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Abstract
Numerical algorithms are presented for computing average global temperature (or other quantities
of interest such as average precipitation) from measurements taken at specified locations and times.
The algorithms are proven to be in a certain sense optimal. The analysis of the optimal algorithm
provides sharp a priori bounds on the error between the computed value and the true average global
temperature. These a priori bounds involve a computable compatibility constant which assesses the
quality of the measurements for the chosen model. The optimal algorithm is constructed by solving
a convex minimization problem. It is shown that this solution promotes sparsity and hence utilizes
a smaller number of well-chosen data sites than those provided. The algorithm is then applied to
canonical data sets for the computation of average temperature and average precipitation over given
regions and given time intervals. A comparison is provided between the proposed algorithms and
existing methods using standard data sets.

1 Introduction

Computing average temperatures is a particular instance of a common task in data processing,
namely that of exploiting measurements made on a function f to estimate a quantity Q( f ) that
depends on f , referred to as Quantity of Interest (QoI) below. In the present situation, f = f (x, t)
represents the temperature (in degrees Celsius) as a function of the position x on the surface of the
earth and of the time t. We single out temperature as a running example, but other atmospheric
features such as humidity or precipitation can be treated equally well. As a QoI, we single out average
temperatures over the whole earth or a smaller region R during a whole year or a shorter period ∆,
obtained as the normalized integral

Q( f ) =
1

σ(R) |∆|

∫
R

∫
∆

f (x, t) dσ(x) dt, (1)

where σ(R) is the surface area of the region and |∆| is the duration of the period. In going further,
we denote byΩ := {(x, t) : x ∈ R, t ∈ ∆} the domain of f , so the QoI also reads Q( f ) = |Ω|−1

∫
Ω

f ,
where |Ω| denotes the measure ofΩ. Other QoIs such as the temperatureQ( f ) = f (ξ, τ) at a specific
location ξ and a specific time τ can be considered as well.

Temperatures are continuously monitored by numerous weather stations around the globe,
providing us with ample data to estimate the QoI. This data takes the form of a vector

w = [ f (x1, t1,1), . . . , f (x1, t1,`1 ), . . . , f (xm, tm,1), . . . f (xm, tm,`m )] (2)

whose entries are obtained by recording the temperature at locations x j and at times t j, i , j = 1, . . . ,m
and i = 1, . . . , ` j . This vector depends linearly on the temperature function f and we can write it
succinctly as w = M ( f ), where M represents the measurement mapping associated with the data
sites (x j, t j, i ), j = 1, . . . ,m, i = j, . . . , ` j .

This data alone is not sufficient to guarantee that a QoI such as annual global temperature can
be accurately computed. Indeed, without additional knowledge, the temperature function could for
example oscillate wildly between the data sites. What forbids such unrealistic scenarios are additional
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properties of the temperature function, which are usually described by structural assumptions on f .
Such assumptions are referred to as model class assumptions. They quantify the uncertainty in our
knowledge of f . Model classes will be discussed in more detail below.

For now, given the data and the model class, we focus on the following three questions:
(i) Is there an optimal accuracy at which one can estimate a QoI?
(ii) Are there procedures that achieve this accuracy?
(iii) Can one implement such procedures?

These questions form the cornerstone of amathematical theory called optimal recovery (seeMicchelli
and Rivlin [1985]). Regarding (ii), for instance, the theory guarantees that there is an optimal
algorithm for computing an average temperature Q( f ) that takes the form of a weighted average of
the data, i.e., making the approximation

Q( f ) ≈
m∑
j=1

` j∑
i=1

a∗j, i f (x j, t j, i ). (3)

Note that current methods used to estimate average temperatures, such as Hansen and Lebedeff
[1987], Hansen, Ruedy, Glascoe, and Sato [1999], and Hansen, Ruedy, Sato, and Lo [2010],
although not explicitly stated as such, also take the form of a weighted average. However, the
weights used in these methods are derived in a rather ad hoc manner and are not optimally chosen.
Thanks to the introduction of a new and realistic family ofmodel classes for the underlying function f ,
significant advances were recently made on (i)-(ii)-(iii) inDeVore, Foucart, Petrova, andWojtaszczyk
[20xx], where it was revealed how to explicitly construct optimal algorithms for the estimation of
QoIs relative to these new model classes. The purpose of this letter is to make geophysical scientists
aware of these developments in optimal recovery, so that they can capitalize on their domain expertise
to put forward the most realistic model classes for global temperature and thereby utilize the above
theory to design optimal algorithms with certifiable performance.

2 Methods

We now formalize our approach, in particular by clarifying the notion of optimal algorithms.
By an algorithm, we simply mean a mapping taking a measurement vector w = M ( f ) ∈ Rm as input
and returning a number A(w) ∈ R as an output, hopefully close to the true QoI Q( f ). The error
made by this approximation is

E(w, A) := |Q( f ) − A(w) |, w = M ( f ). (4)

The performance of the algorithm A is then assessed in a worst-case setting, keeping in mind that,
besides the data, the only information one has (or assumes) about f is that f comes from the model,
that is f belongs to a class K of functions referred to as a model class. Thus, we introduce

E(K, A) := sup
f ∈K

E(M ( f ), A) (5)

as an indicator of the performance of the algorithm over the class K . A favorable bound on E(K, A)
guarantees that Q( f ) is computed well. Finally, an optimal algorithm A∗ is one that makes E(K, A)
as small as possible, i.e.,

E(K, A∗) = inf
A

E(K, A) =: E∗(K ). (6)

Note that E∗(K ) quantifies the optimal performance relative to the class K .

The framework presented above is of course very much dependent on the model class K .
As an ideal situation, we would prefer to deduce properties of the temperature function f from
first principles of atmospheric science, say from a system of partial differential equations (PDEs)
governing the behavior of f . Such properties could, for example, be inferred by regularity theorems
for PDEs, and may quantify the smoothness of f . Unfortunately, in the case of the temperature
function, the complexity of the system of PDEsmakes regularity theorems hard to exploit. Therefore,
the model classes we advocate are not built on smoothness but instead on approximability.
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We start from the observation that, as in quadrature theory, estimation procedures are usually
constructed through approximation, i.e., one selects a method to approximate f , e.g. by polynomials,
piecewise polynomials, radial basis functions, etc., and then designs an algorithm based on this
approximation. By choosing a specific form of approximation, there is an implicit acceptance that f
is well approximated by the selected method. This tacitly suggests to consider a model class defined
as

K = K (ε,V ) := {g ∈ C(Ω) : dist(g,V ) ≤ ε } (7)

involving an approximation threshold ε > 0 and a set V of functions used as approximants (in the
context of this paper, V is a linear space of finite dimension n). The distance is relative to the usual
norm on the space C(Ω) of continuous functions, so that

dist(g,V ) = inf
v∈V

max
ω∈Ω
|g(ω) − v(ω) |. (8)

Regarding (i), it was shown in DeVore, Foucart, Petrova, and Wojtaszczyk [20xx] that the
optimal performance can be precisely evaluated for the model class (7). It decouples as

E∗(K (ε,V )) = µV ε, (9)

revealing that, besides the approximation capability of V , another important part is played by a
constant µV that encapsulates the compatibility of the data sites (x j, t j, i ), j = 1, . . . ,m, i = 1, . . . , ` j ,
with the spaceV . A poor compatibility will result in a large µV 1. The roles of µV and ε are somewhat
competing in the choice of a proper linear space V on which to build the algorithm. Indeed, we
want a space with both good approximation capability, so that ε is small, and good compatibility
with the data, so that µV is small. But enlarging the space V will have the effect of decreasing ε
while increasing µV . Such a tension is similar to the one encountered in statistical learning when
confronted with the problem of overfitting the data.

Regarding (ii) and (iii), DeVore, Foucart, Petrova, and Wojtaszczyk [20xx] also put forward the
construction of an optimal algorithm A∗ for the estimation of real-valued linear QoIs such as (1).
For easy comparison with other algorithms, we describe this construction in the special framework
where there is no time dependence, i.e., when f = f (x) depends only on the position x. Existing
algorithms for estimating annual temperatures can indeed be unscrambled as producing beforehand
an annual temperature f (x j ) at each data site x j , and then computing a weighted average of the
f (x j ). We place ourselves in the same setting where data consist of measurements f (x j ) which have
already averaged the time. Another instance of the time-independent framework is the case where
fτ (x) = f (x, τ) represents an instantaneous temperature at a given time τ.

In the time-independent framework, given data sites (x1, . . . , xm ) and a basis (v1, . . . , vn ) for
the space V , the optimal algorithm A∗ for the estimation of a real-valued linear QoI Q first produces
a solution

a∗ := argmin



m∑
j=1

|a j | :
m∑
j=1

a jvi (x j ) = Q(vi ), i = 1, . . . , n



(10)

of a `1-minimization problem with variable a = [a1, . . . , am], which can be reformulated as a
linear optimization problem and solved using standard techniques. Notice that the optimal weights
a∗1, . . . , a

∗
m depend on the sites x1, . . . , xm but not the data f (x1), . . . , f (xm ) at these sites. Next, for

each measurement vector w ∈ Rm , the algorithm computes the weighted average

A∗(w) :=
m∑
j=1

a∗jw j . (11)

The algorithm A∗ is optimal in the sense that E(K (ε,V ), A∗) = E∗(K (ε,V )) for all ε > 0. Notice that
the knowledge of ε > 0 is not necessary to construct the algorithm A∗. The compatibility constant

1 The precise definition of µV would reveal that the extreme situation µV = +∞ occurs ifV contains a nonzero function v

such that v (x j , t j, i ) = 0, j = 1, . . . , m, i = 1, . . . , ` j , and this automatically happens when `1 + · · · + `m < n.
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µV is incidentally obtained as a byproduct of (10), since

µV = 1 +
m∑
j=1

|a∗j |. (12)

The algorithm A∗ possesses several pleasing attributes that are worth pointing out. As noted,
the minimization procedure (10) does not involve the data but only the locations. Therefore, the
algorithm produces offline the weights once and for all and the formula (11) can be reused instantly
for each data wτ′ = [ fτ′ (x1), . . . , fτ′ (xm )] recorded at another time τ′ (or other time averages). The
only proviso here is that the same weather stations must provide measurements at the same times (or
averages over the same time period). Note that the optimal algorithm generally selects only a small
number of station locations. This is due to the model assumption. The merit of this observation
lies less in terms of data collection (data from all stations should indeed be kept, since the selection
made by the algorithm depends on the available stations, the space V , and the QoI to be estimated)
but more in terms of data transmission: massive databases are commonly stored in a cloud system
accessible to multiple scientific teams, and downloading data to estimate a QoI can be a bottleneck,
so it is clearly beneficial to download only the portion that will be used in the computation.

3 Experimental results

Wenow test ourmethod on several situations encountered in atmospheric science: the estimation
of average annual global temperature, the estimation of average seasonal regional temperature, and
the estimation of total annual global precipitation.

3.1 Average annual global temperatures

Our first and most exhaustive experiment illustrates the application of our algorithm to the
estimation of average annual global temperatures. The results are compared with the ones released
by agencies such as NOAA National Climatic Data Center and NASA Goddard Institute for Space
Studies. In these cases, the time dependence is discarded by considering for each year a function
f = f (x) representing an average annual temperature depending only on the position x.

Data provenance: The experiment relies on the following standard data sets:

• RawLandData (RLD), obtained bymergingmonthly land-based station temperatures (GHCNM)
from Lawrimore et al. [2011] and monthly Antarctic land-based station temperatures (SCAR
MET-READER) from SCAR MET-READER [2018];

• Processed Land Data (PLD), obtained by processing the RLD using GISTEMP steps 0–2, see
GISTEMP [2018] and Hansen, Ruedy, Sato, and Lo [2010];

• Gridded Land Data (GLD), using the PLD to assign temperatures for each grid center in the
covering of the globe by 8,000 equal-area cells, see Hansen and Lebedeff [1987];

• Gridded Sea Data (GSD)2, downloaded from the GISTEMP’s website
https://data.giss.nasa.gov/pub/gistemp/SBBX.ERSSTv4.gz and obtained followingHuang et al.
[2015] and NOAA National Centers for Environmental Information [2018].

Algorithmic details: Our numerical algorithms require the choice of an approximation spaceV .
We consider spherical harmonics of degrees L = 3, L = 6, and L = 9, which we denote by SH3,
SH6, and SH9. We also consider approximation by piecewise constant functions on two standard
partitions of the globe, namely the coarse and fine partitions used in Hansen and Lebedeff [1987],
Hansen, Ruedy, Glascoe, and Sato [1999], Hansen, Ruedy, Sato, and Lo [2010]. We denote the
corresponding optimal algorithms by PCC and PCF. We compare the performance of our algorithms
with two standardmethods provided byGISTEMP and by NOAANational Centers for Environmental

2 These data have undergone some processing and gridding steps, too, but we were unable to obtain the raw data used to
generate them .
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Information [2018]. Both of these methods implicitly rely on piecewise constant approximation,
however, they differ from the optimal algorithm for approximation model. We compare these
algorithms on two data sets:

Data set 1: This data set consists of the merging of GLD and GSD. This is the standard data set used in
GISTEMP.

Data set 2: This data set consists of the merging of PLD and GSD. This set works more closely with raw
data, at least on land.

Observations: The results using PCC and PCF as well as using SH3, SH6 and SH9 on both
data sets 1 and 2 are displayed in Figures 1 and 2. In these figures, temperature anomalies in ◦C
were computed from the 1951–1980 baseline average. They are compared with those computed
using GISTEMP and those reported by NOAA over the 1950–2016 time period. The results call for
a number of comments:

• Our results match those reported by NOAA and NASA tightly for data set 1, because they
rely on the exact same data set, and more loosely for data set 2, which is closer to raw data;

• Spherical harmonics are surprisingly effective, considering that dim(V ) = (L + 1)2 = 100 for
L = 9 while dim(V ) = 8,000 for the fine grid;

• Moving from the coarse to the fine grid improves the approximation capability ε and does not
severely deteriorate the compatibility constant µV , and so produces more accurate curves;

• Likewise, for spherical harmonics, increasing L improves ε and does not severely deteriorate
µV . However, if the stations were not reasonably spread around the globe (for example by
considering land stations only), then µV could increase and hence impact the QoI estimation;

• The values of µV are very close to the least possible value of 2 throughout for all the
experiments from Figures 1 and 2.

Figure 1: Temperature anomalies in ◦C computed using PCC (left column) and PCF (right column)
with data set 1 (top row) and data set 2 (bottom row). The values reported by NOAA and by
GISTEMP are also shown.
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Figure 2: Temperature anomalies in ◦C computed using SH3 (left column), SH6 (middle column)
and SH9 (right column) with data set 1 (top row) and data set 2 (bottom row). The values reported
by NOAA and by GISTEMP are also shown.

Weather station positioning: According to properties of `1-minimizers, the solution a∗ of (10)
is sparse, meaning that only n = dim(V ) weights among a∗1, . . . , a

∗
m are nonzero, which implies that

only n from the m weather stations are involved in the optimal estimation of average temperatures
(Figure 3; recall that the computation of a∗ does not depend on the measured temperatures but only
on the positions of the stations). In our spherical harmonics experiments, we have observed that
the n stations selected by the method tend to be evenly spread and that clustered stations, as in the
land-only data set, tend to produce larger values of µV , so the QoI estimation becomes less reliable.
When L increases, the value of µV does not severely deteriorate as long as there are sufficiently many
stations which are reasonably spread around the globe.

Figure 3: The set of m = 9,187 locations available in data set 2 (left) along with the n = 100 selected
locations for SH9 (right) in 1985. The compatibility constant here is µV = 2.

3.2 Average seasonal regional temperatures

We apply our method to estimate the average temperature in the state of Texas over two periods
of three months (winter and summer) from 2000 to 2016. Time dependence is now incorporated.
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Thus, the space V consists of functions of two variables: the position x and the time t. We assume a
piecewise constant dependence on x and a piecewise linear dependence on t, with breakpoints every
week. The data we used underwent a preprocessing step producing average weekly temperatures at
each weather station from daily values acquired fromMenne et al. [2012]. By contrast to the annual
global temperature, we do not need to discard a weather station from the record just because one
weekly reading is missing.

Figure 4: The 115 station located in Texas (left) and the temperature anomalies in ◦C for summer
(middle) and winter (right) estimated with the incorporated time-dependence and compared with
values reported by NOAA. The volume of data involved in the optimal estimation was reduced by a
factor up to 115/19 ≈ 6.

3.3 Total annual global precipitations

For our precipitation computations, we use theGlobal PrecipitationClimatologyCentremonthly
precipitation data set from Schneider et al. [2011]. Intuitively, the task should be difficult because
precipitations are much more irregular geographically than temperatures, so finding a good model
class could be challenging. Figure 5 shows the results using SH3, SH6, and SH9 and compares
them with values reported by Blunden and Arndt [2016], downloaded from EPA: Climate Change
Indicators [2016]. We observe that the spherical harmonics model produces less oscillation. How-
ever, we stress that the precipitation data set, which includes only stations over land, does not give
full coverage of the globe. This leads to a less accurate QoI estimation due to a larger compatibility
constant µV .

Figure 5: Annual precipitation computed using SH3 (left), SH6 (middle) and SH9 (right). The
values reported by Blunden and Arndt [2016] are also shown. The values of the compatibility
constant are µV = 2.000002, µV = 2.192771, and µV = 5.343402, respectively.
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4 Discussion and conclusion

We have acquainted the geophysical community with a template method to estimate diverse
QoIs, with a special emphasis on average temperature. The method, whose parameters are computed
offline once and for all, is optimal with respect to the approximation model selected. Ideally, the
method should be applied to raw data, with data manipulation as performed by other methods (such
as urban adjustment) to be integrated in the modeling stage, i.e., the choice of the space V . This
choice is of course critical for the reliability of the method. It is rather surprising that spherical
harmonics provided decent results — this would have been conceivable for temperatures in the free
troposphere, but on the earth surface they obliterate the important dependence of temperature on
latitude, altitude, surface type, etc. We hope that domain experts can chime in and propose relevant
choices of V for the model. A good space V should have a small dimension (the space of piecewise
constants does not) for at least two reasons: the compatibility constant µV will remain small and the
estimation formula will feature few nonzero weights. The latter is due to the automatic sparsity of
`1-minimizers. It does not suggest eliminating numerous weather stations and acquiring less data,
as the nonzero weights depend on the QoI, on V , and on the available stations, but it presents an
interesting advantage in terms of data transmission.
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