinite programming. In Section 4, we will prove that it is

also possible, if we allow thresholds in the binary measurements as in (3), to fully estimate the low-

rank matrices X ∈ Rn1×n2 using related reconstruction procedures. In Section 5, we will further

prove that an adaptive choice of the thresholds can reduce the reconstruction error drastically.

Finally, we report in Section 6 on some modest numerical experiments.

But before launching into the technicalities, we remark that we can, and from now on we will,

assume that n1 = n2 =: n. Indeed, if n1 > n2, say, then instead of recovering the rectangular

matrix X ∈ Rn1×n2 , we would aim at recovering the square matrix X′ =
[
X | 0

]
∈ Rn1×n1 ,

which has the same rank as X and is in one-to-one correspondence with X. Clearly, a suitable

measurement map A′ : Rn1×n1 → Rm induces a suitable measurement map A : Rn1×n2 → Rm.

2 A Restricted Isometry Property

Our deterministic arguments rely on just one technical property of the map A : Rn×n → Rm, which

is a version of the rank restricted isometry property modified to feature the `1-norm as the inner

norm1. Precisely, we shall say that A satisfies the modified rank restricted isometry property of

order r with constant δ ∈ (0, 1) — in short, A satisfies MRRIP(r, δ) — if

(4) (1− δ)‖Z‖F ≤ ‖A(Z)‖1 ≤ (1 + δ)‖Z‖F whenever rank(Z) ≤ r.

As a matter of fact, we will sometimes need this property to be valid not only for matrices Z ∈ Rn×n

of rank at most r, but also for matrices Z ∈ Rn×n of effective rank effrank(Z) := ‖Z‖∗/‖Z‖F at

most r. Here, ‖Z‖∗ represents the nuclear norm (aka trace norm or Schatten 1-norm) of Z, i.e.,

the sum of its singular values. Thus, we shall write that A satisfies MRRIPeff(r, δ) if

(5) (1− δ)‖Z‖F ≤ ‖A(Z)‖1 ≤ (1 + δ)‖Z‖F whenever effrank(Z) ≤ r.

The main result of this section states that properly normalized Gaussian random linear maps satisfy

the modified restricted isometry property for genuinely and effectively low-rank matrices with high

probability, as established below.

Theorem 1. There exist absolute constants c, C > 0 such that, if m ≥ Cδ−3nr, resp. m ≥ Cδ−5nr,

then, with failure probability at most 2 exp(−cδ2m), a random measurement map A : Rn×n → Rm

for which the (Ai)k,` are independent Gaussian random variables with mean zero and standard

deviation
√
π/2/m satisfies MRRIP(r, δ), resp. MRRIPeff(r, δ).

1Intuitively, considering the `1-norm makes sense because it naturally introduces the signs of the entries of a vector

A(Z) ∈ Rm via ‖A(Z)‖1 = 〈sgn(A(Z)),A(Z)〉.
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Remark. We have opted to include a low-key proof that does not give optimal powers of δ−1.

However, specifying results from [11] or [13], combined with mean width estimations from [10],

would yield the same conclusions under the assumption m ≥ Cδ−2nr.

Proof. For a fixed Z ∈ Rn×n, it is easy to notice that

(6) E (‖A(Z)‖1) = ‖Z‖F .

Indeed, for all i ∈ J1 : mK, we see that A(Z)i =
∑n

k,`=1(Ai)k,`Zk,` = (
√
π/2/m)‖Z‖F gi, where the

gi are independent standard normal random variables, and as such have first absolute moment equal

to
√

2/π. It is also easy to notice that the map f : (B1, . . . ,Bm) 7→
∑m

i=1

∣∣∣∑n
k,`=1

√
π/2

m
(Bi)k,`Zk,`

∣∣∣
is L-Lipschitz with L :=

√
π/2√
m
‖Z‖F . By concentration of measure (see e.g. [8, Theorem 8.34 or

Theorem 8.40]), it follows that

(7) P (|‖A(Z)‖1 − ‖Z‖F | > ε‖Z‖F ) ≤ 2 exp

(
−(ε‖Z‖F )2

2L2

)
= 2 exp

(
−mε

2

π

)
.

First, to deal with genuine low rank, we consider a ρ-net {Z1, . . . ,ZK} for the set

(8) Sr := {Z ∈ Rn×n : ‖Z‖F ≤ 1, rank(Z) ≤ r},

which means that, for any Z ∈ Sr, one can find k ∈ J1 : KK such that ‖Z − Zk‖F ≤ ρ. According

to [4, Lemma 3.1], we can take K ≤ (1 + 6/ρ)(2n+1)r, hence K ≤ exp(18nr/ρ). We place ourselves

in the situation where

(9)
∣∣‖A(Zk)‖1 − ‖Zk‖F

∣∣ ≤ ε‖Zk‖F ≤ ε for all k = 1, . . . ,K,

which, by (7) and a union bound, occurs with failure probability at most

(10) K × 2 exp

(
−mε

2

π

)
≤ 2 exp

(
18nr

ρ
− mε2

π

)
.

Let us introduce the smallest constant δ′ ≥ 0 such that

(11) |‖A(Z)‖1 − ‖Z‖F | ≤ δ′‖Z‖F for all Z ∈ Rn×n with rank(Z) ≤ r.

Given Z ∈ Sr, we select k ∈ J1 : KK with ‖Z− Zk‖F ≤ ρ and we observe that∣∣∣∣∣‖A(Z)‖1 − ‖Z‖F
∣∣− ∣∣‖A(Zk)‖1 − ‖Zk‖F

∣∣∣∣∣ ≤ ∣∣∣(‖A(Z)‖1 − ‖Z‖F
)
−
(
‖A(Zk)‖1 − ‖Zk‖F

)∣∣∣(12)

=
∣∣∣(‖A(Z)‖1 − ‖A(Zk)‖1

)
−
(
‖Z‖F − ‖Zk‖F

)∣∣∣
≤ ‖A(Z− Zk)‖1 + ‖Z− Zk‖F .
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Since Z−Zk has rank at most 2r, it can be written as Z−Zk = M + N where both M,N ∈ Rn×n

have rank at most r and ‖Z− Zk‖2F = ‖M‖2F + ‖N‖2F . Then

‖A(Z− Zk)‖1 ≤ ‖A(M)‖1 + ‖A(N)‖1 ≤ δ′‖M‖F + δ′‖N‖F ≤ δ′
√

2
√
‖M‖2F + ‖N‖2F(13)

=
√

2δ′‖Z− Zk‖F ,

and in turn

(14)
∣∣∣∣∣‖A(Z)‖1 − ‖Z‖F

∣∣− ∣∣‖A(Zk)‖1 − ‖Zk‖F
∣∣∣∣∣ ≤ (

√
2δ′ + 1)‖Z− Zk‖F ≤ (

√
2δ′ + 1)ρ.

In view of (9) and (14), we therefore have∣∣‖A(Z)‖1 − ‖Z‖F
∣∣ ≤ ∣∣‖A(Zk)‖1 − ‖Zk‖F

∣∣+
∣∣∣∣∣‖A(Z)‖1 − ‖Z‖F

∣∣− ∣∣‖A(Zk)‖1 − ‖Zk‖F
∣∣∣∣∣(15)

≤ ε+ (
√

2δ′ + 1)ρ.

Taking the supremum over all Z yields

(16) δ′ ≤ ε+ (
√

2δ′ + 1)ρ, or δ′ ≤ 1

1−
√

2ρ
(ε+ ρ).

Choosing ε =
δ

2
and ρ =

√
2− 1

2
δ ≤
√

2− 1

2
at the beginning ensures that

(17) δ′ ≤ 1

1− (1− 1/
√

2)

(
1

2
+

√
2− 1

2

)
δ = δ.

This means that A satisfies MRRIP(r, δ), as desired. Overall, the failure probability is at most

(18) 2 exp

(
36nr

(
√

2− 1)δ
− mδ2

4π

)
≤ exp

(
−mδ

2

8π

)
,

provided
36nr

(
√

2− 1)δ
≤ mδ2

8π
, i.e., m ≥ 288π√

2− 1
δ−3nr =: Cδ−3nr.

Second, to deal with effective low rank, we claim that we can find a ρ-net for the set

(19) Seff
r := {Z ∈ Rn×n : ‖Z‖F ≤ 1, effrank(Z) ≤ r}

with cardinality at most exp(72nr/ρ3), and the rest of the argument follows the lines of the genuine

low-rank case so closely that it is not reproduced. In order to justify our covering number estimate,

we start by considering a (ρ/2)-net {Z1, . . . ,ZK} for St with t := dρ−2re ∈ [ρ−2r, 2ρ−2r] and with

K ≤ (1 + 6/(ρ/2))(2n+1)t ≤ exp(72nr/ρ3). Then, given Z ∈ Seff
r , we denote by Z′ its best rank-t

approximant (with respect to the Frobenius norm), so that, in view of [8, Theorem 2.5],

(20) ‖Z− Z′‖F =

[ n∑
j=t+1

σj(Z)

]1/2

≤ 1

2
√
t

n∑
i=1

σi(Z) =
1

2
√
t
‖Z‖∗.
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Next, we select k ∈ J1 : KK such that ‖Z′ − Zk‖F ≤ ρ/2. We then observe, since Z is of effective

rank r, that

(21) ‖Z− Zk‖F ≤ ‖Z− Z′‖F + ‖Z′ − Zk‖F ≤
1

2
√
t
‖Z‖∗ +

ρ

2
≤
√
r

2
√
t

+
ρ

2
≤ ρ

2
+
ρ

2
= ρ.

This shows that {Z1, . . . ,ZK} is a ρ-net for Seff
r , hence it concludes the proof.

We emphasize that, just like the standard rank restricted isometry property, this modified rank

restricted isometry property holds with a number of measurements only proportional to nr, the

number of ‘degrees of freedom’ of n × n matrices of rank r. An extra logarithmic factor, which is

necessary in sparse vector recovery, does not appear in this situation.

3 Estimating the Direction Only

In this section, we suppose that genuinely or effectively low-rank matrices X ∈ Rn×n are acquired

via y = sgn(AX) ∈ {±1}m. In this setting, one can only hope to recover the direction of X, as

all cX, c > 0, produce the same sign measurements. We study two reconstruction procedures, one

based on hard singular value thresholding and one based on semidefinite programming. As we shall

see, they are both robust to a prequantization error e ∈ Rm that corrupts the sign measurement

vector to y = sgn(AX + e).

3.1 Hard singular value thresholding

The output of the hard singular value thresholding procedure is merely

(22) Xht =: best rank-r approximant to A∗(y) =
m∑
i=1

yiAi.

The main theorem of this subsection is stated below. Note that, according to Theorem 1, its

assumption is met with high probability by (properly normalized) Gaussian measurement maps

A : Rn×n → Rm, provided m ≥ Cδ−3nr (or m ≥ Cδ−2nr if the remark after Theorem 1 is taken

into account).

Theorem 2. Under MRRIP(2r, δ), if X ∈ Rn×n satisfying rank(X) ≤ r and ‖X‖F = 1 is acquired

via y = sgn(AX + e) ∈ {±1}m, then

(23)

∥∥∥∥X− Xht

‖Xht‖F

∥∥∥∥
F

≤
√

80δ + 8
√
‖e‖1.
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Remark. The square-root scaling of ‖e‖1 in Theorem 2 is peculiar. It is probably an artifact of the

oversimplicity of the argument in Lemma 3 below. We believe that the recovery error should depend

linearly on ‖e‖1, which is supported by the numerical experiment presented in Subsection 6.1.

The whole argument is based on the one simple lemma stated below, which already shows that

normalized low-rank matrices sharing the same sign measurements are necessarily close to one

another. In this lemma, the operator PS associated to a subspace of S of Rn×n denotes the

orthogonal projector onto the space S with respect to the Frobenius inner product.

Lemma 3. Under MRRIP(r, δ), if X ∈ Rn×n belongs to a space S = span{u1v
∗
1, . . . ,urv

∗
r} and

satisfies ‖X‖F = 1, then

(24) ‖X− PS(A∗(sgn(AX + e))‖2F ≤ 5δ + 4‖e‖1.

Proof. By expanding the square in the left-hand side of (24), we have

‖X− PS(A∗(sgn(AX + e)))‖2F(25)

= ‖X‖2F − 2〈X, PS(A∗(sgn(AX + e)))〉F + ‖PS(A∗(sgn(AX + e)))‖2F .

Firstly, we take into account that ‖X‖2F = 1. Secondly, thanks to X ∈ S, we observe that

〈X, PS(A∗(sgn(AX + e)))〉F = 〈X,A∗(sgn(AX + e))〉F = 〈AX, sgn(AX + e)〉(26)

= ‖AX + e‖1 − 〈e, sgn(AX + e)〉 ≥ ‖AX‖1 − 2‖e‖1
≥ (1− δ)− 2‖e‖1,

where MRRIP(r, δ) was used in the latter inequality. Thirdly, relying again on MRRIP(r, δ), we

notice that

‖PS(A∗(sgn(AX + e)))‖2F = 〈A∗(sgn(AX + e)), PS(A∗(sgn(AX + e)))〉F(27)

= 〈sgn(AX + e),A(PS(A∗(sgn(AX + e))))〉
≤ ‖A(PS(A∗(sgn(AX + e))))‖1
≤ (1 + δ)‖PS(A∗(sgn(AX + e)))‖F ,

so that a simplification gives

(28) ‖PS(A∗(sgn(AX + e)))‖F ≤ (1 + δ).

Putting these three facts together in (25) yields

‖X− PS(A∗(sgn(AX + e)))‖2F ≤ 1− 2((1− δ)− 2‖e‖1) + (1 + δ)2 = 4δ + δ2 + 4‖e‖1(29)

≤ 5δ + 4‖e‖1,

which is the desired result.
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Now that this key lemma has been established, the main result about direction recovery by hard

singular value thresholding can be easily deduced.

Proof of Theorem 2. Since Xht is the best rank-r approximant to A∗(y), it is a better approximant

than X itself, so we have

(30) ‖A∗(y)−Xht‖2F ≤ ‖A∗(y)−X‖2F .

Introducing X in the left-hand side, expanding the square, and simplifying leads to

(31) ‖X−Xht‖2F ≤ 2〈X−Xht,X−A∗(y)〉F .

Note that X and Xht are of rank at most r, so that both X and X − Xht belong to a space

S = span{u1v
∗
1, . . . ,u2rv

∗
2r}. Hence, also using Lemma 3, we derive

‖X−Xht‖2F ≤ 2〈X−Xht, PS(X−A∗(y))〉 = 2〈X−Xht,X− PS(A∗(y))〉(32)

≤ 2‖X−Xht‖F ‖X− PS(A∗(y))‖F ≤ 2‖X−Xht‖F
√

5δ + 4‖e‖1.

This immediately implies that

(33) ‖X−Xht‖F ≤ 2
√

5δ + 4‖e‖1,

which already proves that X is well approximated by the unnormalized vector Xht. To realize that

it is also well approximated by the normalization Xht/‖Xht‖F of this vector, we remark that the

latter is the best normalized approximant to Xht and hence it is a better approximant than X, so

that ‖Xht −Xht/‖Xht‖F ‖F ≤ ‖Xht −X‖F , and in turn

(34)

∥∥∥∥X− Xht

‖Xht‖F

∥∥∥∥
F

≤
∥∥∥X−Xht

∥∥∥
F

+

∥∥∥∥Xht − Xht

‖Xht‖F

∥∥∥∥
F

≤ 2
∥∥∥X−Xht

∥∥∥
F
≤ 4
√

5δ + 4‖e‖1.

The required estimate (23) is now a consequence of
√

5δ + 4‖e‖1 ≤
√

5δ + 2
√
‖e‖1.

3.2 Semidefinite programming

The output of the semidefinite procedure is, in the absence of prequantization error,

(35) Xsdp = argmin‖Z‖∗ subject to sgn(AZ) = y and ‖AZ‖1 = 1.

This optimization program does not immediately appear as a semidefinite program, but it can be

recast as one by adding slack variables c ∈ R and M,N ∈ Rn×n, because the condition ‖Z‖∗ ≤ c

can be rephrased as the condition (tr(M) + tr(N))/2 ≤ c subject to

[
M Z

Z∗ N

]
� 0. As for the

constraints sgn(AZ) = y and ‖AZ‖1 = 1, they reduce to the linear constraints yi〈Ai,Z〉F ≥ 0,
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i ∈ J1 : mK, and
∑m

i=1 yi〈Ai,Z〉F = 1. In the presence of prequantization error e ∈ Rm for which a

bound ‖e‖1 ≤ η is available, we refine the optimization procedure slightly and consider

(36) (Xsdp, esdp) = argmin
(Z,w)∈Rn×n×Rm

‖Z‖∗ subject to


sgn(AZ + w) = y,

‖AZ + w‖1 = 1,

‖w‖1 ≤ (10/7)η.

The value 10/7 is somewhat arbitrary — it has been chosen to make the subsequent arguments

look nice. Note that the constraint ‖w‖1 ≤ (10/7)η can still be recast as linear constraints, e.g. by

introducing slack variables w+,w− ∈ Rm
+ with w+−w− = w and

∑m
i=1(w+

i +w−i ) ≤ (10/7)η. The

main theorem of this subsection reads as follows. Once again, we emphasize that its assumption is

met with high probability by (properly normalized) Gaussian measurement maps A : Rn×n → Rm,

provided m ≥ Cδ−5nr (or m ≥ Cδ−2nr if the remark after Theorem 1 is taken into account).

Theorem 4. Under MRRIPeff(16r, δ), if X ∈ Rn×n satisfying effrank(X) ≤ r and ‖X‖F = 1 is

acquired via y = sgn(AX + e) ∈ {±1}m with ‖e‖1 ≤ η, then

(37)

∥∥∥∥X− Xsdp

‖Xsdp‖F

∥∥∥∥
F

≤ C
√
δ +D

√
η

for some absolute constants C,D > 0.

The argument relies on a lemma about the effective rank of the output of the semidefinite program.

Lemma 5. Suppose that η ≤ 1/10 and that A satisfies MRRIP(16r, 1/5). If X ∈ Rn×n satisfies

rank(X) ≤ r and ‖X‖F = 1, then any convex combination of X and Xsdp is of effective rank

at most 16r. The same conclusion holds if effrank(X) ≤ r and ‖X‖F = 1, provided A satisfies

MRRIPeff(16r, 1/5).

Proof. We set t = 16r and δ = 1/5. Taking note of

(38) ‖AX + e‖1 ≥ ‖AX‖1 − ‖e‖1 ≥ (1− δ)− η ≥ 1− 1

5
− 1

10
=

7

10
,

we first point out that the couple (X, e)/‖AX+e‖1 is feasible for the optimization program in (36).

It follows that

(39) ‖Xsdp‖∗ ≤
∥∥∥∥ X

‖AX + e‖1

∥∥∥∥
∗
≤
√
r‖X‖F
7/10

=
10

7

√
r.

Let X̂ := (1− λ)X + λXsdp, λ ∈ [0, 1], be a convex combination of X and Xsdp. We also introduce

ê := (1− λ)e + λesdp. We notice that

(40) ‖X̂‖∗ ≤ (1− λ)‖X‖∗ + λ‖Xsdp‖∗ ≤ (1− λ)
√
r + λ

10

7

√
r =

(
1 +

3λ

7

)√
r.
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Moreover, thanks to sgn(AX + e) = sgn(AXsdp + esdp) = sgn(AX̂ + ê) = y, we have

(41) ‖AX̂ + ê‖1 = (1− λ)‖AX + e‖1 + λ‖AXsdp + esdp‖1 ≥ (1− λ)
7

10
+ λ =

7

10

(
1 +

3λ

7

)
,

while ‖ê‖1 can be bounded from above as

(42) ‖ê‖1 ≤ (1− λ)‖e‖1 + λ‖esdp‖1 ≤ (1− λ)η + λ
10

7
η =

(
1 +

3λ

7

)
η ≤ 1

10

(
1 +

3λ

7

)
,

so that ‖AX̂‖1 can be bounded from below as

(43) ‖AX̂‖1 ≥ ‖AX̂ + ê‖1 − ‖ê‖1 ≥
(

7

10
− 1

10

)(
1 +

3λ

7

)
=

3

5

(
1 +

3λ

7

)
.

Besides, by applying the sort-and-split technique, we write X̂ = X̂0 + X̂1 + X̂2 + · · · , where the

X̂k’s are rank-r matrices defined from the singular value decomposition X̂ =
∑n

i=1 σi(X̂)uiv
∗
i of X̂

by X̂k =
∑(k+1)t

i=kt+1 σi(X̂)uiv
∗
i , and we observe that

‖AX̂‖1 ≤ ‖AX̂0‖1 + ‖AX̂1‖1 + ‖AX̂2‖1 + · · · ≤ (1 + δ)

(
‖X̂0‖F +

∑
k≥1

‖X̂k‖F
)

(44)

≤ (1 + δ)

(
‖X̂‖F +

∑
k≥1

‖X̂k−1‖∗√
t

)
≤ (1 + δ)

(
‖X̂‖F +

1√
t
‖X̂‖∗

)

≤ (1 + δ)

(
‖X̂‖F +

√
r√
t

(
1 +

3λ

7

))
=

6

5

(
‖X̂‖F +

1

4

(
1 +

3λ

7

))
.

Combining the lower bound (43) and upper bound (44) on ‖AX̂‖1 gives ‖X̂‖F ≥
(

1 +
3λ

7

)
/4.

We finally arrive at

(45)
‖X̂‖∗
‖X̂‖F

≤ (1 + 3λ/7)
√
r

(1 + 3λ/7)/4
=
√

16r.

This means that X̂ is effectively of rank at most 16r, as announced.

With this crucial lemma now established, the main result about direction recovery by semidefinite

programming follows from a curvature argument already found in [11].

Proof of Theorem 4. Suppose first that δ ≤ 1/5 and η ≤ 1/10. The parallelogram identity gives

(46)

∥∥∥∥X−Xsdp

2

∥∥∥∥2

F

+

∥∥∥∥X + Xsdp

2

∥∥∥∥2

F

=
‖X‖2F + ‖Xsdp‖2F

2
=

1 + ‖Xsdp‖2F
2

.

10
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According to Lemma 5, both Xsdp and (X + Xsdp)/2 are effectively of rank at most 16r. Thus, on

the one hand,

(47) ‖Xsdp‖F ≤
1

1− δ
‖AXsdp‖F ≤

1

1− δ

(
‖AXsdp + esdp‖1 + ‖esdp‖1

)
≤ 1 + (10/7)η

1− δ
,

while on the other hand, using sgn(AX + e) = sgn(AXsdp + esdp) = y,∥∥∥∥X + Xsdp

2

∥∥∥∥
F

≥ 1

1 + δ

∥∥∥∥A(X + Xsdp

2

)∥∥∥∥
1

(48)

≥ 1

2(1 + δ)

(
‖AX + e + AXsdp + esdp‖1 − ‖e‖1 − ‖esdp‖1

)
=

1

2(1 + δ)

(
‖AX + e‖1 + ‖AXsdp + esdp‖1 − ‖e‖1 − ‖esdp‖1

)
≥ 1

2(1 + δ)

(
‖AX‖1 + ‖AXsdp + esdp‖1 − 2‖e‖1 − ‖esdp‖1

)
≥ 1

2(1 + δ)

(
(1− δ) + 1− 2η − 10

7
η

)
=

1− δ/2− (12/7)η

1 + δ
.

Substituting (47) and (48) into (46) leads to

(49)

∥∥∥∥X−Xsdp

2

∥∥∥∥2

F

≤
1 +

(
1 + (10/7)η

1− δ

)2

2
−
(

1− δ/2− (12/7)η

1 + δ

)2

≤ C ′δ +D′η

for some absolute constants C ′, D′ > 0 that could be determined explicitly if needed. In turn, since

Xsdp/‖Xsdp‖F is the best normalized approximant to Xsdp, we obtain

(50)

∥∥∥∥X− Xsdp

‖Xsdp‖F

∥∥∥∥
F

≤
∥∥∥X−Xsdp

∥∥∥
F

+

∥∥∥∥Xsdp − Xsdp

‖Xsdp‖F

∥∥∥∥
F

≤ 2
∥∥∥X−Xsdp

∥∥∥
F
≤ C
√
δ+D

√
η

for some constants C,D > 0 that could again be determined explicitly. Up to possibly changing

these constants, the same estimate remains true if η ≥ 1/10, since then

(51)

∥∥∥∥X− Xsdp

‖Xsdp‖F

∥∥∥∥
F

≤ ‖X‖F +

∥∥∥∥ Xsdp

‖Xsdp‖F

∥∥∥∥
F

= 2 ≤ 2
√

10
√
η ≤ C

√
δ +D

√
η.

A similar reasoning would take care of the case δ ≥ 1/5. The proof is now complete.

4 Estimating the Magnitude as well as the Direction

In this section, we assume that a bound ‖X‖F ≤ γ is available for the Frobenius norm of low-

rank matrices X ∈ Rn×n. We show that, in this case, we can estimate not only the direction

X/‖X‖F , but also the magnitude ‖X‖F , i.e., it is possible to fully estimate X, provided the binary

11
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measurements feature well-chosen thresholds τ1, . . . , τm ∈ R. Namely, these measurements take the

form yi = sgn(〈Ai,X〉F −τi), or more realistically, in the presence of prequantization error e ∈ Rm,

(52) yi = sgn(〈Ai,X〉F + ei − τi), i ∈ J1 : mK.

For the recovery algorithm, one can choose between a hard singular value thresholding procedure

or a semidefinite procedure. The argument involves a combination of the results from Section 3

and an augmentation trick already used in [3]. Precisely, matrices X ∈ Rn×n of (effective) rank at

most r are augmented to matrices X̃ ∈ R(n+1)×(n+1) of (effective) rank at most r + 1 via

(53) X̃ =

[
X 0

0 γ

]
.

One then works in the augmented space R(n+1)×(n+1) to approximate the direction of X̃, which

provides a full approximation of the original X. This can be done because the thresholded binary

measurements in the original space can be interpreted in the augmented space as the unthresholded

binary measurements

(54) yi = sgn
(
〈Ãi, X̃〉F + ei

)
= sgn

(
(ÃX̃)i + ei

)
, i ∈ J1 : mK,

where the augmented matrices Ã1, . . . , Ãm ∈ R(n+1)×(n+1) are given by

(55) Ãi =

[
Ai ui

v∗i −τi/γ

]

for arbitrary vectors u1,v1, . . . ,um,vm ∈ Rn.

We now formalize the main result of this section. It is worth pointing out, once again, that the

necessary number of measurements does not comprise any spurious logarithmic factor.

Theorem 6. There exist absolute constants c, C > 0 such that, if m ≥ Cδ−3nr, if independent

random matrices A1, . . . ,Am ∈ Rn×n are populated by independent Gaussian variables with mean

zero and standard deviation
√
π/2/m, and if random thresholds τ1, . . . , τm ∈ R are Gaussian

variables with mean zero and standard deviation γ
√
π/2/m, independent from one another and

from the Ai’s, then the following holds with failure probability at most 2 exp(−cδ2m):

every matrix X ∈ Rn×n which has rank at most r, satisfies ‖X‖F ≤ γ, and is acquired via

yi = sgn(〈Ai,X〉F + ei − τi), i ∈ J1 : mK, is approximated with error∥∥∥X− γ

xht
Xht

∥∥∥
F
≤ C
√
δγ +D

√
‖e‖1
√
γ,(56) ∥∥∥X− γ

xsdp
Xsdp

∥∥∥
F
≤ C
√
δγ +D

√
η
√
γ, η being an a priori bound on ‖e‖1.(57)

12
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The matrices Xht,Xsdp ∈ Rn×n and the scalars xht, xsdp ∈ R are produced by2[
Xht ∗
∗ xht

]
= best rank-(r + 1) approximant to Ã

∗
(y) =

m∑
i=1

yiÃi,(58)

([
Xsdp ∗
∗ xsdp

]
, esdp

)
= argmin

(Z̃,w)∈R(n+1)×(n+1)×Rm

‖Z̃‖∗ subject to


sgn
(
ÃZ̃ + w

)
= y,∥∥ÃZ̃ + w

∥∥
1

= 1,

‖w‖1 ≤ (10/7)η,

(59)

with extra randomness injected through the presence in (55) of independent random vectors

u1,v1, . . . ,um,vm ∈ Rn populated by independent Gaussian variables with mean zero and standard

deviation
√
π/2/m.

The following observation is central to the argument.

Lemma 7. If X̃, Z̃ ∈ R(n+1)×(n+1) take the form

(60) X̃ =

[
X ∗
∗ x

]
, Z̃ =

[
Z ∗
∗ z

]
,

then

(61)

∥∥∥∥X

x
− Z

z

∥∥∥∥
F

≤ ‖X̃‖F ‖Z̃‖F
|x||z|

∥∥∥∥∥ X̃

‖X̃‖F
− Z̃

‖Z̃‖F

∥∥∥∥∥
F

.

Proof. A vector analog of this statement appeared in [3, Lemma 8]. One can follow the steps

presented there and adapt them to our situation. Alternatively, one can vectorize matrices in

R(n+1)×(n+1) to vectors in Rn2+2n+1, apply [3, Lemma 8] to bound the `2-norm of the difference of

two vectors in Rn2+2n by the right-hand side of (61), and observe that the left-hand side of (61) is

itself bounded by the `2-norm of this difference.

Let us now exploit the observation made in Lemma 7 to prove the result stated above.

Proof of Theorem 6. The assumptions guarantee that the map Ã : R(n+1)×(n+1) → Rm satisfies

MRRIP(16(r + 1), δ). Therefore, Theorems 2 and 4 imply that

(62)

∥∥∥∥∥ X̃

‖X̃‖F
− X̃◦

‖X̃◦‖F

∥∥∥∥∥
F

≤ C
√
δ +D

√
η◦

‖X̃‖F
:= ε◦,

2The facts that xht 6= 0 and xsdp 6= 0 are established in the proof.
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where X̃◦ =

[
X◦ ∗
∗ x◦

]
is either given by (58), in which case η◦ := ‖e‖1, or by (59), in which case

η◦ := η. Looking at the bottom right entry, we derive that

(63)

∣∣∣∣∣ γ

‖X̃‖F
− x◦

‖X̃◦‖F

∣∣∣∣∣ ≤ ε◦,
so that, in view of ‖X̃‖F =

√
‖X‖2F + γ2 ≤

√
γ2 + γ2 =

√
2γ,

(64)
|x◦|
‖X̃◦‖F

≥ γ

‖X̃‖F
− ε◦ ≥ 1√

2
− ε◦ ≥ 1

2
,

provided ε◦ is small enough. Lemma 7, together with (62), now gives

(65)

∥∥∥∥X

γ
− X◦

x◦

∥∥∥∥
F

≤ ‖X̃‖F
γ

‖X̃◦‖F
|x◦|

ε◦ ≤
√

2× 2× ε◦.

Multiplying throughout by γ, we obtain

(66)
∥∥∥X− γ

x◦
X◦
∥∥∥
F
≤ 2
√

2ε◦γ = 2
√

2

(
C
√
δγ +D

√
η◦

‖X̃‖F
γ

)
,

which, in view of ‖X̃‖F ≥ γ, yields the estimates required in (56) and (57), up to an adjustment of

the constants C,D > 0.

5 Exponential Decay of the Recovery Error

In this section, we still work under the assumption that an a priori bound ‖X‖F ≤ γ is available

for the rank-r matrices X ∈ Rn×n of interest. In the absence of prequantization error, Section 4

essentially showed that random thresholds τ ∈ Rm in y = sgn(AX− τ ) allow for the computation

of approximants X̂ satisfying

(67) ‖X− X̂‖F ≤ Cγλ−1/6,

where λ := m/(nr) represents an oversampling factor — note that no logarithmic factors are

featured here. We now aim at proving that one can find a recovery procedure making the error

‖X− X̂‖F decay exponentially fast with the oversampling factor λ, provided the thresholds τ are

chosen adaptively. The vector analog of this result was established in [2] and we follow the same

guiding idea here.

The procedure intertwines measurement and reconstruction processes by dividing the m = qT

binary measurements into T batches of q � nr binary measurements, each of them having the form

(68) y(t) = sgn(A(t)X + e(t) − τ (t)) ∈ {±1}q, t ∈ J1 : T K.

14
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Precisely, the procedure iteratively constructs, starting from X(0) = 0, a sequence (τ (t))t∈J0:T−1K of

thresholds and a sequence (X(t))t∈J0:T K of matrices according to

τ (t) := A(t)X(t) +
γ

2t

√
π/2

q
g(t), g(t) ∈ Rq populated by independent N (0, 1) entries,(69)

̂X−X(t) := ∆(y(t)), ∆ one of the reconstruction maps from Theorem 6,(70)

X(t+1) :=
[
X(t) + ̂X−X(t)

]
(r)
, i.e., the best rank-r approximant to X(t) + ̂X−X(t).(71)

Theorem 8. For t ∈ J1 : T K, let A(t) : Rn×n → Rq be maps induced by independent random

matrices A
(t)
1 , . . . ,A

(t)
q populated by independent Gaussian variables with mean zero and standard

deviation
√
π/2/q and let g(t) ∈ Rq be random vectors populated by standard Gaussian variables

independent from one another and from the A
(t)
i ’s. There exist absolute constants c, c′, c′′ > 0 such

that, if q ≈ c′nr, then the following holds with failure probability at most 2T exp(−c′′q):
every matrix X ∈ Rn×n which has rank at most r, satisfies ‖X‖F ≤ γ, and is acquired via the

m = qT binary measurements y
(t)
i = sgn(〈Ai,X〉F + ei − τi), i ∈ J1 : qK, t ∈ J1 : T K, where

‖e(t)‖1 ≤ ν(γ/2t) for an appropriately small constant ν > 0, is approximated by the output X(T )

of the procedure described in (69)-(70)-(71) with error

(72) ‖X−X(T )‖F ≤ γ exp (−cλ) , λ :=
m

nr
.

Proof. We shall prove by induction on t ∈ J0 : T K that

(73) ‖X−X(t)‖F ≤
γ

2t
.

Indeed, the resut for t = T implies the desired bound (72), since

(74) ‖X−X(T )‖F ≤
γ

2T
= γ exp(− ln(2)T ) = γ exp

(
− ln(2)

m

q

)
= γ exp

(
−c m

nr

)
.

The inductive hypothesis clearly holds for t = 0. Let us now suppose that it holds for t ∈ J0 : T−1K.
We observe that

(75) ̂X−X(t) = ∆

(
sgn

(
A(t)(X−X(t)) + e(t) − γ

2t

√
π/2

q
g(t)

))
.

Since X −X(t) has rank at most 2r and satisfies ‖X −X(t)‖F ≤ γ/2t, Theorem 6 applied with a

small enough δ ∈ (0, 1) yields

(76) ‖X−X(t) − ̂X−X(t)‖F ≤ C
√
δ
γ

2t
+D

√
νγ

2t

√
γ

2t
≤ 1

4

γ

2t
.

But since X(t+1) is the best rank-r approximant to X(t) + ̂X−X(t), we have

(77) ‖X(t) + ̂X−X(t) −X(t+1)‖F ≤ ‖X(t) + ̂X−X(t) −X‖F .
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In turn, we deduce from (77) and (76) that

‖X−X(t+1)‖F ≤ ‖X(t) + ̂X−X(t) −X(t+1)‖F + ‖X(t) + ̂X−X(t) −X‖F(78)

≤ 2‖X(t) + ̂X−X(t) −X‖F = 2‖X−X(t) − ̂X−X(t)‖F

≤ 2
1

4

γ

2t
=

γ

2t+1
.

This shows that the induction hypothesis holds for t+ 1. The proof is therefore complete.

6 Numerical Experiments

The goal of this final section is merely illustrative. The investigations showcased here are far from

exhaustive, since they mostly serve as a confirmation that the algorithms considered in the paper

are indeed implementable. Our own implementations (by no means optimized) can be downloaded

from the first author’s webpage as part of the matlab reproducible containing the code to generate

the experiments below. In order to execute the semidefinite optimization procedures, cvx [5], a

package for specifying and solving convex programs, is required.

6.1 Direction estimation

In this subsection, we look at the procedures (22) and (35)-(36) for estimating the direction of a

low-rank matrix acquired via binary measurements without thresholds.

Hard singular value thresholding vs semidefinite programming

In a first experiment, we consider the situation where there is no prequantization error (e = 0).

For fixed values of the rank r and of the oversampling factor λ, we vary n and record both the

execution time and the recovery error (averaged over a reasonable number of tests). Figure 1(a)

supports the intuitive prediction that the hard singular value thresholding procedure is much faster

than the semidefinite procedure (and the slopes even suggest a cost Θ(nc) with c close to 1 vs close

to 3), while Figure1(b) supports the other intuitive prediction that the semidefinite procedure is

more accurate than the hard singular value thresholding procedure (note also that the oversampling

factor λ is fixed, so the recovery error is more or less constant as n varies).

Influence of the measurement error

In a second experiment, we assess the hard singular value thresholding procedure (22) in the

presence of prequantization error e ∈ Rm to determine if the term
√
‖e‖1 found in (23) reflects
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Figure 1: Comparison of the procedures (22) and (35) when the dimension n varies
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Figure 2: Recovery error ε :=

∥∥∥∥X− Xht

‖Xht‖F
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vs magnitude µ := ‖e‖1 of prequantization error
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reality or if they are artifacts of our proofs. Figure 2 seems to suggest that the recovery error scales

in reality like ‖e‖1.

6.2 Full estimation

In this subsection, we verify empirically that incorporating thresholds before quantization allows

one to estimate not only the direction but also the magnitude of low-rank matrices. However,

since many binary measurements need to be made on low-rank matrices in order to observe any

persuasive phenomenon, we exclude the demanding semidefinite procedures and focus on the swift

hard singular values thresholding procedures. We work in the absence of prequantization error.

Nonadaptive thresholds

We first validate that the procedure (58) results in a recovery error decaying like the inverse of a

power of the oversampling factor λ, as indicated in (67). However, Figure 3 suggests that the power

1/6 (or even 1/4 if the remark after Theorem 1 is taken into account) is too pessimistic and could

be replaced by 1/2.

3 3.5 4 4.5 5 5.5 6 6.5
Log(λ)
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-1.2
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ǫ)

n=30, r=2 (average over 100 random tests)
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slope=-0.54

Figure 3: Recovery error ε := ‖X− X̂‖F vs oversampling factor λ for the procedure (58)

Adaptive thresholds

Our final experiment confirms that the procedure based on binary measurements incorporating

adaptive thresholds and described in (69)-(70)-(71) results in a reconstruction error that decays

exponentially with the oversampling factor λ, see Figure 4.
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Figure 4: Recovery error ε := ‖X− X̂‖F vs oversampling factor λ for the procedure (69)-(70)-(71)
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