
Basc: Constrained Approximation by Semidefinite Programming

Simon Foucart∗ and Vladlena Powers — Texas A&M University and Columbia University†

Abstract

This article details the theoretical grounds for a semidefinite-programming-based method that

computes best approximants by splines under some general constraints and relative to several

function norms, notably the max-norm. The method has been implemented as a matlab

package called Basc, which relies on the two external packages Chebfun and CVX.

Key words: constrained approximation, simultaneous approximation, semidefinite programming,

Riesz–Fejér theorem, nonnegative polynomials.

AMS classification: 41A10, 41A15, 41A29, 41A50, 65D15, 90C22.

1 Introduction

In this article, we embark on the task of computing a best approximant to a target function F by

polynomials or splines subject to some convex constraints. In other words, with S representing the

linear space of approximants, we aim at solving the optimization problem

minimize
P

‖F − P‖ subject to P ∈ S(1)

and to some prescribed constraints.

There is a well-established literature on the subject, see e.g. the survey [8] reporting mostly on

existence, uniqueness, and characterization results for approximations with one-sided constraints,

positivity constraints, and interpolatory constraints. The article [5] contains more comprehensive

characterization results. Although both [8] and [5] mention computational procedures relative to

the max-norm, the algorithms are ad hoc or not available: [8] points out the Remez-type algorithm

∗S. F. partially supported by NSF grant number DMS-1120622
†This work was performed when both authors were at the University of Georgia

1

Basc: constrained approximation by semidefinite programming

from [11] for approximation with restricted range and it describes a related linear program for

convex approximation, while [5] alludes to a general Remez-type algorithm but the supporting

manuscript seems not to have been published (see the refence numbered 9 in [5]). In a similar

way, the even more general Remez-type algorithm of [2] has not been implemented (to the best

of our knowledge). We propose to fill this gap by developing a novel and unified framework for

constrained approximation based on semidefinite programming. The theoretical grounds presented

here are accompanied by a matlab package called Basc and downloadable from the first author’s

webpage. The acronym Basc stands for Best Approximations by Splines under Constraints. Basc

heavily relies on two external matlab packages: Chebfun [12] for the convenience to deal with

Chebyshev expansions and CVX [3] for the convenience to specify and solve convex programs. Basc

handles a number of instances of the main problem (1), precisely:

• The space S can consist of polynomials of degree at most n or of splines (i.e., piecewise

polynomials) of degree at most n obeying various smoothness conditions (the breakpoints

being fixed);

• By default, the norm ‖·‖ is the max-norm on [−1, 1], but it can also be the weighted max-norm

‖G‖W := max
x∈[−1,1]

|G(x)|
W (x)

for some weight function W ≥ 0,

or a q-norm

‖G‖q :=

[∫ 1

−1
|G(x)|qdx

]1/q

for some even integer q ≥ 2.

In fact, ‖ · ‖ can even be a quasinorm of the form

‖G‖ =

[∞∑
κ=0

{
γκ|||G(κ)|||

}r]1/r

where |||·||| is one of the norms mentioned above, so that special choices of γκ ≥ 0 and r ≥ 1

incorporates, for instance, simultaneous approximation for which ‖G‖ = maxh ‖G(κh)‖∞;

• The constraints can impose some interpolatory conditions, i.e., the approximant must satisfy

P (κh)(x
{h}
i) = y

{h}
i for some prescribed κh and (x

{h}
1 , y

{h}
1), . . . , (x

{h}
ν{h}

, y
{h}
ν{h}

);

• The constraints can force the approximant to have a certain parity — it could be required to

be an even or an odd function;

• The constraints can restrict the ranges of the approximant, i.e., its derivatives must satisfy

L{h} ≤ P (κh) and/or P (κh) ≤ U{h} on [−1, 1]

for some prescribed indices κh and prescribed lower and upper functions1 L{κh} and U{κh}.

This includes one-sided approximation if L{0} or U{0} is chosen to be the target function F ;
1it is not assumed that F (κh) lies between L{h} and U{h}, so a best approximant by polynomial need not be

unique — think of F (x) = |x| to be approximated by quadratics with U{0} = 0 and L{0} = −2.

2

S. Foucart and V. Powers

• The constraints can determine the shape of the approximant, i.e., they concern the sign

pattern of the derivatives of P . This includes monotone approximation (when P ′ ≥ 0 or

P ′ ≤ 0), convex approximation (when P ′′ ≥ 0), and coconvex approximation (when P ′′ has

the same sign as F ′′);

and any combination of the above scenarios.

There is a restriction on the target function F , though, namely that it is itself a (piecewise)

polynomial. However, this is not a severe restriction in practice. Indeed, Chebfun works on the

underlying assumption that a usual function F is well represented by its polynomial interpolant

at Chebyshev points, hence Chefun manipulates a polynomial F that agrees with F up to machine

precision ε. Therefore, if P and P denote the best max-norm approximants to F and F , respectively,

then the computed minimum ‖F − P‖∞ is at most ε away from the sought minimum ‖F − P‖∞,

since

‖F − P‖∞ ≤ ‖F − P‖∞ ≤ ‖F − P‖∞ + ‖F − F‖∞ ≤ ‖F − P‖∞ + ε,

‖F − P‖∞ ≤ ‖F − P‖∞ ≤ ‖F − P‖∞ + ‖F − F‖∞ ≤ ‖F − P‖∞ + ε.

These inequalities also imply that P and P are at most ε/γ away in the max-norm for some constant

γ > 0 a priori dependent on F , according to some results on strong uniqueness surveyed in [7].

The remainder of this article is organized as follows: we start in Section 2 by introducing the

guiding principle in the simpler case of unconstrained approximation by trigonometric polynomials;

in Section 3, we transfer the general strategy to the case of algebraic polynomials and piecewise

algebraic polynomials and we show in details how to deal with different norms in the objective

function and with several possible contraints; and finally Section 4 isolates a handful of examples

to illustrate how the package Basc is used.

Before engaging into the heart of the matter, here are a few words on the notation chosen for

this article. Capital letters such as F or S denote functions and the addition of a subscript as in

Fm,µ denotes the restriction of F to some interval indexed by m and µ. Traditionally, F (κ) refers

to the κ-th derivative of F , while S{h} refers to the element of a family of functions indexed by

h, and likewise for S{h,m}, S{h,m,µ}, The same convention applies to families of vectors or of

matrices. Matrices are represented by bold uppercase letters and vectors by bold lowercase letters.

Their entries are indicated by a subscript after appending a square bracket or by a subscript after

dropping the bold face, such as Qi,j or [p{m}]k = p
{m}
k . The fact that a matrix Q is positive

semidefinite is denoted by Q < 0. The entrywise product of two vectors u and v is written u� v,

so that [u�v]i = ui× vi. Beware that the indexing of vectors and matrices may start at zero or at

one, depending on the context. Thus, we may have i ∈ J0 : nK or i ∈ J1 : nK in the line above. The

notation Ja : bK stands for the set {a, a + 1, . . . , b − 1, b} of integers at least equal to the integer a

and at most equal to the integer b.

3

Basc: constrained approximation by semidefinite programming

2 Prelude: Trigonometric Approximation without Constraints

Although the focus of Basc is on algebraic polynomials rather than trigonometric polynomials,

this section serves as a simplified illustration of the optimization strategy used in the constrained

approximation problem — keep in mind, however, that it is better to apply Remez algorithm for the

unconstrained approximation problem discussed in this section. All the theoretical considerations

presented next are consequences of Riesz–Fejér theorem and its generalizations. We briefly recall

that by an algebraic polynomial (or simply polynomial) of degree at most n, we mean a function

of the form P (x) =
∑n

k=0 pkx
k. By a trigonometric polynomial of degree at most n, we mean a

function of one of the equivalent forms:

• C(θ) =
n∑

k=−n
cke
−ıkθ with c−k = ck for all k ∈ J0 : nK;

• C(θ) =
a0

2
+

n∑
k=1

[ak cos(kθ) + bk sin(kθ)] with ak, bk ∈ R for all k ∈ J0 : nK.

One passes from one representation to the other (the equality b0 = 0 is implicit) using the relations

(2) ak = 2 Re(ck), bk = 2 Im(ck), ck =
ak + ıbk

2
, k ∈ J0 : nK.

Riesz–Fejér theorem states that a trigonometric polynomial C of degree at most n is nonnegative

if and only if it can be written as C(θ) = |Q(e−ıθ)|2 for some algebraic polynomial Q of degree at

most n. This results extends to nonnegativity on subintervals of [−π, π] as follows (see Section 3.1

of [9] and the references cited there or the book [4] for more statements in this direction).

Theorem 1. Let C be a trigonometric polynomial of degree at most n. Then

C(θ) ≥ 0 for all θ ∈ [α− β, α+ β]

if and only if

C(θ) = |Q(e−ıθ)|2 + [cos(θ − α)− cos(β)] |R(e−ıθ)|2

for some algebraic polynomials Q and R of degree at most n and n− 1, respectively.

From our perspective, the nonnegativity on a subinterval is better characterized by the semidefinite

condition below. The argument is classical, but we include a sketch of the proof for completeness.

Corollary 2. Let C(θ) =
∑n

k=−n cke
−ıkθ, c−k = ck, be a trigonometric polynomial of degree at

most n. Then

C(θ) ≥ 0 for all θ ∈ [α− β, α+ β]

4

S. Foucart and V. Powers

if and only if there exist matrices Q ∈ C(n+1)×(n+1) and R ∈ Cn×n such that Q < 0, R < 0, and,

for any k ∈ J0 : nK,

ck =
∑
i−j=k

Qi,j +
eıα

2

 ∑
i−j=k−1

Ri,j

− cos(β)

 ∑
i−j=k

Ri,j

+
e−ıα

2

 ∑
i−j=k+1

Ri,j

 .
Remark. For the whole interval [−π, π], one simply discard the matrix R.

Proof. ⇒ Use Theorem 1 to write

C(θ) =

[
n∑
i=0

qie
−ıiθ

] n∑
j=0

qje
ıjθ

+

[
eıαe−ıθ

2
− cos(β) +

e−ıαeıθ

2

][n−1∑
i=0

rie
−ıiθ

]n−1∑
j=0

rje
ıjθ

 .
Identifying the coefficient of e−ıkθ gives, for any k ∈ J−n : nK,

ck =

 ∑
i−j=k

qiqj

+
eıα

2

 ∑
i−j=k−1

rirj

− cos(β)

 ∑
i−j=k

rirj

+
e−ıα

2

 ∑
i−j=k+1

rirj

 .
This yields the desired result with Q := qq∗ and R := rr∗ (note that the conditions on ck for

k ∈ J−n : 0K are redundant with the conditions on ck for k ∈ J0 : nK).
⇐ Setting u(θ) := [1, e−ıθ, . . . , e−ınθ]> and v(t) := [1, e−ıθ, . . . , e−ı(n−1)θ]>, the expression for ck
implies that

C(θ) = 〈Qu(θ),u(θ)〉+ [cos(θ − α)− cos(β)]〈Rv(θ),v(θ)〉.

Since all three terms are nonnegative on [α− β, α+ β], then so is C(θ).

With Corollary 2 in place, we can now introduce our semidefinite minimization strategy. Let

F (θ) =
∑N

k=−N fke
−ıkθ be a trigonometric polynomial of degree N that we wish to approximate by

trigonometric polynomials C of degree at most n, n < N . The first step is to recast the program

minimize
C

‖F − C‖∞

by introducing a slack variable d to arrive at the equivalent program

minimize
d,C

d subject to ‖F − C‖∞ ≤ d.

The constraint ‖F − C‖∞ ≤ d is equivalent to −d ≤ F (θ) − C(θ) ≤ d for all θ ∈ [−π, π], i.e., to

the two nonnegativity constraints d+ F (θ)−C(θ) ≥ 0 for all θ ∈ [−π, π] and d− F (θ) +C(θ) ≥ 0

for all θ ∈ [−π, π]. According to Corollary 2 (with R being discarded), these constraints can be

5

Basc: constrained approximation by semidefinite programming

expressed as semidefinite conditions. So we end up with the semidefinite program

minimize
d∈R,c∈RN+1

Q−,Q+∈C(N+1)×(N+1)

d subject to Q− < 0,Q+ < 0,

to

{
fk − ck, k ∈ J1 : NK,

d+ f0 − c0, k = 0,

}
=
∑
i−j=k

Q−i,j ,

and to

{
− fk + ck, k ∈ J1 : NK,

d− f0 + c0, k = 0,

}
=
∑
i−j=k

Q+
i,j ,

with the implicit understanding that ck := 0 for n < k ≤ N . This optimization program can be

passed directly in the above form to the sdp utility of CVX. Basc relies on CVX in the same way to

solve semidefinite programs.

3 Center Piece: Approximation by Splines under Constraints

This section describes in details all the steps involved in the computation of best constrained

approximations by splines obeying some prescribed smoothness conditions. We first transpose the

considerations from Section 2 to the algebraic case, before focusing on handling the norm underlying

the approximation, and finishing with the treatment of the possible constraints.

3.1 The main ingredient

Our approach relies on a reduction to the trigonometric case once the target function has been

expanded on the basis of Chebyshev polynomials of the first kind. Precisely, if

(3) A(x) =

N∑
k=0

akTk(x)

is an algebraic polynomial of degree at most N expanded on the Chebyshev basis, then substituting

x = cos(θ) yields a trigonometric polynomial of degree at most N defined by

Â(θ) := A(cos(θ)) =
N∑
k=0

ak cos(kθ).

The nonnegativity of A on a subinterval of [−1, 1] translates into the nonnegativity of Â on a

subinterval of [−π, π] (in fact, of [0, π]). Thus, according to Corollary 2 and the relations (2), we

readily deduce the following theorem.2

2 Different semidefinite characterizations can be deduced from other representations of nonnegative polynomials,

e.g. [10, Theorem 1.21.1]. We chose this characterization based on Chebyshev expansion to take advantage of Chebfun.

6

S. Foucart and V. Powers

Theorem 3. Let A(x) =
∑N

k=0 akTk(x) be a polynomial of degree at most N . Then

A(x) ≥ 0 for all x ∈ [u, v]

if and only if there exist matrices Q ∈ C(N+1)×(N+1) and R ∈ CN×N such that Q < 0, R < 0, and,

for any k ∈ J0 : NK,{ak
2
, k ∈ J1 : NK,

a0, k = 0.

}
=
∑
i−j=k

Qi,j

+
eıα

2

 ∑
i−j=k−1

Ri,j

− cos(β)

 ∑
i−j=k

Ri,j

+
e−ıα

2

 ∑
i−j=k+1

Ri,j

 .
Here, α := (arccos(u) + arccos(v))/2 and β := (arccos(u)− arccos(v))/2.

Remark. For the whole interval [−1, 1], one simply discard the matrix R.

We emphasize that the task of producing the expansion (3) is performed very efficiently by Chebfun,

which makes computing with functions possible thanks precisely to such faithful expansions for

usual functions. Basc also relies on Chebfun in several other instances pointed out later.

3.2 Dealing with the objective function

From now on, we assume that the target function F is a polynomial or a piecewise polynomial3.

As emphasized earlier, this restriction is not severe and Chebfun does indeed represent functions in

this way. The arguments below show that in this case best constrained spline approximants can

be computed exactly as solutions of semidefinite programs. In its generic form, the optimization

problem at hand reads

(4) minimize
P∈S

[
H∑
h=1

{
γh|||(F − P)(κh)|||

}r]1/r

subject to some prescribed constraints,

where H = Hobj, γ = γobj, and κ = κobj are parameters specific to the given objective function.

The set S is a fixed space of splines with knots −1 = t0 < t1 < · · · < tM−1 < tM = 1, with degree

nm on each subinterval Im := [tm−1, tm], m ∈ J1 : MK, and with smoothness Csm at each breakpoint

tm, m ∈ J1 : M − 1K. In the same spirit as Section 2, we introduce slack variables dh, h ∈ J1 : HK,
and we look at the equivalent optimization problem

minimize
d∈RH ,P∈S

‖γ � d‖r subject to |||(F − P)(κh)||| ≤ dh, h ∈ J1 : HK,

and to some originally prescribed constraints.

3similar arguments would also hold if F was a piecewise rational function.

7

Basc: constrained approximation by semidefinite programming

We now distinguish several cases depending on the norm |||·||| under consideration.

Max-norm: The condition ‖(F − P)(κh)‖∞ ≤ dh transforms into the condition

(5) − dh ≤ F (κh)(x)− P (κh)(x) ≤ dh for all x ∈ [−1, 1],

and in turn into the M conditions given for each m ∈ J1 : MK by

(6) − dh ≤ F (κh)
m (t)− P (κh)

m (t) ≤ dh for all t ∈ Im,

where Fm and Pm denote the restrictions to Im of F and P , respectively. We transpose Fm and

Pm from the subinterval Im to the interval [−1, 1] by setting, for any x ∈ [−1, 1],

(7) P̃m(x) := Pm

(
tm + tm−1

2
+ x

tm − tm−1

2

)
, F̃m(x) := Fm

(
tm + tm−1

2
+ x

tm − tm−1

2

)
.

Then, with λm := (tm − tm−1)/2 denoting the half-length of the subinterval Im, the conditions (6)

become

(8) − λκhm dh ≤ F̃ (κh)
m (x)− P̃ (κh)

m (x) ≤ λκhm dh for all x ∈ [−1, 1].

We expand the polynomial P̃m in the Chebyshev basis as

P̃m =

nm∑
k=0

p
{m}
k Tk.

We do the same for F̃m, assuming first that it is a single polynomial — in general, it may consists

of several polynomial pieces. Thus, we have

F̃m =

n′m∑
k=0

f
{m}
k Tk.

The difference F̃
(κh)
m − P̃ (κh)

m has degree at most N := max`∈J1:MK max{n`, n′`}, hence according to

Theorem 3 (with R being discarded), the two nonegativity conditions of (8) are equivalent to the

existence of positive semidefinite matrices Q−,{h,m},Q+,{h,m} ∈ C(N+1)×(N+1) such that [D{κh}(f{m} − p{m})]k
2

, k ∈ J1, NK,

λκhm dh + [D{κh}(f{m} − p{m})]0, k = 0,

 =
∑
i−j=k

Q
−,{h,m}
i,j ,(9)

 [D{κh}(−f{m} + p{m})]k
2

, k ∈ J1, NK,

λκhm dh + [D{κh}(−f{m} + p{m})]0, k = 0,

 =
∑
i−j=k

Q
+,{h,m}
i,j .

Here it is implicitly understood that p
{m}
k := 0 for nm < k ≤ N and f

{m}
k := 0 for n′m < k ≤ N

and D{κ} represents the (N + 1) × (N + 1) matrix transforming the Chebyshev coefficients of

8

S. Foucart and V. Powers

a polynomial into the Chebyshev coefficients of its κth derivative — its construction is greatly

facilitated by Chebfun.

Let us now assume that F̃m consists of several polynomial pieces F̃m,µ, µ ∈ J1 : µmK, each associated

with subintervals [τm,µ−1, τm,µ] of [−1, 1]. Condition (8) splits into µm conditions given for each

µ ∈ J1 : µmK by

(10) − λκhm dh ≤ F̃ (κh)
m,µ (x)− P̃ (κh)

m (x) ≤ λκhm dh for all x ∈ [τm,µ−1, τm,µ].

Let us expand each F̃m,µ in the Chebyshev basis as

F̃m,µ =

n′m,µ∑
k=0

f
{m,µ}
k Tk

and let us set N := max`∈J1:MK max{n`,maxν∈J1:µ`K n
′
`,ν}. Theorem 3 enables us to rewrite the

two nonnegativity conditions implicit in (10) as the existence of positive semidefinite matrices

Q−,{h,m,µ},Q+,{h,m,µ} ∈ C(N+1)×(N+1) and R−,{h,m,µ},R+,{h,m,µ} ∈ CN×N such that

 [D{κh}(f{m,µ} − p{m})]k
2

, k ∈ J1, NK,

λκhm dh + [D{κh}(f{m,µ} − p{m})]0, k = 0,

 =
∑
i−j=k

Q
−,{h,m,µ}
i,j

(11)

+
eıαm,µ

2

 ∑
i−j=k−1

R
−,{h,m,µ}
i,j

− cos(βm,µ)

 ∑
i−j=k

R
−,{h,m,µ}
i,j

+
e−ıαm,µ

2

 ∑
i−j=k+1

R
−,{h,m,µ}
i,j

 ,
 [D{κh}(−f{m,µ} + p{m})]k

2
, k ∈ J1, NK,

λκhm dh + [D{κh}(−f{m,µ} + p{m})]0, k = 0,

 =
∑
i−j=k

Q
+,{h,m,µ}
i,j

+
eıαm,µ

2

 ∑
i−j=k−1

R
+,{h,m,µ}
i,j

− cos(βm,µ)

 ∑
i−j=k

R
+,{h,m,µ}
i,j

+
e−ıαm,µ

2

 ∑
i−j=k+1

R
+,{h,m,µ}
i,j

 ,
where αm,µ := (arccos(τm,µ−1) + arccos(τm,µ))/2 and βm,µ := (arccos(τm,µ−1)− arccos(τm,µ))/2.

In summary, the problem (4) for the max-norm has been recast as the semidefinite program

minimize
d∈RH ,p{m}∈RN+1

Q−,{h,m,µ},Q+,{h,m,µ}∈C(N+1)×(N+1)

R−,{h,m,µ},R+,{h,m,µ}∈CN×N

‖γ � d‖r subject to Q−,{h,m,µ} < 0,Q+,{h,m,µ} < 0,

to R−,{h,m,µ} < 0,R+,{h,m,µ} < 0,

to the constraints (11) (or just (9)),

to inherent smoothness constraints,

and to the originally prescribed constraints.

9

Basc: constrained approximation by semidefinite programming

Weighted max-norm: This setting requires only an appropriate modification of the previous

argument. We start from the pendant of (10), namely

−λκhm dh ≤
F̃

(κh)
m,µ (x)− P̃ (κh)

m (x)

W̃m(x)
≤ λκhm dh for all x ∈ [τm,µ−1, τm,µ],

where W̃m denotes the restriction to Im of W transposed to the interval [−1, 1], as in (7). We

further distinguish between two cases:

• If W , hence also W̃m, is a polynomial, then the constraints are equivalent to

λκhm dhW̃m + F̃ (κh)
m,µ − P̃ (κh)

m ≥ 0, λκhm d`W̃m − F̃ (κh)
m,µ + P̃ (κh)

m ≥ 0, on [τm,µ−1, τm,µ].

Theorem 3 enables us to express these nonnegativity conditions as semidefinite conditions

similar to (11), with [λκhm dhw
{m}]k taking the place of [λκhm dh]k, i.e., of 0 for k ≥ 1 and

of λκhm dh for k = 0. The size of the positive Q involved in the semidefinite program is

Nobj := max{N, deg(W)}+ 1, where N = max`∈J1:MK max{n`,maxν∈J1:µ`K n
′
`,ν} as before.

• If 1/W , hence also 1/W̃m, is a polynomial, then writing F
{κh,m,µ} and P

{κh,m,µ} for the

polynomials F̃
(κh)
m,µ /W̃m and P̃

(κh)
m,µ /W̃m, respectively, the constraint are equivalent to

λκhm dh + F
{κh,m,µ} − P {κh,m,µ} ≥ 0, λκhm dh − F

{κh,m,µ} + P
{κh,m,µ} ≥ 0, on [τm,µ−1, τm,µ].

Theorem 3 enables us to express these nonnegativity conditions as semidefinite conditions

similar to (11), where D{κ} is replaced by M
W̃m

D{κ}, M
W̃m

being the matrix transforming

the Chebyshev coefficients of a polynomial into the Chebyshev coefficients of this polynomial

multiplied by 1/W̃m. Chebfun again comes in handy for its construction. The size of the

matrices Q involved in the semidefinite program is Nobj := N + deg(1/W) + 1.

It is of course possible that neither W nor 1/W are polynomials. But since Chebfun represents them

both as polynomials up to machine precision4, we choose between the two possibilities considered

above by selecting the smallest size for the matrices involved after comparing max{N, deg(W)} and

N + deg(1/W).

q-norm for an even integer q: The condition ‖(F − P)(κh)‖q ≤ dh is again expressible in terms

of the Chebyshev coefficients of each P̃m, but the resulting constraint will not be a semidefinite

4the case where W is a piecewise polynomial is not treated here, even though similar ideas would apply.

10

S. Foucart and V. Powers

condition. We start by noticing that

‖(F − P)(κh)‖qq =

∫ 1

−1
|(F − P)(κh)(t)|qdt =

M∑
m=1

∫ tm

tm−1

|F (κh)
m (t)− P (κh)

m (t)|qdt

=
M∑
m=1

λ−(κhq+1)
m

∫ 1

−1
|F̃ (κh)
m (x)− P̃ (κh)

m (x)|qdx

=
M∑
m=1

λ−(κhq+1)
m

µm∑
µ=1

∫ τm,µ

τm,µ−1

|F̃ (κh)
m,µ (x)− P̃ (κh)

m (x)|qdx.

Let us introduce slack variables δ
{h}
1,1 , . . . , δ

{h}
1,µ1

, . . . , δ
{h}
M,1, . . . , δ

{h}
M,µM

with

(12)

∫ τm,µ

τm,µ−1

|F̃ (κh)
m,µ (x)− P̃ (κh)

m (x)|qdx ≤ τm,µ − τm,µ−1

2

[
δ{h}m,µ

]q
, m ∈ J1 : MK, µ ∈ J1 : µmK,

so that the condition ‖(F − P)(κh)‖qq ≤ dqh translates into

M∑
m=1

µm∑
µ=1

λ−(κhq+1)
m

τm,µ − τm,µ−1

2

[
δ{h}m,µ

]q
≤ dqh.

Now, in view of q =: 2q′ being an even integer, the function
∣∣∣F̃ (κh)
m,µ − P̃ (κh)

m

∣∣∣q =
{
F̃

(κh)
m,µ − P̃ (κh)

m

}2q′

is a polynomial of degree at most 2q′N , hence the integral in (12) is computed exactly by a Gaussian

quadrature involving a shifted version of the zeros ζ0, . . . , ζNq′ of the Legendre polynomial of degree

Nq′ + 1. Precisely, there are explicit weights ω0, . . . , ωNq′ such that

∫ τm,µ

τm,µ−1

|F̃ (κh)
m,µ (x)− P̃ (κh)

m (x)|qdx =
τm,µ − τm,µ−1

2

Nq′∑
i=0

ωi

{
F̃ (κh)
m,µ (ζ

{m,µ}
i)− P̃ (κh)

m (ζ
{m,µ}
i)

}q
=
τm,µ − τm,µ−1

2

Nq′∑
i=0

{
[G{h,m,µ}(f{m,µ} − p{m})]i

}q
,

where G{h,m,µ} ∈ R(Nq′+1)×(N+1) is the matrix with entries G
{h,m,µ}
i,j = ω

1/q
i T

(κh)
j (ζ

{m,µ}
i). In

summary, defining vectors ρ{h} ∈ RM ′ , M ′ := µ1+· · ·+µM , by ρ
{h}
m,µ = λ

−κh−1/q
m

(
τm,µ − τm,µ−1

2

)1/q

,

the problem (4) for the q-norm has been recast as

minimize
d∈RH ,p{m}∈RN+1

δ{h}∈RM′

‖γ � d‖r subject to ‖ρ{h} � δ{h}‖q ≤ dh,

to ‖G{h,m,µ}(f{m,µ} − p{m})‖q ≤ δ{h}m,µ,

and to the originally prescribed constraints.

11

Basc: constrained approximation by semidefinite programming

3.3 Dealing with the original constraints

The best approximation problem (4) can include many types of constraints and the convenience

of CVX makes it almost effortless to enforce them, so long as they are convex constraints. Their

feasibility need not be ensured beforehand, since the status returned by CVX will provide the

information. We list below the constraints that have been implemented in Basc along with their

reformulations. The reformulations (13), (14), and (15) are linear conditions, while (16), (17), and

(18) are semidefinite conditions.

Smoothness constraints: Enforcing smoothness Csm at each breakpoint tm, m ∈ J1 : M − 1K,
means that P

(κ)
m (tm) = P

(κ)
m+1(tm) for all κ ∈ J0 : smK. The latter constraints are equivalent

to the (sm + 1) conditions given for each κ ∈ J0 : smK by λ−κm P̃
(κ)
m (1) = λ−κm+1P̃

(κ)
m+1(−1), i.e.,

by λ−κm
∑n

k=0 p
{m}
k T

(κ)
k (1) = λ−κm+1

∑n
k=0 p

{m+1}
k T

(κ)
k (−1), where n := max`∈J1:MK n` and with the

implicit understanding that p
{m}
k := 0 if nm < k ≤ n. Introducing the (sm + 1)× (sm + 1) diagonal

matrices Λ{m,sm} and Λ{m+1,sm} with diagonal entries 1, λ−1
m , . . . , λ−smm and 1, λ−1

m+1, . . . , λ
−sm
m+1, as

well as the (sm + 1) × n matrices V+,{sm} and V−,{sm} with entries V
±,{sm}
κ,k = T

(κ)
k (±1), the

smoothness conditions reduce to the linear constraints

(13) Λ{m,sm}V+,{sm}p{m} = Λ{m+1,sm}V−,{sm}p{m+1} for all m ∈ J1 : M − 1K.

The matrices V+,{sm} and V−,{sm} are easily constructed thanks to Chebfun.

Parity constraints: Assuming consistency with all other conditions (breakpoints, smoothness,

interpolation nodes and data, etc.), the parity constraint P (−x) = ±P (x) for all x ∈ [−1, 1]

translates into Pm(−x) = ±PM+1−m(x) for all x ∈ Im and all m ∈ J1 : MK. Then, by parity of

Chebyshev polynomials, with η := [+1,−1,+1,−1, . . .]> denoting the vector with alternating +1

and −1 entries, the parity constraint reduces to the linear constraints

(14) η � p{m} = ±p{M+1−m} for all m ∈ J1 : MK,

where ± = + if the approximant is required to be even and ± = − if it is required to be odd.

Interpolatory constraints: These constraints do not restrict to Lagrange interpolation, as they

cover more generally Birkhoff interpolation, meaning that for a set κ = κint of indices κ1, . . . , κHint ,

it is imposed that all derivatives P (κh) of the approximant agree at prescribed nodes x
{h}
1 , . . . , x

{h}
ν{h}

with prescribed data y
{h}
1 , . . . , y

{h}
ν{h}

. Often but not always, the data are values of the corresponding

derivative of the target function at the nodes, i.e., y
{h}
i = F (κh)(x

{h}
i). For each m ∈ J1 : MK,

we determine which ν{h,m} nodes x
{h}
i belong to the mth subinterval Im and the interpolatory

conditions P
(κh)
m (x

{h}
i) = y

{h}
i on this subinterval read λ−κhm P̃

(κh)
m (λ−1

m (x
{h}
i − tm−1) − 1) = y

{h}
i ,

or
∑n

k=0 p
{m}
k λ−κhm T

(κh)
k (λ−1

m (x
{h}
i − tm−1) − 1) = y

{h}
i . In matrix form, if B{h,m} ∈ Rν{h,m}×(n+1)

denotes the matrix with entries λ−κhm T
(κh)
k (λ−1

m (x
{h}
i − tm−1) − 1) and if y{h,m} ∈ Rν{h,m} denotes

12

S. Foucart and V. Powers

the vector with entries y
{h}
i , then the interpolatory conditions reduce to the linear constraints

(15) B{h,m}p{m} = y{h,m} for all m ∈ J1 : MK and all h ∈ J1 : HintK.

The matrices B{h,m} are easily created by Chebfun.

Range constraints: These consist in fact of two sets of constraints on the approximant: upper

range constraints of the form P (κh) ≤ U{h} for some index set κ = κur and some functions U{h} and

lower range constraints of the form P (κh) ≥ L{h} for some index set κ = κlr and some functions L{h}.

Written as the nonnegativity conditions U{h} − P (κh) ≥ 0 and P (κh) − L{h} ≥ 0, the constraints

can therefore be expressed as semidefinite conditions. To shorten the argument, we notice the

analogy with the two inequalities of (5), with U{h} taking the place of F (κh) + dh and L{h} taking

the place of F (κh) − dh. Thus, without reproducing the reasoning but keeping usual notation and

being careful about scaling factors due to the transposition of derivatives when the subinterval Im is

split by breakpoints of U{h}, the upper range constraints are equivalent to the existence of positive

semidefinite matrices Qur,{h,m,µ} ∈ C(N
{h}
ur +1)×(N

{h}
ur +1) and possibly Rur,{h,m,µ} ∈ CN

{h}
ur ×N

{h}
ur ,

where N
{h}
ur := max`∈J1:MK max{n`,maxν∈J1:µ`K deg(U

{h}
`,ν)}, such that [u{h,m,µ} − λ−κhm D{κh}(p{m})]k

2
, k ∈ J1 : N

{h}
ur K,

[u{h,m,µ} − λ−κhm D{κh}(p{m})]0, k = 0,

 =
∑
i−j=k

Q
ur,{h,m,µ}
i,j(16)

+
eıα

ur,{h}
m,µ

2

 ∑
i−j=k−1

R
ur,{h,m,µ}
i,j

− cos(βur,{h}
m,µ)

 ∑
i−j=k

R
ur,{h,m,µ}
i,j

+
e−ıα

ur,{h}
m,µ

2

 ∑
i−j=k+1

R
ur,{h,m,µ}
i,j

 .
Likewise, the lower range constraints can be expressed as the existence of positive semidefinite

matrices Qlr,{h,m,µ} ∈ C(N
{h}
lr +1)×(N

{h}
lr +1) and possibly Rlr,{h,m,µ} ∈ CN

{h}
lr ×N

{h}
lr , where N

{h}
lr :=

max`∈J1:MK max{n`,maxν∈µ` deg(L
{h}
`,ν)}, such that [−l{h,m,µ} + λ−κhm D{κh}(p{m})]k

2
, k ∈ J1, N{h}lr K

[−l{h,m,µ} + λ−κhm D{κh}(p{m})]0, k = 0,

 =
∑
i−j=k

Q
lr,{h,m,µ}
i,j(17)

+
eıα

lr,{h}
m,µ

2

 ∑
i−j=k−1

R
lr,{h,m,µ}
i,j

− cos(βlr,{h}
m,µ)

 ∑
i−j=k

R
lr,{h,m,µ}
i,j

+
e−ıα

lr,{h}
m,µ

2

 ∑
i−j=k+1

R
lr,{h,m,µ}
i,j

 .
The values of αur,{h}, βur,{h}, αlr,{h}, and βlr,{h} in (16) and (17) arise from the splitting of the

subinterval Im by breakpoints of U{h} and L{h}.

Shape constraints: These constraints concern the sign patterns of the derivatives P (κh) of the

approximant given some index set κ = κsh. We express them as

S{h}(x)P (κh)(x) ≥ 0 for all x ∈ [−1, 1],

where the S{h} are some prescribed piecewise polynomials. As an example, if it is required that

P (κh) changes sign at points z1, . . . , zυh and finishes by being nonnegative on (zυh , 1), then we would

13

Basc: constrained approximation by semidefinite programming

set S{h}(x) = (x−z1) · · · (x−zυh). As another example, if it was required that P (κh) is nonnegative

on some interval [a, b] without constraints outside [a, b], then we would set S{h}(x) = 1[a,b](x), the

characteristic function of [a, b]. But beware, for instance, that the convexity of P on [a, b] is

not necessarily the same as the nonnegativity of P ′′ on [a, b] because of potential breakpoints,

or that the coconvexity of P with F is not necessarily the same as the condition F ′′P ′′ ≥ 0, as

the example of F (x) = |x| reveals. At this stage of Basc’s development, the user is responsible for

choosing the correct S{h}. With the usual notation, the shape constraints become S̃
{h}
m,µP̃

(κh)
m ≥ 0 on

[τm,µ−1, τm,µ] for all m and µ. In turn, they are equivalent to the existence of positive semidefinite

matrices Qsh,{h,m,µ} ∈ C(N
{h}
sh +1)×(N

{h}
sh +1) and possibly Qsh,{h,m,µ} ∈ CN

{h}
sh ×N

{h}
sh , where N

{h}
sh :=

n+ max`∈J1:MK maxν∈J1:µ`K deg(S
{h}
`,ν)}, such that

[M
S̃
{h}
m,µ

D{κh}(p{m})]k

2
, k ∈ J1, N{h}sh K

[M
S̃
{h}
m,µ

D{κh}(p{m})]0, k = 0,

 =
∑
i−j=k

Q
sh,{h,m,µ}
i,j(18)

+
eıα

sh,{h}
m,µ

2

 ∑
i−j=k−1

R
sh,{h,m,µ}
i,j

− cos(βsh,{h}
m,µ)

 ∑
i−j=k

R
sh,{h,m,µ}
i,j

+
e−ıα

sh,{h}
m,µ

2

 ∑
i−j=k+1

R
sh,{h,m,µ}
i,j

 .
Here, each M

S̃
{h}
m,µ

is the (N
{h}
sh + 1) × (n + 1) matrix that transforms the Chebyshev coefficients

of a polynomial into the Chebyshev coefficients of this polynomial multiplied by S̃
{`}
m,µ. It is easily

constructed via Chebfun.

4 Usage Examples for Basc

This section gives a brief description of the Matlab package Basc and of its basic usage. More

details are available in the User’s Guide found on the first author’s webpage. After downloading

Basc’s files, which include all Chebfun’s and CVX’s files, one need to type

>>basc_setup

in order to launch the functionalities of these two external packages. It is also convenient to set

>>x=chebfun(’x’)

in order to easily define chebfuns — the objects manipulated by the software Chebfun — since Basc

takes chebfuns as inputs and also returns chebfuns as outputs. Thus, given a chebfun F to be

approximated by a polynomial (or spline) of degree at most n (or degrees at most n1, . . . , nM), the

generic command is

>>[e,P]=basc(F,n,options)

The output e is the error of best approximation, while the output P is a best approximant. The

optional input options contain a variable number of fields that can be combined freely and specified

in any order. They are inventoried in Table 1. There are also various shortcuts, such as ’above’

or ’below’ for the lower range L{0} = F or the upper range U{0} = F , ’positive’ or ’negative’

14

S. Foucart and V. Powers

field math. objects format

’norm’ q an even integer of inf

’weight’ W a classic chebfun representing W

’bkpts’ t1, . . . , tM a row-vector containing the ti

’smoothness’ s1, . . . , sm a row-vector containing the si

’parity’ parity of P ’even’ or ’odd’

’interpolation’ κint, the (x{h},y{h}) a cell of cells, each inner cell containing

first κh, then (x{h},y{h}) as a 2× ν{h} matrix

(or a row vector if y
{h}
i = F (x

{h}
i)

’upper range’ κur, the U{h} a cell of cells, each inner cell containing

first κh, then the chebfun for U{h}

’lower range’ κlr, the L{h} a cell of cells, each inner cell containing

first κh, then the chebfun for L{h}

’shape’ κsh, the S{h} a cell of cells, each inner cell containing

first κh, then the chebfun for S{h}

’objective’ r, κobj, γobj a cell whose first element is r

and other elements are cells containing κh and γh

Table 1: The different fields that can be specified in Basc’s options

for the lower range L{0} = 0 or the upper range U{0} = 0, ’increasing’ or ’decreasing’ for the

shape function S{1} = 1 or S{1} = −1, and ’convex’ or ’concave’ for the shape function S{2} = 1

or S{2} = −1.

Below is a list of examples illustrating the usage of Basc. These computations can be replicated

after the reproducible file of this article is downloaded from the first author’s webpage.

One-sided polynomial approximation: One-sided approximants to a target function F can be

computed by entering {{0,F}} in the fields ’lower range’ and ’upper range’ or by using the

shortcuts ’above’ and ’below’. So to obtain the approximants by polynomials of degree 4 to

F (x) = T5(x)/(4 + cos(x) + sin(x)), say, relative to the max-norm and to the 2-norm, one would

type

>>n = 4; F = chebpoly(5)./(4+cos(x)+sin(x));

>>[e,P] = basc(F,n); [e2,P2] = basc(F,n,’norm’,2);

>>[ea,Pa] = basc(F,n,’above’); [ea2,Pa2] = basc(F,n,’above’,’norm’,2);

>>[eb,Pb] = basc(F,n,’below’); [eb2,Pb2] = basc(F,n,’below’,’norm’,2);

Some of the resulting approximants P , as well as the errors of approximation F −P , are displayed

on Figure 1. On the middle graph, one recognizes the equioscillation property for unconstrained

15

Basc: constrained approximation by semidefinite programming

approximation relative to the max-norm and one also observes that the one-sided approximants

are just shifted versions of the unconstrained approximant — a fact that is easy to establish. The

rightmost graph reveals the failure of this phenomenon relative to the 2-norm.

−1 −0.5 0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.5 0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

target function

best max−norm approx.

best 2−norm approx.

max−norm approx. error

from above

from below

2−norm approx. error

from above

from below

Figure 1: Unconstrained approximants (left) and errors of one-sided approximation relative to the

max-norm (center) and to the 2-norm (right).

Weighted and interpolatory polynomial approximation: Computing best approximants

relative to a weighted max-norm is done by entering the weight W as a chebfun after the field

’weight’. We may append further constraints, for instance, the field ’parity’ takes the value

’even’ or ’odd’, and the field ’interpolation’ takes the indices of the derivatives to interpolate

together with the corresponding interpolation nodes and optionally the interpolation data. The

outcome of the commands

>>n = 5; F = chebpoly(7)./(4+cos(x)+sin(x));

>>[ew,Pw] = basc(F,n,’weight’,x.^2);

>>[ewo,Pwo] = basc(F,n,’weight’,x.^2,’parity’,’odd’);

>>[ewi,Pwi] = basc(F,n,’weight’,x.^2,’interpolation’,{{0,[-1 1]}});

are displayed in Figure 2. Note that the weight W (x) = x2 vanishes two-fold at x = 0, which forces

the approximants to agree two-fold with the target function at x = 0.

Spline approximation: In order to approximate a target function by a piecewise polynomial

instead of a mere polynomial, one specifies the internal breakpoints as a row-vector in the field

’bkpts’. By default, no continuity conditions are imposed, but if smoothness at the breakpoints is

desired, then we also enter the smoothness parameters as a row-vector in the field ’smoothness’,

with −1 for discontinous, 0 for continuous, 1 for continuously differentiable, etc. For instance, the

commands

16

S. Foucart and V. Powers

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

target function

best weighted approx.

best weighted odd approx.

target function

best weighted interpolatory approx.

Figure 2: Best approximants relative to the weighted norm ‖G‖W = ‖G/W‖∞ with W (x) = x2

(left) and with the additional interpolatory constraints P (−1) = F (−1) and P (1) = F (1) (right).

>>n = 2; F = chebfun(rand(2*n+1,1),’coeffs’);

>>[es,Ps] = basc(F,2*n-1,’bkpts’,[0],’smoothness’,[-1]);

>>[es2,Ps2] = basc(F,2*n-1,’bkpts’,[0],’smoothness’,[1]);

compute the approximants to a polynomial of degree 2n by splines of degree 2n − 1 with one

breakpoint at x = 0. The first approximant is a priori discontinuous and the second approximant

is a priori continuously differentiable. These spline approximants are shown on Figure 3 (left), and

we notice that the C−1 approximant is automatically C0 — a fact that is again easy to establish —

and that the C1 approximant is automatically C2.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

target function

C
−1

−spline approx.

C
1
−spline approx.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

target function

C
0
−approx.

C
1
−approx.

lower−ranged C
1
−approx

Figure 3: The a priori C−1 and C1 best approximants to a polynomial of degree 2n by splines of

degree 2n−1 with one breakpoint at x = 0 (left); the C0, C1, and lower-ranged C1 best approximants

to the absolute value function by splines of degrees (1, 2, 1) with breakpoints at x = −1/2 and

x = 1/2 (right).

17

Basc: constrained approximation by semidefinite programming

In the next example, we produce best approximants by splines to a target function that is a spline

itself — the prototypical absolute value function. With breakpoints at x = −1/2 and x = 1/2 and

polynomial pieces of degree 1, 2, and 1, we compute the best approximants that are C0, C1, and

C1 with the additional constraint of having a derivative lower-bounded by L(x) = −1/2 via the

commands

>>F = abs(x);

>>[e0,P0]=basc(F,[1 2 1],’bkpts’,[-1/2 1/2],’smoothness’,[0 0]);

>>[e1,P1]=basc(F,[1 2 1],’bkpts’,[-1/2 1/2],’smoothness’,’maximal’);

>>[elr,Plr]=basc(F,[1 2 1],’bkpts’,[-1/2 1/2],’smoothness’,’maximal’,...

’lower range’,{{1,chebfun(-0.5)}});

The approximants are reported on Figure 3 (right). Note that the example reveals that a best

approximation by splines is not necessarily unique, since we can observe that perturbing the slopes

of the outside pieces of the C0-spline does not affect the overall error.

Bernstein-type constants: It is well known that the rate of approximation error to the absolute

value function by polynomials of degree n is governed by the fact that

(19) β := lim
n→∞

nEn(| · |)

exists. This result is due to Bernstein [1], who conjectured the value 1/(2
√
π) ≈ 0.282094791773

for β. This conjecture was refuted in [14] where it was shown that β ≈ 0.280169499023. It is also

known (see the survey [6] and the references therein for more results) that the rate of approximation

error to the absolute value function by convex polynomials of degree n is governed by the fact that

βconv := lim
n→∞

nEconv
n (| · |)

exists, too. The value of βconv can be investigated experimentally using Basc (save for current

limitations with the scale of the problem). The result of such an experiment5 together with a

numerical validation of the value of (19) are presented in Figure 5. As an aside, we first display

in Figure 4 what the best approximant, the best convex approximant, and the best approximant

convex on [−2/3, 2/3] to the absolute value function look like when n = 5. These approximants are

obtained via the commands

>>n = 5; F = abs(x);

>>[e,P] = basc(F,n);

>>[ecvx,Pcvx] = basc(F,n,’convex’);

>>[ecvx2,Pcvx2] = basc(F,n,’shape’,{{2,-(x.^2-4/9)}});

5Econv
n (| · |) was not computed by Basc directly, but by the semidefinite program written specifically for this case

in order to limit the defect of a multipurpose code.

18

S. Foucart and V. Powers

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

target function best approx. best convex approx. best partially convex approx.

Figure 4: Degree-5 approximants to | · |: unconstrained, convex, and convex on [−2/3, 2/3].

0 5 10 15 20 25 30
0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

n

2 4 6 8 10 12 14 16 18
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

n E
n
(|.|) β n E

n

conv
(|.|)

Figure 5: Verification of the value of the Berstein constant (left) and exploration of the value of

the convex-Bernstein constant (right).

Natural cubic spline: We finally consider an example where we modify the objective function

from its default setting in order to solve an optimization problem not immediately recognizable as

an approximation problem. Precisely, we are interested in the function P ∈ C2[−1, 1] that minimizes

the quasinorm ‖P ′′‖2 under the constraints P (ti) = yi with −1 = t0 < t1 < · · · < tM−1 < tM = 1. It

is well known that the unique solution to this problem is the so-called natural spline determined by

the fact that it has degree 3 and overall smoothness C2, that is satisfies the interpolatory constraints,

and that P ′′(t0) = 0 and P ′′(tM) = 0. To corroborate this statement, we perform the minimization

not over all P ∈ C2[−1, 1] but only over all C2 splines of degree 5, say, with breakpoints t1, . . . , tM
by solving the problem (1) with F = 0, H = 1, κ1 = 2, and γ1 = 1. This is done with the commands

>>n = 5; t = [-1/3 1/3]; s = [2 2];

>>[e,P] = basc(chebfun(0),n,’objective’,{inf,{2,1}},’norm’,2,’bkpts’,t,...

’smoothness’,s,’interpolation’,{{0,[-1 t 1;1 2 0 1]},{2,[-1 1;0 0]}});

19

Basc: constrained approximation by semidefinite programming

We can verify on Figure 6 (right) that the second derivative of the minimizer is indeed a piecewise

linear function that vanishes at the endpoints −1 and 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

Figure 6: The natural cubic spline with interpolations nodes (−1,−1/3, 1/3, 1) and interpolation

data (1, 2, 0, 1), as well as its second derivative.

5 Conclusion

Basc adds a modest contribution to a vision of Approximation Theory becoming more computation-

embracing (a vision that is implicit in [13]). When creating this package, our goal was to provide

a tool for gaining insight on theoretical problems through numerical experimentation. Although

the underlying method is conceptually sound, we consider the current implementation to be at

the ‘proof-of-concept’ stage, as issues with reliability and speed sometimes occur. It is critical to

determine if, for instance, difficulties with large scales can be bypassed in some plausibly simple way

(by a better implementation or by the use of a targeted solver instead of multipurpose software)

or if they are inherent to the task at hand. In the latter case, could changing the semidefinite-

programming-based strategy have the desired effect? Answering these questions is concomitant

with the development of several Basc extensions that we currently envision.

References

[1] S. Bernstein. Sur la meilleure approximation de |x| par des polynomes de degrés donnés. Acta

Mathematica, 37(1), 1–57, 1914.

[2] B. L. Chalmers. The Remez exchange algorithm for approximation with linear restrictions.

Transactions of the American Mathematical Society, 223, 103–131, 1976.

20

S. Foucart and V. Powers

[3] CVX Research, Inc. CVX: matlab software for disciplined convex programming, version 2.1.

http://cvxr.com/cvx, 2014.

[4] B. A. Dumitrescu. Positive trigonometric polynomials and signal processing applications.

Springer Science & Business Media, 2007.

[5] K. R. Gehner. Characterization theorems for constrained approximation problems via opti-

mization theory. Journal of Approximation Theory, 14(1), 51–76, 1975.

[6] K. A. Kopotun, D. Leviatan, A. Prymak, and I. A. Shevchuk. Uniform and Pointwise Shape

Preserving Approximation by Algebraic Polynomials. Surveys in Approximation Theory, 6,

24–74, 2011. http://www.math.technion.ac.il/sat

[7] A. Kroó and A. Pinkus. Strong Uniqueness. Surveys in Approximation Theory, 5, 1–91, 2010.

http://www.math.technion.ac.il/sat

[8] J. T. Lewis. Approximation with convex constraints. SIAM Review, 15(1), 193–217, 1973.

[9] T. Roh and L. Vandenberghe. Discrete transforms, semidefinite programming, and sum-of-

squares representations of nonnegative polynomials. SIAM Journal on Optimization, 16(4),

939–964 , 2006.

[10] G. Szego. Orthogonal polynomials (rev. ed.). Amer. Math. Soc, 1959.

[11] G. D. Taylor, and M. J. Winter. Calculation of best restricted approximations. SIAM Journal

on Numerical Analysis, 7(2), 248–255, 1970.

[12] L. N. Trefethen et al.. Chebfun Version 5, The Chebfun Development Team, 2014,

http://www.chebfun.org.

[13] L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM, 2013.

[14] R. S. Varga and A. J. Carpenter. On the Bernstein conjecture in approximation theory. Con-

structive Approximation 1(1), 333–348, 1985.

21

http://cvxr.com/cvx
http://www.math.technion.ac.il/sat
http://www.math.technion.ac.il/sat
http://www.chebfun.org

	Introduction
	Prelude: Trigonometric Approximation without Constraints
	Center Piece: Approximation by Splines under Constraints
	The main ingredient
	Dealing with the objective function
	Dealing with the original constraints

	Usage Examples for Basc
	Conclusion

