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Abstract We review three recovery algorithms used in Compressive
Sensing for the reconstruction s-sparse vectors x ∈ CN from the mere
knowledge of linear measurements y = Ax ∈ Cm, m < N. For each of the
algorithms, we derive improved conditions on the restricted isometry
constants of the measurement matrix A that guarantee the success of
the reconstruction. These conditions are δ2s < 0.4652 for basis pursuit,
δ3s < 0.5 and δ2s < 0.25 for iterative hard thresholding, and δ4s < 0.3843
for compressive sampling matching pursuit. The arguments also applies
to almost sparse vectors and corrupted measurements. The analysis of
iterative hard thresholding is surprisingly simple. The analysis of basis
pursuit features a new inequality that encompasses several inequalities
encountered in Compressive Sensing.

1 Introduction

In this paper, we address the Compressive Sensing problem that consists
in reconstructing an s-sparse vector x ∈ CN from the mere knowledge of
the measurement vector y = Ax ∈ Cm when m� N. We do not focus on
the design of suitable measurement matrices A ∈ Cm×N , since we take
for granted the existence of matrices having small restricted isometry
constants (see Section 2 for the definition of these constants). Instead,
we focus on three popular reconstruction algorithms that allow sparse
recovery in a stable and robust fashion. For each algorithm, we present
some sufficient conditions in terms of restricted isometry constants that
improve on the ones currently found in the literature. The algorithms
under consideration are:
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Basis Pursuit: solve the convex optimization problem

minimize
z∈CN

‖z‖1 subject to Az = y. (BP)

Iterative Hard Thresholding: from x0 s-sparse, iterate

xn+1 = Hs(xn +A∗(y−Axn)), (IHT)

where the nonlinear operator Hs keeps s largest (in modulus) entries of a
vector and sets the other ones to zero, so that Hs(z) is a — not necessarily
unique — best s-term approximation to z ∈ CN .

Compressive Sampling Matching Pursuit: from x0 s-sparse, iterate

T n :=
{

indices of 2s largest (in modulus) entries of A∗(y−Axn)
}
, (CSMP1)

Un := T n∪Sn, where Sn := supp(xn), (CSMP2)

un := argmin
{
‖y−Az‖2,supp(z)⊆Un}, (CSMP3)

xn+1 := Hs(un). (CSMP4)

2 Restricted Isometry Constants

We recall the definition of restricted isometry constants introduced in [3].
We also draw attention to a less common, though sometimes preferable,
characterization.

Definition 1. The s-th order restricted isometry constant δs = δs(A) of a
matrix A ∈ Cm×N is the smallest δ ≥ 0 such that

(1−δ )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δ )‖x‖2
2 for all s-sparse vectors x ∈ CN . (1)

An alternative characterization reads

δs = max
S⊆[N],|S|≤s

‖A∗SAS− Id‖2→2. (2)

Proof. To justify the equivalence between the two definitions, we start by
noticing that (1) is equivalent to∣∣‖ASx‖2

2−‖x‖2
2
∣∣≤ δ‖x‖2

2 for all S⊆ [N], |S| ≤ s, and all x ∈ C|S|.

We then observe that

‖ASx‖2
2−‖x‖2

2 = 〈ASx,ASx〉−〈x,x〉= 〈(A∗SAS− Id)x,x〉.

Now, since the matrix (A∗SAS− Id) is hermitian, we have
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max
x∈C|S|\{0}

〈(A∗SAS− Id)x,x〉
‖x‖2

= ‖A∗SAS− Id‖2→2,

so that (1) is equivalent to

max
S⊆[N],|S|≤s

‖A∗SAS− Id‖2→2 ≤ δ .

This establishes the identity (2), because δs is the smallest such δ . ut

The expression (2) gives, for instance, an easy explanation of

|〈Au,Av〉| ≤ δsupp(u)∪supp(v)‖u‖2‖v‖2 if u and v are disjointly supported,

a statement that can be derived in the real setting using a polarization
formula, see e.g. [2]. Indeed, with S := supp(u)∪ supp(v), we just have to
write (with slightly abusive notations)

|〈Au,Av〉| = |〈ASu,ASv〉−〈u,v〉|= |〈(A∗SAS− Id)u,v〉| ≤ ‖(A∗SAS− Id)u‖2‖v‖2

≤ ‖A∗SAS− Id‖2→2‖u‖2‖v‖2 ≤ δsupp(u)∪supp(v)‖u‖2‖v‖2.

The concept of restricted isometry constant offers an elegant way to for-
mulate sufficient conditions for the success of all the algorithms under
consideration. Informally, if the restricted isometry constants are small,
then all three algorithms are guaranteed to succeed in reconstructing
sparse vectors. Slightly more precisely, if δt is small enough for some t
related to s, then any s-sparse vector x ∈ CN is recovered as the output of
the algorithms. The object of what follows is to quantify this statement.
We note that a sufficient condition in terms of some δt can always be im-
posed by a sufficient condition in terms of some other δt ′ , according to
the comparison result given in Proposition 1 below. For instance, in view
of δ3s ≤ 3δ2s, the sufficient condition δ3s < 1/2 obtained in Section 4 for
iterative hard thresholding can be imposed by the condition δ2s < 1/6 —
which will actually be improved to δ2s < 1/4. A heuristic way to compare
such sufficient conditions is to recall that, given a prescribed δ > 0, it is
typical to have (c denoting an absolute constant)

δt ≤ δ provided m≥ c
t

δ 2 ln(eN/t)

for random measurement matrices. Therefore, it is desirable to make
the ratio t/δ 2 as small as possible in order to minimize the necessary
number of measurements. As such, the sufficient condition δ3s < 1/2 is
better than the condition δ2s < 1/4, since 3s/(1/2)2 < 2s/(1/4)2. Let us now
state the aforementioned comparison result, which is just an extension
of [7, Corollary 3.4] to the case where t is not a multiple of s.
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Proposition 1. For integers t ≥ s≥ 1,

δs ≤ δt ≤
t−d

s
δ2s +

d
s

δs, where d := gcd(s, t).

Proof. The first inequality is clear. As for the second one, if d denotes a
common divisor of s and t, we introduce the integers k,n such that

s = kd, t = nd.

Given a t-sparse vector u ∈ CN , we need to show that∣∣‖Au‖2
2−‖u‖2

2
∣∣≤ ( t−d

s
δ2s +

d
s

δs

)
‖u‖2

2. (3)

Let T =: { j1, j2, . . . , jt} denote the support of u. We define n subsets
S1,S2, . . . ,Sn of T , each of size s, by (the indices are meant modulo t)

Si = { j(i−1)d+1, j(i−1)d+2, . . . , j(i−1)d+s}.

In this way, each j ∈ T belongs to exactly s/d = k sets Si, so that

u =
1
k ∑

1≤i≤n
uSi and ‖u‖2

2 =
1
k ∑

1≤i≤n
‖uSi‖

2
2.

Inequality (3) then follows from∣∣‖Au‖2
2−‖u‖2

2
∣∣= ∣∣〈(A∗A− Id)u,u〉

∣∣≤ 1
k2 ∑

1≤i≤n
∑

1≤ j≤n

∣∣〈(A∗A− Id)uSi ,uS j〉
∣∣

=
1
k2

(
∑

1≤i6= j≤n

∣∣〈(A∗Si∪S j
ASi∪S j − Id)uSi ,uS j〉

∣∣+ ∑
1≤i≤n

∣∣〈(A∗Si
ASi − Id)uSi ,uSi〉

∣∣ )
≤ 1

k2

(
∑

1≤i6= j≤n
δ2s‖uSi‖2‖uS j‖2 + ∑

1≤i≤n
δs‖uSi‖

2
2

)

=
δ2s

k2

(
∑

1≤i≤n
‖uSi‖2

)2

− δ2s

k2 ∑
1≤i≤n

‖uSi‖
2
2 +

δs

k2 ∑
1≤i≤n

‖uSi‖
2
2

≤ δ2s n
k2 ∑

1≤i≤n
‖uSi‖

2
2−

δ2s−δs

k2 ∑
1≤i≤n

‖uSi‖
2
2 =

(
δ2s n
k2 −

δ2s−δs

k2

)
∑

1≤i≤n
‖uSi‖

2
2

=
(n

k
δ2s−

1
k
(δ2s−δs)

)
‖u‖2

2 =
( t

s
δ2s−

1
k
(δ2s−δs)

)
‖u‖2

2.

In order to make the latter as small as possible, we need to take k as
small as possible, i.e., to take d as large as possible, hence the choice
d := gcd(s, t). This finishes the proof. ut
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3 Basis Pursuit

In this section, we recall that s-sparse recovery via basis pursuit succeeds
as soon as δ2s < 0.46515. Contrary to the other sections, we do not give a
full proof of this statement, as this was done in [5]. Instead, we outline
the main steps of a classical argument before highlighting a particular
inequality which is to be adjusted for the proof of the refined result. We
justify the adjustment with a general inequality that encompasses two
further inequalities often used in Compressive Sensing.

Theorem 1. Suppose that the 2s-th order restricted isometry constant of
the matrix A ∈ Cm×N satisfies

δ2s <
3

4+
√

6
≈ 0.46515.

If x ∈ CN is an s-sparse vector, then it is recovered as a solution of (BP)
with y = Ax.
More generally, if S denotes an index set of s largest (in modulus) entries
of a vector x ∈ CN and if y = Ax + e for some error term e ∈ Cm satisfying
‖e‖2 ≤ η , then a minimizer x? of ‖z‖1 subject to ‖Az−y‖2 ≤ η approximates
the vector x with error

‖x−x?‖p ≤
C

s1−1/p ‖xS‖1 +Ds1/p−1/2
η , all p ∈ [1,2],

where the constants C and D depend only on δ2s.

Proof (Sketch for δ2s < 1/3). For exactly sparse vectors measured without
error, it is necessary and sufficient to prove the null space property in the
form

‖vS‖1 ≤
1
2
‖v‖1 for all v ∈ kerA\{0} and all S⊆ [N] with |S|= s. (4)

Take v ∈ kerA\{0}. It is enough to prove (4) when S is a set S0 of indices
corresponding to s largest (in modulus) entries of v. Then consider sets
S1,S2, . . . of s indices ordered by decreasing moduli of entries of v. We have

‖vS0‖
2
2 ≤

1
1−δs

‖A(vS0)‖
2
2 =

1
1−δs

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1
1−δs

∑
k≥1

δ2s‖vS0‖2‖vSk‖2 ≤
δ2s

1−δ2s
‖vS0‖2 ∑

k≥1
‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1‖1, k ≥ 1, (5)
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to obtain
‖vS0‖2 ≤

δ2s

1−δ2s

1√
s
‖v‖1.

The result follows from ‖vS0‖1≤
√

s‖vS0‖2 and δ2s/(1−δ2s)<1/2 for δ2s<1/3.
In the more general case of arbitrary signals measured with some errors,
it is sufficient to prove a stronger form of (4), namely

‖vS‖2 ≤
ρ√

s
‖vS‖1 + τ ‖Av‖2 for all v ∈ CN and all S⊆ [N] with |S|= s,

for some positive constants ρ < 1 and τ. ut

For a proof of Theorem 1, the main point to adjust from the previous
arguments is (5). This was first done in [1] by Cai, Wang, and Xu, who
introduced what they called a shifting inequality. Instead of comparing
the `2-norm of the subvector vSk with the `1-norm of the shifted subvector
vSk−1 , they suggested to reduce the size of the shift from s to roughly s/4.
Precisely, they showed that

for k ≥ s/4, if a1 ≥ ·· · ≥︸ ︷︷ ︸
u

v︷ ︸︸ ︷
ak+1 ≥ ·· · ≥ as ≥ ·· · ≥ ak+s ≥ 0, then

‖v‖2 ≤
1√
s
‖u‖1.

This is the particular case p = 1, q = 2, t = s, of the following result, which
generalizes the shifting inequality to other norms and to other vector
sizes. A proof is included in the Appendix.

Theorem 2. If 0 < p < q and a1 ≥ ·· · ≥︸ ︷︷ ︸
u

v︷ ︸︸ ︷
ak+1 ≥ ·· · ≥ as ≥ ·· · ≥ ak+t ≥ 0, then

‖v‖q ≤Cp,q(k,s, t)‖u‖p,

where

Cp,q(k,s, t) = max
{ t p/q

s
,
( p

q

)p/q(
1− p

q

)1−p/q 1
k1−p/q

}1/p
. (6)

When u and v do not overlap much, the second term can be discarded, i.e.,

Cp,q(k,s, t) =
t1/q

s1/p provided s− k ≤
( p

q

)
s. (7)

It is interesting to point out that two classical inequalities — the first
one due to Stechkin — from Approximation Theory and often used in
Compressive Sensing are contained in this result. These inequalities are,
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for 0 < p < q and x ∈ Rn,

σk(x)q ≤


1

k1/p−1/q ‖x‖p,

Dp,q

k1/p−1/q ‖x‖p, Dp,q :=
1

(q/p−1)1/q =
(

(p/q)p/q

(1− p/q)p/q

)1/p

.

This corresponds to the case s = n, t = n− k, for which we indeed have

k1−p/q Cp,q(k,n,n− k)p ≤min{1,Dp
p,q},

since the left-hand side reduces to

max
{(

1− k
n

)p/q( k
n

)1−p/q
,
( p

q

)p/q(
1− p

q

)1−p/q}
=
( p

q

)p/q(
1− p

q

)1−p/q
,

and the latter is readily seen to be bounded by min{1,Dp
p,q}.

4 Iterative Hard Thresholding

In this section, we give an elegant and surprisingly simple justification of
the success of s-sparse recovery via iterative hard thresholding as soon as
δ3s < 1/2. This improves the result of [4], where the sufficient condition
δ3s < 1/

√
8 was obtained — although the main theorem was stated for

δ3s < 1/
√

32 in order to achieve a rate of convergence equal to ρ = 1/2.

Theorem 3. Suppose that the 3s-th order restricted isometry constant of
the matrix A ∈ Cm×N satisfies

δ3s <
1
2
.

If x∈CN is an s-sparse vector, then the sequence (xn) defined by (IHT) with
y = Ax converges to the vector x.
More generally, if S denotes an index set of s largest (in modulus) entries
of a vector x ∈ CN and if y = Ax+ e for some error term e ∈ Cm, then

‖xn−xS‖2 ≤ ρ
n ‖x0−xS‖2 + τ ‖AxS + e‖2, all n≥ 0, (8)

where

ρ := 2δ3s < 1 and τ :=
2
√

1+δ2s

1−2δ3s
.

Remark 1. The value τ = 6 was obtained in [4] for ρ ≤ 1/2, which was
ensured by δ3s ≤ 1/

√
32. Theorem 3 gives the value τ ≈ 4.4721 for ρ ≤ 1/2,

i.e., for δ3s ≤ 1/4, and the value τ ≈ 3.3562 for δ3s ≤ 1/
√

32.
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Proof. We simply use the fact that the s-sparse vector xn+1 is a better
s-term approximation to

vn := xn +A∗(y−Axn) = xn +A∗A(xS−xn)+A∗(AxS + e)

than the s-sparse vector xS to write

‖(vn−xS)+(xS−xn+1)‖2
2 ≤ ‖vn−xS‖2

2.

Expanding the left-hand side and eliminating ‖vn− xS‖2
2 leads to, with

e′ := AxS + e and V := supp(x)∪ supp(xn)∪ supp(xn+1),

‖xn+1−xS‖2
2 ≤ 2ℜ〈vn−xS,xn+1−xS〉
= 2ℜ〈(Id−A∗A)(xn−xS)+A∗e′,xn+1−xS〉
≤ 2ℜ〈(Id−A∗V AV )(xn−xS),xn+1−xS〉+2ℜ〈e′,A(xn+1−xS)〉
≤ 2‖Id−A∗V AV‖2→2‖xn−xS‖2‖xn+1−xS‖2 +2‖e′‖2‖A(xn+1−xS)‖2

≤ 2δ3s‖xn−xS‖2‖xn+1−xS‖2 +2‖e′‖2
√

1+δ2s ‖xn+1−xS‖2.

Simplifying by ‖xn+1−xS‖2, we derive

‖xn+1−xS‖2 ≤ 2δ3s‖xn−xS‖2 +2
√

1+δ2s ‖e′‖2.

This easily implies the estimate (8). In particular that, if x is an s-sparse
vector (xS = 0) and if the measurements are accurate (e = 0), then

‖xn−x‖2 ≤ ρ
n‖x0−x‖,

so the sequence (xn) converges to x as soon as ρ < 1, i.e., δ3s < 1/2. ut

Using the same technique, it is also possible to formulate a sufficient
condition in terms of δ2s for the success of s-sparse recovery via iterative
hard thresholding. For simplicity, we only state the result in the case of
exactly sparse vectors measured with perfect accuracy.

Theorem 4. Suppose that the 2s-th order restricted isometry constant of
the matrix A ∈ Cm×N satisfies

δ2s <
1
4
.

If x∈CN is an s-sparse vector, then the sequence (xn) defined by (IHT) with
y = Ax converges to the vector x.

Proof. We use what has been done in the proof of Theorem 3, specified to
the case e′ = 0, to write

‖xn+1−x‖2
2 ≤ 2ℜ〈(Id−A∗A)(xn−x),xn+1−x〉.
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Let us decompose supp(x)∪supp(xn)∪supp(xn+1) into the three disjoint sets

V1 := (supp(x)∪ supp(xn)) ∩ (supp(x)∪ supp(xn+1)),
V2 := (supp(x)∪ supp(xn)) \ (supp(x)∪ supp(xn+1)),
V3 := (supp(x)∪ supp(xn+1)) \ (supp(x)∪ supp(xn)).

Since V1∪V2, V2∪V3, and V2∪V3 all have size at most 2s, we have

‖xn+1−x‖2
2 = 2ℜ〈(Id−A∗A)

(
(xn−x)V1 +(xn−x)V2

)
,(xn+1−x)V1 +(xn+1−x)V3〉

= 2ℜ〈(Id−A∗A)
(
(xn−x)V1

)
,(xn+1−x)V1〉

+ 2ℜ〈(Id−A∗A)
(
(xn−x)V1

)
,(xn+1−x)V3〉

+ 2ℜ〈(Id−A∗A)
(
(xn−x)V2

)
,(xn+1−x)V1〉

+ 2ℜ〈(Id−A∗A)
(
(xn−x)V2

)
,(xn+1−x)V3〉

≤ 2δ2s
(
‖(xn−x)V1‖2‖(xn+1−x)V1‖2 +‖(xn−x)V1‖2‖(xn+1−x)V3‖2

+‖(xn−x)V2‖2‖(xn+1−x)V1‖2 +‖(xn−x)V2‖2‖(xn+1−x)V3‖2
)

≤ 2δ2s
(
‖(xn−x)V1‖

2
2 +‖(xn−x)V1‖

2
2 +‖(xn−x)V2‖

2
2 +‖(xn−x)V2‖

2
2
)1/2

×
(
‖(xn+1−x)V1‖

2
2 +‖(xn+1−x)V3‖

2
2 +‖(xn+1−x)V1‖

2
2 +‖(xn+1−x)V3‖

2
2
)1/2

= 2δ2s
(
2‖xn−x‖2

2
)1/2(2‖xn+1−x‖2

2
)1/2 = 4δ2s‖xn−x‖2‖xn+1−x‖2.

This yields, after simplification by ‖xn+1−x‖2,

‖xn+1−x‖2 ≤ ρ ‖xn−x‖2, ρ := 4δ2s.

Convergence of the sequence (xn) towards x is therefore guaranteed as
soon as ρ < 1, i.e., δ2s < 1/4. ut

Remark 2. The better sufficient condition δ2s < 1/3 was obtained in [6]
with a slight modification of the iterative hard thresholding algorithm,
namely the iteration

xn+1 = Hs

(
xn +

3
4

A∗(y−Axn)
)
. (IHT3/4)

Note, however, that the condition δ2s < 1/3 is not heuristically better than
the condition δ3s < 1/2, since (2s)/(1/3)2 > (3s)/(1/2)2.

5 Compressive Sampling Matching Pursuit

In this section, we present a proof of the success of s-sparse recovery via
compressive sampling matching pursuit as soon as δ4s < 0.38427. This
improves the original condition of [7]. There, the authors targeted a rate
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of convergence equal to ρ = 1/2, so that they gave the sufficient condition
δ4s ≤ 0.1, but their arguments actually yield ρ < 1 as soon as δ4s < 0.17157.

Theorem 5. Suppose that the 4s-th order restricted isometry constant of
the matrix A ∈ Cm×N satisfies

δ4s <

√
2

5+
√

73
≈ 0.38427.

If x∈CN is an s-sparse vector, then the sequence (xn) defined by (CSMP1−4)
with y = Ax converges to the vector x.
More generally, if S denotes an index set of s largest (in modulus) entries
of a vector x ∈ CN and if y = Ax+ e for some error term e ∈ Cm, then

‖xn−xS‖2 ≤ ρ
n ‖x0−xS‖2 + τ ‖AxS + e‖2, all n≥ 0, (9)

where the positive constants ρ < 1 and τ depend only on δ4s.

Remark 3. The explicit expressions for ρ and τ are given at the end of the
proof (the constant τ is made dependent only on δ4s by using δ3s ≤ δ4s).
Note that the value τ = 15 was obtained in [7] for ρ ≤ 1/2, which was
ensured by δ4s ≤ 0.1. Theorem 5 gives the value τ ≈ 10.369 for ρ ≤ 1/2,
i.e., for δ4s ≤ 0.22665, and the value τ ≈ 5.6686 for δ4s ≤ 0.1.

Proof. Step (CSMP3) says that Aun is the best `2-approximation to y from
the space {Az,supp(z)⊆Un}, hence it is characterized by

〈Aun−y,Az〉= 0 whenever supp(z)⊆Un. (10)

Setting e′ := AxS + e to have y = AxS + e′, this can be rewritten as

〈un−xS,A∗Az〉= 〈e′,Az〉 whenever supp(z)⊆Un. (11)

This yields in particular

‖(un−xS)Un‖2
2 = 〈un−xS,(un−xS)Un〉
= 〈un−xS,(Id−A∗A)

(
(un−xS)Un

)
〉+ 〈e′,A

(
(un−xS)Un

)
〉

≤ δ4s‖un−xS‖2‖(un−xS)Un‖2 +‖e′‖2
√

1+δ3s ‖(un−xS)Un‖2,

which gives, after simplification by ‖(un−xS)Un‖2,

‖(un−xS)Un‖2 ≤ δ4s‖un−xS‖2 +
√

1+δ3s ‖e′‖2. (12)

It follows that

‖un−xS‖2
2 = ‖(un−xS)Un‖2

2 +‖(un−xS)Un‖2
2

≤ ‖(un−xS
)

Un‖2
2 +
(
δ4s‖un−xS‖2 +

√
1+δ3s ‖e′‖2)2.
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This reads p(‖un−xS‖2)≤ 0 for the quadratic polynomial defined by

p(t) := (1−δ
2
4s) t2− (2δ4s

√
1+δ3s ‖e′‖2) t− (‖(un−xS)Un‖2

2 +(1+δ3s)‖e′‖2
2).

This proves that ‖un−xS‖2 is bounded by the largest root of p, i.e.,

‖un−xS‖2 ≤
δ4s
√

1+δ3s‖e′‖2 +
√

(1−δ 2
4s)‖(un−xS)Un‖2

2 +(1+δ3s)‖e′‖2
2

1−δ 2
4s

≤ 1√
1−δ 2

4s

‖(un−xS)Un‖2 +

√
1+δ3s

1−δ4s
‖e′‖2. (13)

We now turn to the estimate for ‖xn+1−xS‖2. We start by writing

‖xn+1−xS‖2
2 = ‖(un−xS)− (un−xn+1)‖2

2

= ‖un−xS‖2
2 +‖un−xn+1‖2

2−2ℜ〈un−xS,un−xn+1〉. (14)

Step (CSMP4) implies that xn+1 is a better s-term approximation to un

than xS∩Un , so that

‖un−xn+1‖2 ≤ ‖(un−xS)Un‖2. (15)

We also note, in view of (11) and of supp(un−xn+1)⊆Un, that

|〈un−xS,un−xn+1〉|= |〈un−xS,(Id−A∗A)(un−xn+1)〉+ 〈e′,A(un−xn+1)〉|

≤ δ4s‖un−xS‖2‖un−xn+1‖2 +‖e′‖2
√

1+δ3s ‖un−xn+1‖2. (16)

Substituting (15) and (16) into (14), then using (12), we obtain

‖xn+1−xS‖2
2 ≤ ‖un−xS‖2

2 +‖(un−xS)Un‖2
2 +2δ4s‖un−xS‖2‖(un−xS)Un‖2

+2
√

1+δ3s ‖e′‖2‖(un−xS)Un‖2

= (1+3δ
2
4s)‖un−xS‖2

2 +6δ4s
√

1+δ3s‖un−xS‖2‖e′‖2 +3(1+δ3s)‖e′‖2
2

≤ (1+3δ
2
4s)
(
‖un−xS‖2 +

√
3(1+δ3s)
1+3δ 2

4s
‖e′‖2

)2

.

Combining the latter with (13), we deduce

‖xn+1−xS‖2≤

√
1+3δ 2

4s

1−δ 2
4s
‖(un−xS)Un‖2+

(√1+3δ 2
4s

1−δ4s
+
√

3
)√

1+δ3s‖e′‖2. (17)

It remains to bound ‖(un − xS)Un‖2 in terms of ‖xn − xS‖2. For this, we
notice that un

Un = 0 = xn
Un , so that
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‖(un−xS)Un‖2 = ‖(xn−xS)Un‖2 ≤ ‖(xn−xS)T n‖2 = ‖(xn−xS)(S∪Sn)\T n‖2. (18)

Step (CSMP1) means that A∗(y−Axn)T n is a best 2s-term approximation to
A∗(y−Axn)S∪Sn∪T n among all vectors supported on S∪Sn∪T n. In particular,

‖A∗(y−Axn)(S∪Sn)\T n‖2 ≤ ‖A∗(y−Axn)T n\(S∪Sn)‖2

≤ ‖A∗A(xS−xn)T n\(S∪Sn)‖2 +‖(A∗e′)T n\(S∪Sn)‖2

= ‖((A∗A− Id)(xS−xn))T n\(S∪Sn)‖2 +‖(A∗e′)T n\(S∪Sn)‖2

≤ δ4s‖xS−xn‖2 +‖(A∗e′)T n\(S∪Sn)‖2. (19)

On the other hand, we have

‖A∗(y−Axn)(S∪Sn)\T n‖2 ≥ ‖A∗A(xS−xn)(S∪Sn)\T n‖2−‖(A∗e′)(S∪Sn)\T n‖2

≥ ‖(xS−xn)(S∪Sn)\T n‖2−‖((A∗A− Id)(xS−xn))(S∪Sn)\T n‖2−‖(A∗e′)(S∪Sn)\T n‖2

≥ ‖(xS−xn)(S∪Sn)\T n‖2−δ2s‖xS−xn‖2−‖(A∗e′)(S∪Sn)\T n‖2. (20)

From (19), (20), and (18), we derive that

‖(un−xS)Un‖2 ≤ (δ2s +δ4s)‖xS−xn‖2 +‖(A∗e′)T n\(S∪Sn)‖2 +‖(A∗e′)(S∪Sn)\T n‖2

≤ 2δ4s‖xS−xn‖2 +
√

2‖(A∗e′)(S∪Sn)∆T n‖2

≤ 2δ4s‖xS−xn‖2 +
√

2(1+δ4s)‖e′‖2. (21)

Putting (17) and (21) together, we finally conclude

‖xn+1−xS‖2 ≤ ρ ‖xn−xS‖2 +(1−ρ)τ ‖e′‖2. (22)

where

ρ :=

√
4δ 2

4s(1+3δ 2
4s)

1−δ 2
4s

,

(1−ρ)τ :=

√
2(1+3δ 2

4s)
1−δ4s

+

√
(1+3δ 2

4s)(1+δ3s)

1−δ4s
+
√

3(1+δ3s).

To finish, we point out that the constant ρ is less than one when

12δ
4
4s +5δ

2
4s−1 < 0, i.e., δ4s <

√
2

5+
√

73
≈ 0.38427,

and that (22) readily implies (9). ut
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Appendix: Proof of Theorem 2

The constant Cp,q(k,s, t)q is the solution of the maximization problem

maximize aq
k+1 + · · ·+aq

k+t subject to ap
1 + · · ·+ap

s ≤ 1, a1 ≥ ·· · ≥ ak+t ≥ 0.

Thus, setting r := q/p > 1, we aim at maximizing the convex function

f (x1, . . . ,xk+t) := xr
k+1 + · · ·+ xr

k+t

over the convex polytope

C :=
{

x ∈ Rk+t : x1 + · · ·+ xs ≤ 1,x1 ≥ ·· · ≥ xk+t ≥ 0
}
.

The maximum is attained at one of the vertices of the convex polytope C .
These vertices are obtained by turning into equalities k + t of the k + t +1
inequalities defining C . We have to separate several cases:

• if x1 = · · ·= xk+t = 0, then

f (x1, . . . ,xk+t) = 0;

• if x1 + · · ·+ xs = 1 and x1 = · · · = xh > xh+1 = xk+t = 0 for some 1 ≤ h ≤ k,
then

f (x1, . . . ,xk+t) = 0;

• if x1 + · · ·+ xs = 1 and x1 = · · · = xh > xh+1 = xk+t = 0 for some k ≤ h ≤ s,
then x1 = · · ·= xh = 1/h, and

f (x1, . . . ,xk+t) =
h− k

hr ;

• if x1 + · · ·+xs = 1 and x1 = · · ·= xh > xh+1 = xk+t = 0 for some s≤ h≤ k+ t,
then x1 = · · ·= xh = 1/s, and

f (x1, . . . ,xk+t) =
h− k

sr .

It follows that the desired constant is

Cp,q(k,s, t)q = max
{

max
k≤h≤s

h− k
hr , max

s≤h≤k+t

h− k
sr

}
.

Considering h as a continuous variable, we observe that the function
g(h) := (h− k)/hr is increasing until the critical point h∗ :=

(
r/(r− 1)

)
k
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and decreasing thereafter, so that the first maximum is no larger than
g(h∗) =

(
(r− 1)r−1/rr

)
/kr−1, or than g(s) = (s− k)/sr if h∗ ≥ s. Now taking

into account that (h− k)/sr increases with h on [s,k + t], we deduce

Cp,q(k,s, t)q

≤ max
{ (r−1)r−1

rr
1

kr−1 ,
t
sr

}
,

=
t
sr if

r
r−1

k ≥ s.

We simply obtain (6) and (7) by rearranging the latter. It is worth noting
that the constants appearing in (6) and (7) cannot be improved. ut
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