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Abstract

We examine three topics at the interface between spline theory and algebraic geometry. In the

first part, we show how the concept of domain points can be used to give an original explanation

of Dehn–Sommerville equations relating the numbers of i-faces of a simplicial polytope in Rn,

i = 0. . . . , n − 1. In the second part, we echo some joint works with T. Sorokina and with

P. Clarke on computational methods that generate formulas for the dimensions of spline spaces

Srd(∆n) of degree ≤ d and smoothness r over a fixed simplicial partition ∆n in Rn. It exploits

the specific form of the generating function
∑

d≥0 dimSrd(∆n)zd — the so-called Hilbert series.

In the third and final part, we state that Schumaker’s conjecture about bivariate interpolation

at subsets of domain points holds up to degree d = 17, with extensions to the trivariate and

quadrivariate cases. We also reformulate the conjecture in three different ways, especially as a

question about a certain bivariate Vandermonde matrix being a P -matrix.
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This article highlights some interactions between multivariate spline theory and other areas of

mathematics. Firstly, we will show that a concept from spline theory is pertinent in polytope

geometry by revealing that Dehn–Sommerville equations are nothing but a count of domain points.

Secondly, we will show how the concept of Hilbert series, standard in Algebraic Geometry, can be

exploited in spline theory to generate dimension formulas for a fixed simplicial partition. Thirdly,

we will show how a conjecture emanating in spline theory can be reformulated in a language pleasing

to algebraic geometers in the hope of inspiring attacks from new directions.

∗S. F. partially supported by NSF grant number DMS-1120622

1



Three topics in multivariate spline theory

1 A novel approach to Dehn–Sommerville equations

Given a polytope P in Rn, let fi(P ) denote the number of i-dimensional faces of P , i ∈ J0 : n− 1K.
Euler–Poincaré equation states that

(1)

n−1∑
i=0

(−1)ifi(P ) = 1 + (−1)n−1.

In the case of a simplicial polytope S in Rn, this relation is complemented by the Dehn–Sommerville

equations, namely

(2)

n−1∑
i=k

(−1)i
(
i+ 1

k + 1

)
fi(S) = (−1)n−1fk(S), k ∈ J0 : n− 1K.

Euler–Poincaré equation can be incorporated in the above formulation for k = −1 provided the

convention f−1 = 1 is used. Classical justification of (2) rely on shelling [20, page 252], on Euler–

Poincaré equation applied to each face of the dual polytope [8, page 105], and on incidence equations

with a variant of Euler–Poincaré equation [12, page 146]. The purpose of this section is to reveal a

connection with multivariate spline theory that leads to an elementary proof of Dehn–Sommerville

equations. It shares a similarity with the proof of [12] by making an indirect use of the generalization

(3)
n−1∑
i=0

(−1)ifi(P, F ) = (−1)n−1

of the Euler–Poincaré equation in which F is an arbitrary face of a polytope P in Rn and fi(P, F )

denote the number of i-dimensional faces of P containing F , see [12, Theorem 8.3.1]. Spline theory

brings to the table the concept of domain points of order d relative to an n-simplex. These are points

in the given simplex for which a n-variate polynomial of degree at most d is uniquely determined by

its values at these points. Thus, there are
(
d+n
n

)
domain points of order d relative to an n-simplex.

If k facets of the n-simplex are removed, then only
(
d−k+n

n

)
domain points of order d are left. In

particular, the number of interior domain points is
(
d−1
n

)
. Figure 1 gives a ‘definition-by-illustration’

of the concept of domain points.

1.1 The new proof

For simplicity, we write fi instead of fi(S) for the number of i-dimensional faces of the simplicial

polytope S. For d ≥ 1, we equip each facet of S with its domain points of order d. Dehn–

Sommerville equations simply follow from counting the domain points in two different ways.1

1In fact, the equations (2) are equivalent to this twofold count because the arguments are completely reversible.
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Figure 1: Left: domain points of order d = 6 relative to a triangle (i.e., a 2-simplex); Right: domain

points of order d = 5 relative to a tetrahedron (i.e., a 3-simplex).

Lemma 1. For d ≥ 1, the total number of domain points of order d is

ud =

n−1∑
k=0

fk

(
d− 1

k

)
=

n∑
`=1

(−1)`−1fn−`

(
d+ n− `
n− `

)
.

Proof. In the first viewpoint, we count the domain points located on the f0 vertices (i.e., 1 for each

vertex), then the remaining domain points located on the f1 edges (i.e., d− 1 for each edge), then

the remaining domain points located on the f2 2-faces (i.e.,
(
d−1

2

)
for each 2-face), etc. This gives

the first expression for ud.

The second viewpoint intuitively amounts to counting
(
d+n−1
n−1

)
domain points for each of the facets,

to which
(
d+n−2
n−2

)
domain points for each of the (n−2)-faces are subtracted because they have been

counted already, to which
(
d+n−3
n−3

)
domain points for each of the (n − 3)-faces are added because

they have been removed too many times, etc. Although the reasoning is not convincing as such, it

is formalized by introducing the smallest face Fξ containing ξ for each domain point ξ, and then

noticing that

n∑
`=1

(−1)`−1
∑

F is a (n− `)-face of P

1F (ξ) =
n∑
`=1

(−1)`−1fn−`(P, Fξ) = 1.

The last equality was due to (3). Summing over all ξ gives the second expression for ud.

The Dehn–Sommerville equations are now easily obtained by looking at the generating function

G(z) :=
∑

d≥1 udz
d. We shall use several times the formula

∑
j≥0

(
j +m

m

)
zj =

1

(1− z)m+1
,

which is clear for m = 0 and is otherwise deduced from the case m = 0 by taking the mth derivative
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with respect to z. On the one hand, we compute

G(z) =
∑
d≥1

n−1∑
k=0

fk

(
d− 1

k

)
zd =

n−1∑
k=0

fk
∑
d≥k+1

(
d− 1

k

)
zd =

n−1∑
k=0

fkz
k+1

∑
j≥0

(
j + k

k

)
zj

=

n−1∑
k=0

fk
zk+1

(1− z)k+1
.(4)

On the other hand, we compute

G(z) =
∑
d≥1

n∑
`=1

(−1)`−1fn−`

(
d+ n− `
n− `

)
zd =

n∑
`=1

(−1)`−1fn−`
∑
d≥1

(
d+ n− `
n− `

)
zd

=
n∑
`=1

(−1)`−1fn−`

(
1

(1− z)n−`+1
− 1

)
=

n∑
`=1

(−1)`−1fn−`
1

(1− z)n−`+1
− (1 + (−1)n−1)f−1,(5)

where the last step relied on (1) together with the convention f−1 = 1. Equating the expressions

(4) and (5) for G(z) and rearranging yields

(6)
n−1∑
k=−1

fk
zk+1

(1− z)k+1
=

n+1∑
`=1

(−1)`−1fn−`
1

(1− z)n+1−` .

Setting x := z/(z − 1), so that x− 1 = 1/(z − 1), the latter reads

n−1∑
k=−1

(−1)k+1fkx
k+1 =

n+1∑
`=1

(−1)nfn−`(x− 1)n+1−` = (−1)n
n−1∑
i=−1

fi(x− 1)i+1.

Identifying the coefficient of xk+1 for each k ∈ J0 : n− 1K gives

(−1)k+1fk = (−1)n
n−1∑
i=k

fi

(
i+ 1

k + 1

)
(−1)i−k,

which is just a rewriting of the desired identity (2).

Remark. It is unclear whether the second expression for ud is achievable without the help of the

variant (3) of Euler–Poincaré equation. If it was, then the whole argument could be separated

from any form of Euler–Poincaré equation (see also a comment on [8, page 121]), as one would

replace in (5) the identity
∑n

`=1(−1)`−1fn−` = (1+(−1)n−1)f−1 by a definition of f−1 via this very

identity. Defining f−1 in this way is indeed valid as soon as one notices that
∑n

`=1(−1)`−1fn−` =

(−1)n−1
∑n

`=1(−1)`−1fn−`, which can be seen by evaluating at d = 0 the polynomial identity in

the variable d generated from Lemma 1.
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1.2 Connection with shelling parameters

Let us now imagine that the simplicial polytope S is constructed by placing one facet at a time.

For k ∈ J0 : nK, we consider the number αk of facets touching exactly k of the preceding facets. If

α0 = 1, then the numbers α1, . . . , αn do not depend on the way S is constructed — they are called

shelling parameters. Indeed, as a consequence of (9) below, taking α0 = 1 implies

(7) αk =

k∑
i=0

(−1)k−i
(
n− i
k − i

)
fi−1, k ∈ J1 : nK,

where the convention f−1 = 1 has again been used. Observe that, with α0 = 1, the case k = n reads

αn = (−1)n +
∑n

i=1(−1)n−ifi−1, so that the Euler-Poincaré equation (1) for a simplicial polytope

is equivalent to αn = 1. The relations (7) follow from counting the domain points using yet another

viewpoint, precisely

ud =
n∑
k=0

αk

(
d− k + n− 1

n− 1

)
.

This gives a third expression for the generating function G(z), namely

G(z) =
∑
d≥1

n∑
k=0

αk

(
d− k + n− 1

n− 1

)
zd = α0

∑
d≥1

(
d+ n− 1

n− 1

)
zd +

n∑
k=1

αk
∑
d≥k

(
d+ n− 1− k

n− 1

)
zk

= α0

(
1

(1− z)n
− 1

)
+

n∑
k=1

αkz
k
∑
j≥0

(
j + n− 1

n− 1

)
zj = α0

(
1

(1− z)n
− 1

)
+

n∑
k=1

αk
zk

(1− z)n

=

n∑
k=0

αk
zk

(1− z)n
− α0.

Equating the latter with (4) and rearranging yields

(8)

n∑
k=0

αkz
k = α0(1− z)n +

n−1∑
k=0

fkz
k+1(1− z)n−k−1 = α0(1− z)n +

n∑
i=1

fi−1z
i(1− z)n−i.

Now, identifying the coefficient of zk gives the generalization of (7) mentioned above, namely

(9) αk = (−1)kα0

(
n

k

)
+

k∑
i=1

(−1)k−ifi−1

(
n− i
k − i

)
, k ∈ J1 : nK.

Remark. The sequence (α0, α1, . . . , αn) with α0 = 1 is also called the h-vector of S. The Dehn–

Sommerville equations are often stated as hn−k = hk for all k ∈ J0 : nK. The previous considerations

make this fact apparent, too, since the Dehn–Sommerville equations are equivalent (see (6)) to

n−1∑
k=−1

fk

(
z

1− z

)k+1

= (−1)n
n−1∑
i=−1

(−1)i+1fi

(
1

1− z

)i+1

= (−1)n
n−1∑
i=−1

fi

(
1/z

1− 1/z

)i+1

.
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Taking (8) into account in the form
∑n−1

j=−1 fj(x/(1 − x))j+1 =
(∑n

k=0 αkx
k
)
/(1 − x)n, which is

applied to x = z and x = 1/z, the Dehn–Sommerville equations are seen to be equivalent to∑n
k=0 αkz

k

(1− z)n
= (−1)n

∑n
k=0 αk(1/z)

k

(1− 1/z)n
=

∑n
k=0 αkz

n−k

(1− z)n
,

hence the equivalence with the formulation αk = αn−k for all k ∈ J0 : nK.

2 Generating dimension formulas for spline spaces

In this section, ∆n represents a simplicial partition of a domain Ω ⊆ Rn. The vector space of Cr

splines of degree ≤ d over ∆n is denoted by

Srd(∆n) :=
{
s ∈ Cr(Ω) : s|T is an n-variate polynomial of degree ≤ d for all T ∈ ∆n

}
.

We are interested in the dimension of this space. Finding a general formula is a notoriously

difficult problem, as the partition ∆n affects the dimension not only through its combinatorics but

also through its geometry. Even the case of bivariate continuous splines is not settled, as formulas

for dimS1
3 (∆2) and for dimS1

2 (∆2) remain to be established (see [3]). The case of trivariate splines

seems even harder, because of its connection to the open Segre–Harbourne–Gimigliano–Hirschowitz

conjecture (see [19]) and also because a solution to the trivariate problem would automatically settle

the bivariate problem. Our viewpoint here is different: we specify a fixed simplicial partition ∆n

and we want to produce a formula for dimSrd(∆n) in a somewhat automated fashion. In [11],

a method to do so was proposed based on a fundamental fact from Algebraic Geometry and on

the use of Alfeld’s applet [1] to compute dimSrd(∆n) for fixed d and r. Without reproducing the

details, we only wish to point out that Bernstein–Bézier techniques, too, allow one to derive the

fundamental fact which stipulates the existence of a integer d? (depending on ∆n and r and taken

as small as possible) such that, if d ≥ d?, then

dimSrd(∆n), as function of d, agrees with a polynomial in d of degree n.

This polynomial (depending on ∆n and r) is called Hilbert polynomial. When n = 2, we can state

this fact together with the bounds d? ≤ 4r+ 1 for a general triangulation and, as a consequence of

[13], with the bound d? ≤ 3r + 2 for a shellable triangulation. When n = 3, [5] yields the bound

d? ≤ 8r + 1 for a general tetrahedration. For arbitrary n, the bound d? ≤ 2nr + 1 is anticipated

but, to the best of our knowledge, unproved (although it holds for supersplines, see [6]). The

fundamental fact can equivalently be stated in terms of the generating function of the sequence

(dimSrd(∆n))d≥0 — the so-called Hilbert series — as the existence of a univariate polynomial P

(depending on ∆n and r) such that

(10)
∑
d≥0

dimSrd(∆n) zd =
P (z)

(1− z)n+1
.
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The equivalence is a direct consequence of the following observation applied to ud = dimSrd(∆n)

(a justification, found e.g. in [11], would also reveal that deg(P ) = d? + n):

Let (ud)d≥0 be a sequence for which there is a polynomial Q of degree m such that ud = Q(d)

whenever d ≥ d̄ for some d̄. Then there exists a polynomial R such that∑
d≥0

ud z
d =

R(z)

(1− z)m+1
.

Furthermore, this observation provides a Bernstein–Bézier explanation of the additional information

about P given in [7], namely that it has integer coefficients and that

(11) P (1) = Fn, P ′(1) = (r + 1)F int
n−1,

where Fn is the number of simplices of ∆n and F int
n−1 is the number of interior facets of ∆n. Indeed,

the lower and upper bounds derived in [2] imply that

dimSrd(∆n) = Fn

(
d+ n

n

)
− (r + 1)F int

n−1

(
d+ n− 1

n− 1

)
+O(dn−2).

Then (11) is obtained by applying the above observation to the quantity

ud = dimSrd(∆n)− Fn
(
d+ n

n

)
+ (r + 1)F int

n−1

(
d+ n− 1

n− 1

)
,

which reduces to a polynomial of degree ≤ n−2 when d is large enough. The fact that P has integer

coefficients can be seen by looking at the coefficient ak of zk in P (z) = (1−z)n+1
∑

d≥0 dimSrd(∆n) zd,

which incidentally shows that a0, a1, a2, . . . can be deduced one at a time by computing dimSr0(∆n),

dimSr1(∆n),dimSr2(∆n), . . . sequentially. Once P has been completely determined via the values

of a0, a1, . . . , ad?+n, the identity (10) leads to the dimension formula

dimSrd(∆n) =
d?+n∑
k=0

ak

(
d+ n− k

n

)
.

This way (one among many!) of expressing the dimension formula hides the dependence on the

geometry in the coefficients ak’s. In [11], we exploited the method just outlined to conjecture

formulas for several specific partitions. The one for the Alfeld split with arbitrary n has been fully

justified since then (see [18]), and we now wish to stimulate investigations concerning octahedra

(regular and generic) in the case n = 3. We point out that our formulas remained at the conjecture

level because of some guesswork involved in the process: uncertainty about the required number of

dimension computations (the anticipated bound on d? is often too large) and unknown behavior of

the ak’s as a function of r (and of n when appropriate). Although the first issue can be lifted via

a direct computation of the Hilbert series — using e.g. the conversion to Commutative Algebra

proposed in [9] by P. Clarke and implemented in SAGE as a package called SplineDim (downloadable

on the author’s webpage) — nothing, to the best of our knowledge, can yet be said about the second

issue.
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3 Reformulations of Schumaker’s partial interpolation conjecture

Given a triangle T with vertices v0,v1,v2 ∈ R2 and given an integer d ≥ 1, let

Dd :=

{
ξi,j,k :=

i

d
v0 +

j

d
v1 +

k

d
v2 : i ≥ 0, j ≥ 0, k ≥ 0, i+ j + k = d

}
be the set of

(
d+2

2

)
domain points of order d relative to T . Associated to each domain point, there

is a bivariate Bernstein polynomial defined for v ∈ T by

Bξi,j,k(v) =
d!

i!j!k!
xiyjzk,

where (x, y, z) are the barycentric coordinates of v, so that v = xv0 +y v1 +z v2 with x ≥ 0, y ≥ 0,

z ≥ 0, and x + y + z = 1. In 2003, Schumaker raised the conjectured stated in [4] that, for any

subset Γ of Dd, every dataset of γ = card(Γ) values can be uniquely interpolated at Γ by a function

from span{Bξ, ξ ∈ Γ}. In other words, the linear map: s ∈ span{Bξ, ξ ∈ Γ} 7→ (s(η), η ∈ Γ) ∈ Rγ

was conjectured to be invertible. In matrix form, the question to be answered (which is in fact

independent of the triangle T ) reads:

(12) Is BΓ,Γ := [Bξ(η)]η,ξ∈Γ an invertible matrix for any Γ ⊆ D?

This is a weak formulation of the conjecture, and the strong formulation reads:

(13) Is det (BΓ,Γ) > 0 for any Γ ⊆ D?

Using a different vocabulary, this strong formulation asks exactly if the whole matrix BDd,Dd
is a

P-matrix. Requiring the determinant to be positive seems natural because this is the case for γ = 1

(i.e., Bξ(ξ) > 0 for all ξ ∈ D), for γ = 2 (i.e., Bξ(ξ)Bη(η) − Bη(ξ)Bξ(η) > 0 since any Bζ takes it

maximum value at ζ), and for γ =
(
d+2

2

)
(i.e., the product of the eigenvalues of BDd,Dd

is positive

since [10] showed that each eigenvalue is positive). One can observe that the strong formulation

of the conjecture is true up to d ≤ 17 as follows (this observation was independently made and

published in [14]): first, notice that one only needs BD′d,D
′
d

to be a P-matrix, where

D′d :=

{
ξi,j,k :=

i

d
v0 +

j

d
v1 +

k

d
v2 : i ≥ 1, j ≥ 1, k ≥ 1, i+ j + k = d

}
is the set of interior domain points of order d, because

BDd,Dd
=

[
A | 0

X | BD′d,D
′
d

]
for some totally positive matrix A;

then, remark that BD′d,D
′
d

is a P-matrix as soon as the symmetric matrix C := cd

(
BD′d,D

′
d

+ B>D′d,D
′
d

)
is positive definite (we choose cd = exp(d)); finally, prove numerically that C is positive definite

for all d ≤ 17 by establishing that its minimum eigenvalue is positive. A similar strategy can be
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called upon to derive that the trivariate version of the strong conjecture holds up to d = 16 and

that the quadrivariate version holds up to d = 14 (see the matlab reproducible file available on

the author’s webpage).

It is now time to showcase three reformulations of Schumaker’s conjecture in order to offer some

other angles of attack. The first one simply translates a known characterization of P-matrices

in terms of the linear complementarity problem (see [17] and also [16] for corrections to further

characterizations), so that the strong version (13) can be phrased as:

Does there exists, for every q ∈ Rn, an x ∈ Rn such that x ≥ 0, Mx+q ≥ 0, and 〈Mx+q,x〉 = 0?

Here M = BDd,Dd
and n =

(
d+2

2

)
or M = BD′d,D

′
d

and n =
(
d−1

2

)
.

The second reformulation is phrased in terms of a decomposition of the space Pd of polynomials of

degree ≤ d in two variables u and v. Precisely, the weak version (12) can be phrased as:

Does
{

[d− i(1− u)− j(1− v)]d, (i, j) ∈ Λ
}
∪
{
uivj , (i, j) ∈ Id \ Λ

}
form a basis for the space Pd

whatever the subset Λ of Id := {(i, j) : i ≥ 0, j ≥ 0, i+ j ≤ d}?

This reformulation results from the observation that, for any (i, j) ∈ Id and any v ∈ T with

barycentric coordinates (x, y, 1− x− y),

Bξi,j,d−i−j
(v) =

1

i!j!

∂i+j [1− x(1− u)− y(1− v)]d

∂ui∂vj
(0, 0).

The weak version stating that, for any Λ ⊆ I, the equalities
∑

(µ,ν)∈Λ cµ,νBξi,j,d−i−j
(ξµ,ν,d−µ−ν) = 0

for all (i, j) ∈ Λ imply that cµ,ν = 0 for all (µ, ν) ∈ Λ, can therefore be rephrased as the following

statement: for any Λ ⊆ I and any p(u, v) :=
∑

(µ,ν)∈Λ cµ,ν [1− (µ/d)(1− u)− (ν/d)(1− v)]d,( 1

i!j!

∂i+jp

∂ui∂vj
(0, 0) = 0 for all (i, j) ∈ Λ

)
⇒
(
cµ,ν = 0 for all (µ, ν) ∈ Λ

)
.

Since the basis
(
p ∈ Pd 7→ 1

i!j!
∂i+jp
∂ui∂vj

(0, 0) ∈ R, (i, j) ∈ Id
)

of linear functionals on Pd is dual to the

basis
(
uivj , (i, j) ∈ Id

)
of Pd, the weak version can be rephrased as: for any Λ ⊆ I,(

p ∈ span
{

[1− (µ/d)(1− u)− (ν/d)(1− v)]d , (µ, ν) ∈ Λ
}
∩ span

{
uivj , (i, j) ∈ Id\Λ

})
⇒
(
p = 0

)
.

In other words, for any Λ ⊆ I, the above two subspaces of Pd are in direct sum, and because their

dimensions add up to the dimension of Pd, their direct sum is in fact equal to the whole space Pd.
The statement is now easily translated into the second reformulation of the conjecture.

The third reformulation involves a bivariate Vandermonde matrix at points (xi,j , yi,j) ∈ R2 indexed

by (i, j) ∈ I and occurring as intersections of three families of d + 1 lines each (in which case

the fundamental Lagrange interpolators can be expressed explicitly on the model of [15, p.12]).

Precisely, the strong version (13) can be phrased as:
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Is det
[
xµi,jy

ν
i,j

]
(i,j),(µ,ν)∈Λ

> 0 for every subset Λ of Id, with xi,j :=
i

d− i− j
and yi,j :=

j

d− i− j
?

After identifying domain points ξµ,ν,d−µ−ν ∈ Γ with indices (µ, ν) ∈ Λ, the above reformulation

results from manipulating a determinant by factoring along rows and columns as follows (the

shorthand v means ‘has the sign of’):

det [Bξ(η)]η.ξ∈Γ = det

[
d!

µ!ν!κ!

(
i

d

)µ( j
d

)ν(k
d

)κ]
(µ,ν),(i,j)∈Λ

v det
[
iµjν(d− i− j)d−µ−ν

]
(µ,ν),(i,j)∈Λ

v det

[(
i

d− i− j

)µ( j

d− i− j

)ν]
(µ,ν),(i,j)∈Λ

= det
[
xµi,jy

ν
i,j

]
(µ,ν),(i,j)∈Λ

.

We finally remark that a point (xi,j , yi,j) with (i, j) ∈ I belongs to the lines Li, Mj , and Nk,

k := d− i− j, where L0, . . . , Ld, M0, . . . ,Md, and N0, . . . , Nd have equations

Li : (d− i)x− iy = i, Mj : −jx+ (d− j)y = j, Nk : kx+ ky = d− k.
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