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Abstract

The determination of minimal projections is examined from an optimization theory view-

point. It is first shown how to transform the problem into a linear program for the coordinate

spaces `n1 and `n∞. It is then shown how to transform the problem into a linear program for

the matrix spacesMk×k
1→1 andMk×k

∞→∞. The procedure is exploited to experimentally determine

minimal projections onto various matrix subspaces. Moreover, a fully theoretical determination

of minimal projections into zero-trace matrices is proposed when the matrix norm is unitarily

invariant. Next, for polynomial spaces, it is shown how to approximate the problem by a linear

program or by a semidefinite program using techniques from robust optimization. It allows

us to tabulate the relative projection constants of several polynomial subspaces. The article

finishes by illustrating that the underlying method also applies to the determination of minimal

extensions rather than merely minimal projections. All the programs have been implemented

in a publicly available matlab package called MinProj, which uses the external packages CVX

and Chebfun.

Key words and phrases: projection constants, minimal projections, coordinate spaces, matrix

spaces, polynomial spaces, robust optimization, semidefinite programming.
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1 Introduction

This article reflects primarily on the computability of minimal projections using modern tools

from optimization theory. It is accompanied by a collection of matlab routines performing the

tasks described hereafter. The resulting package can be downloaded under the name MinProj from

the author’s webpage. It should prove useful for gaining experimental insight even to researchers

focusing on theoretical investigations about minimal projections. MinProj relies heavily on CVX, a

package for specifying and solving convex programs [1]. The package Chebfun [12] is also required

when dealing with polynomial spaces.

Minimal projections are a classical topic in Approximation Theory, see e.g. the survey [11] and the

papers [7, 10, 17, 19] for a selection of newer results. Our contribution consists essentially in adding
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an extra perspective to the body of work that preceded the era of computational convenience. The

general problem, which falls naturally in the realm of the modern field of Robust Optimization

[2, 3], is described in Section 2, where recurring aspects used for all cases are gathered. In Section

3, we concentrate on the simple case of the coordinate space Rn equipped with one of the polyhedral

norms `1 or `∞. The resulting linear program is validated by comparison with known formulas,

before being utilized in a numerical exploration of average projection constants. Section 4 considers

minimal projections in the matrix space Mk×k, traditionally less emphasized in the theoretical

literature. In the case of polyhedral norms, we again propose a linear program which is used to find

by experimental means the minimal projections and projection constants for a number of subspaces.

In the case of unitarily-invariant norms, we find by theoretical means the minimal projections and

projection constants for the subspaces of symmetric matrices and of zero-trace matrices. Section 5

is devoted to minimal projections in spaces of algebraic polynomials equipped with the max-norm

on [−1, 1]. We suggest to approximate the original approximation problem by two quantifiably close

problems that are made tractable via ideas from Robust Optimization. The first problem becomes

a linear program, while the second problem becomes a semidefinite program (see [20]) and they are

both utilized to compute the projection constants of polynomial subspaces. Finally, Section 6 gives

a brief illustration of the potential of the main strategy to compute minimal extensions in addition

to minimal projections.

The following notational conventions are used throughout the article: a blackboard-bold uppercase

letter denotes a vector space, e.g. U,V,W; a curly uppercase letter a linear map, e.g. A,P; a

straight uppercase letter the matrix of a linear map, e.g., A,P ; a bold lowercase letter a vector,

e.g. u,vw; a bold uppercase letter a matrix understood as an element of a linear space, e.g. M.

The normed spaces manipulated in the article are real, not complex. They feature an indication of

the dimension as a superscript and an indication of the norm as a subscript, e.g., `n1 , Mk×k
∞→∞, or

Pn∞. The operator norm of a linear map from a normed space V into itself is denoted with a triple

bar, i.e.,

|||A||| = max
v∈V\{0}

‖Av‖
‖v‖

,

and we may add a subscript referring to the norm used on V, for instance, |||A|||∞→∞ if V = `n∞.

2 The generic approach

2.1 Recasting the minimization problem

Throughout the article, let V be a finite-dimensional normed space and let U be a subspace of V.

A projection P from V onto U is a linear map from V into V that satisfies
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(i) Pu = u for all u ∈ U,

(ii) Pv ∈ U for all v ∈ V.1

We point out that P can be interpreted as an extension of the canonical injection ι : U→ V to the

whole space V. In fact, this article also deals with extension of arbitrary operators: given a linear

map A defined on U and taking value in a normed space W, an extension P of A to V is a linear

map from V to W such that

(i’) Pu = Au for all u ∈ U,

(ii’) Pv ∈ ran(A) for all v ∈ V.

Our goal is to determine minimal projections/extensions, i.e., projections/extensions that minimize

the operator norm

|||P||| = max
v∈V\{0}

‖Pv‖
‖v‖

.

Since the operator norm is a convex function, minimizing |||P||| is just a finite-dimensional convex

optimization program and can in principle be solved efficiently. In the case of projections, the

problem takes the form

minimize
P

|||P||| subject to P is a projection from V onto U.

By introducing a slack variable d, we arrive at the following equivalent problem:

minimize
d,P

d subject to P is a projection from V onto U(P)

and to |||P||| ≤ d.

This is the formulation used in our practical implementations. In case of extension of A : U→W,

an analogous formulation reads

minimize
d,P

d subject to P is an extension of A(E)

and to |||P||| ≤ d.

We point out that both (P) and (E) are instances of the generic robust optimization problem [2, 3]

with uncertainty sets involving the unit ball BV of the space V, since the constraint |||P||| ≤ d can

be rephrased as ‖Pv‖ ≤ d‖v‖ for all v ∈ BV.

1alternatively, one may consider P as a linear map from V into U and remove this second condition, but we found

the current convention to have technical advantages in subsequent computations.
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2.2 Expressing the constraints

In programs (P) and (E), the condition that P is a projection/extension turns into a linear equality

constraint independent of the norms involved in the problem. We transform it for computational

purposes below. Next, we focus on the condition |||P||| ≤ d, which is a convex inequality constraint

dependent on the norms.

2.2.1 Linear equality constraints

Let us consider bases for the spaces U,V,W, say:

u = (u1, . . . ,um) is a basis for U,
v = (v1, . . . ,vn) is a basis for V,
w = (w1, . . . ,w`) is a basis for W.

We represent the basis u by its matrix U relative to the basis v, so that uj =
∑n

i=1 Ui,jvi, or

pictorially

U =

u1 u2 um

v1

...

vn


...

...
...

u1 u2 · · · um
...

...
...

.
We also represent the linear map P : V → W as its matrix relative to the bases v and w, so that

Pvj =
∑`

i=1 Pi,jwi, or pictorially

P =

v1 v2 vn

w1

...

w`


...

...
...

P(v1) P(v2) · · · P(vn)
...

...
...

.
In a similar way, we represent the linear map A : U→W as its matrix relative to the bases u and

w, so that Auj =
∑`

i=1Ai,jwi, or pictorially

A =

u1 u2 um

w1

...

w`


...

...
...

A(u1) A(u2) · · · A(um)
...

...
...

.

Such pieces of notation are helpful when expressing the conditions (i)-(ii), or more generally (i’)-(ii’),

as detailed below.
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(i’): The condition Pu = Au for all u ∈ U is equivalent to Puj = Auj for all j ∈ J1 : mK, i.e.,

P colj(U) = colj(A) for all j ∈ J1 : mK, or

(1) PU = A.

Since optimization variables are typically organized as column vectors rather than matrices, we

reformulate (1) as a constraint on the vectorization vec(P ) = [col1(P ); . . . ; coln(P )] of P , i.e., on

the vector formed by arranging the columns of P one below the other. With ⊗ denoting the

Kroenecker product, we invoke the property vec(MXN) = (N> ⊗M)vec(X) to express vec(PU)

as (U> ⊗ I`)vec(P ), so that (1) becomes

(U> ⊗ I`)vec(P ) = vec(A).

We stress once again that this is a linear condition on vec(P ). In the case of projections, we have

W = V, A = ι : U → V, and we can take w = v, so that the matrix A reduces to the matrix U ,

hence the constraint simplifies to

(2) (U> ⊗ In)vec(P ) = vec(U).

(ii’): With the above constraint (i’) being satisfied, the condition Pv ∈ ran(A) is equivalent to

Pũj ∈ ran(A) for all j ∈ Jm + 1 : nK, where ũ = (ũm+1, . . . , ũn) is a basis of an orthogonal

complement of U in V. We represent ũ via its matrix Ũ relative to v, that is

Ũ =

ũm+1 ũm+2 ũn

v1

...

vn


...

...
...

ũm+1 ũm+2 · · · ũn
...

...
...

.

Likewise, let W̃ represent the matrix of a basis w̃ = (w̃r+1, . . . , w̃`) of an orthogonal complement

of ran(A) in W — here the inner product 〈·, ·〉 is the one making w an orthonormal basis of W —

that is

W̃ =

w̃r+1 w̃r+2 w̃`

w1

...

w`


...

...
...

w̃r+1 w̃r+2 · · · w̃`
...

...
...

.
The condition Pũj ∈ ran(A) for all j ∈ Jm + 1 : nK becomes 〈Pũj , w̃i〉 = 0 for all i ∈ Jr + 1 : `K
and j ∈ Jm + 1 : nK. This reads coli(W̃ )>P colj(Ũ) = 0 for all i ∈ Jr + 1 : `K and j ∈ Jm + 1 : nK,
i.e., W̃>PŨ = 0. After vectorization, we obtain

(Ũ> ⊗ W̃>)vec(P ) = 0.
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We stress once again that this is a linear condition on vec(P ). In case of projections, we have

V = W, ran(A) = U, and we can take ũ = w̃, so that the matrix W̃ reduces to the matrix Ũ , hence

the constraint simplifies to

(3) (Ũ> ⊗ Ũ>)vec(P ) = 0.

Remark. A convenient choice for the matrix Ũ exploits the QR-factorization to U . Indeed, if

U = Q

[
R

0

]
,

then we can take

Ũ = Q

[
0

I

]
,

since the columns of Ũ are linearly independent and since they are orthogonal to the columns of

U , which can be seen from

Ũ>U =
[
0 | I

]
Q>Q

[
R

0

]
=
[
0 | I

] [R
0

]
= 0.

2.2.2 Convex inequality constraints

We now look at convenient ways to express the condition |||P||| ≤ d in terms of the optimization

variables d and P . In the best scenario, the operator norm |||P||| is explicitly computable. For

projections, this is the case when

V = W = `n∞ : |||P||| = max
i∈J1:nK

n∑
j=1

|Pi,j |,

V = W = `n1 : |||P||| = max
j∈J1:nK

n∑
i=1

|Pi,j |.

This will be exploited in Section 3. Otherwise, with BV denoting the unit ball of the normed

space V and with Ex(BV) denoting its set of extreme points, the fact that

|||P||| = max
v∈BV

‖Pv‖ = max
v∈Ex(BV)

‖Pv‖

leads to the reformulation of the constraint |||P||| ≤ d as

‖Pv∗‖ ≤ d for all v∗ ∈ Ex(BV).

This proves useful when the set Ex(BV) is finite, e.g. for V =Mk×k
∞→∞ or V =Mk×k

1→1, since

Ex(BMk×k
∞→∞

) = {ε1E1,j1 + ε2E2,j2 + · · ·+ εkEk,jk , ε1, ε2, . . . , εk ∈ {±1}, j1, j2, . . . , jk ∈ J1 : kK} ,

Ex(BMk×k
1→1

) = {ε1Ej1,1 + ε2Ej2,2 + · · ·+ εkEjk,k, ε1, ε2, . . . , εk ∈ {±1}, j1, j2, . . . , jk ∈ J1 : kK} .
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In addition, the choice of the basis w for W is critical. It may allow for an explicit determination

of ‖Pv∗‖ in terms of P — this will be exploited in Section 4. Failing this, it may still allow for

a semidefinite relaxation in terms of P of the condition ‖Pv∗‖ ≤ d — this will be exploited in

Section 6.

3 Minimal projections in coordinate spaces

In this section, we consider projections onto subspaces of the spaces `n1 and `n∞, i.e., of the coordinate

space Rn equipped with the norms

‖x‖1 :=

n∑
j=1

|xj |,

‖x‖∞ := max
j∈J1:nK

|xj |.

3.1 Formulation of the minimization problem

According to the previous considerations, finding a minimal projection from `n∞ into U ⊆ `n∞
amounts to solving the optimization problem

minimize
d,P

d subject to (U> ⊗ In)vec(P ) = vec(U), (Ũ> ⊗ Ũ>)vec(P ) = 0,(4)

and to
n∑
j=1

|Pi,j | ≤ d for all i ∈ J1 : nK

Likewise, for a minimal projection from `n1 into U ⊆ `n1 , we solve

minimize
d,P

d subject to (U> ⊗ In)vec(P ) = vec(U), (Ũ> ⊗ Ũ>)vec(P ) = 0,(5)

and to

n∑
i=1

|Pi,j | ≤ d for all j ∈ J1 : nK.

These optimization programs can be fed directly in the above form to CVX, a package for specifying

and solving convex programs [1]. In our implementation, they are called via the commands

>>MinProjCoor(U,inf)

>>MinProjCoor(U,1)

In fact, the above convex programs have been transformed into linear programs whose sizes are

doubled. This can be done either by replacing each Pi,j by P+
i,j ≥ 0 and P−i,j ≥ 0 such that

Pi,j = P+
i,j − P

−
i,j and |Pi,j | = P+

i,j + P−i,j , or by introducing slack variables ci,j with ci,j ≥ |Pi,j |, i.e.,

−ci,j ≤ Pi,j ≤ ci,j . MinProj incorporates the latter option.
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3.2 Exact formulas: verification

The article [5] established exact formulas for the projection constant of the hyperplane Ua defined

for a ∈ Rn (assumed without loss of generality to satisfy ‖a‖1 = 1) by

Ua =

{
u ∈ Rn : 〈a,u〉 :=

n∑
i=1

aiui = 0

}
.

Precisely, with αi = |ai|/(1− 2|ai|) (interpreted as ∞ if |ai| ≥ 1/2), the projection constant of Ua

relative to `n∞ is (see [5, Theorem 2])

λ(Ua, `
n
∞) = 1 +

1
n∑
i=1

αi

=


1 if ‖a‖∞ ≥ 1/2,

1 +
1

n∑
i=1

|ai|
1− 2|ai|

if ‖a‖∞ < 1/2.

A more complicated expression for the projection constant of Ua relative to `n1 was also given in

[5, Theorem 7]. Furthermore, in the case of two-codimensional subspaces, Lewicki obtained the

expression of the projection constant relative to `n∞ for n = 4 in some special instances, see [15,

Theorem 3.1] where the parameters αi appear again. The consistency between these theoretical

formulas and our computational outcomes is verified in the reproducible file for this article. It

is furthermore expected that using the software MinProj will help to infer explicit expressions of

projection constants in other specific situations.

3.3 Expected projection constants

We now use the software MinProj to explore the expected value of the projection constant of a

random m-dimensional subspace Um of `n∞. The subspaces are generated as the span of m vectors

in Rn with independent standard normal entries. Their computed projection constants are averaged

to give an estimate of

λ(m,n) := E[λ(Um, `n∞)].

The results are summarized on Figure 1. From the leftmost plot, one can hypothesize the behavior

λ(m,n) ≈ mγ(n) with 0 < γ(n) ≤ 1/2, which is consistent with the known fact that the projection

constant of an m-dimensional space is always bounded above by
√
m. On the rightmost plot, we

examined the coefficient γ(n) by representing ln[1/2− ln(λ(m,n))/ ln(m)] as a function of ln(n) to

possibly detect a behavior γ(n) ≈ 1/2−ε(n) for a function ε(n) decreasing as a power of n, but the

outcome is not strikingly conclusive. In summary, the behavior λ(m,n) ≈ mγ(n) is postulated for

the expected projection constant of a random m-dimensional subspace of `n∞, without additional

insight on the coefficient γ(n) besides γ(n) ≤ 1/2.
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Figure 1: Behavior of the average projection constant as a function of m and n when m varies (left)

and when n varies (right)

4 Minimal projections in matrix spaces

In this section, we consider projections onto subspaces of the spaces Mk×k
∞→∞, Mk×k

1→1, and Mk×k
Sp

,

i.e., of the matrix space Rk×k equipped with the norms

‖M‖∞→∞ := max
x 6=0

‖Mx‖∞
‖x‖∞

= max
i∈J1:kK

k∑
j=1

|Mi,j |,

‖M‖1→1 := max
x 6=0

‖Mx‖1
‖x‖1

= max
j∈J1:kK

k∑
i=1

|Mi,j |,

‖M‖Sp :=

[
k∑
`=1

σ`(M)p

]1/p
, where σ1(M) ≥ . . . ≥ σk(M) are the singular values of M.

The results are experimental in Subsection 4.1 dealing with the spaces Mk×k
∞→∞ and Mk×k

1→1 that

have polyhedral norms. Concerning the spaces Mk×k
Sp

, p ∈ [1,∞], that have unitarily invariant

norms, Subsection 4.2 presents some theoretical results for the subspaces of symmetric matrices

and of zero-trace matrices.

4.1 Polyhedral norms

We reformulate the minimization program following the considerations of Section 2. Here, the basis

v of the k2-dimensional space Rk×k is chosen to be (E1,1,E1,2, . . . ,E1,k,E2,1,E2,2, . . . ,E2,k, . . .) in
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this order, that is

v(i−1)k+j = Ei,j , i, j ∈ J1 : kK.

The subspace U is still represented by a basis u = (u1, . . . ,um) with matrix U relative to v — a

step that is not always straightforward. The linear map P : V→ V is also represented as before by

the matrix P (or by its vectorized form). Then the linear constraint that P is a projection onto U
is still expressed as (2)-(3).

Let us now focus on the convex constraint |||P||| ≤ d in the case V =Mk×k
∞→∞. This constraint reads

(6) ‖P(V)‖∞→∞ ≤ d for all V ∈ Ex(BMk×k
∞→∞

).

It is not hard to see that this set of extreme points is given by

Ex(BMk×k
∞→∞

) = {ε1E1,j1 + ε2E2,j2 + · · ·+ εkEk,jk , ε1, ε2, . . . , εk ∈ {±1}, j1, j2, . . . , jk ∈ J1 : kK} .

Since it has cardinality (2k)k and since each constraint in (6) represents in fact the k constraints

k∑
j=1

|[P(V)]i,j | ≤ d, for all i ∈ J1 : kK,

this results in a number of constraints equal to 2kkk+1, which is much too large even for moderate

values of k. We shall reduce the problem to arrive at a manageable number of constraints. First,

for i, j ∈ J1 : kK and V = ε1E1,j1 + ε2E2,j2 + · · ·+ εkEk,jk ∈ Ex(BMk×k
∞→∞

), notice that

[P(V)]i,j = ε1[P(E1,j1)]i,j + ε2[P(E2,j2)]i,j + · · ·+ εk[P(Ek,jk)]i,j

= ε1P(i−1)k+j,j1 + ε2P(i−1)k+j,k+j2 + · · ·+ εkP(i−1)k+j,(k−1)k+jk .

Thus, (6) becomes the constraint that, for all ε1, ε2, . . . , εk ∈ {±1}, all j1, j2, . . . , jk ∈ J1 : kK, and

all i ∈ J1 : kK,

k∑
j=1

∣∣ε1P(i−1)k+j,j1 + ε2P(i−1)k+j,k+j2 + · · ·+ εkP(i−1)k+j,(k−1)k+jk
∣∣ ≤ d.

Proper choices of ε1, ε2, . . . , εk ∈ {±1} show that the above conditions are equivalent to, for all

j1, j2, . . . , jk ∈ J1 : kK and all i ∈ J1 : kK,

k∑
j=1

(
|P(i−1)k+j,j1 |+ |P(i−1)k+j,k+j2 |+ · · ·+ |P(i−1)k+j,(k−1)k+jk |

)
≤ d.

This is seemingly still kk+1 constraints. But if we maximize over j1, j2, . . . , jk, then the above

conditions are equivalent to, for all i ∈ J1 : kK,

max
j1∈J1:kK

k∑
j=1

|P(i−1)k+j,j1 |+ max
j2∈J1:kK

k∑
j=1

|P(i−1)k+j,k+j2 |+ · · ·+ max
jk∈J1:kK

k∑
j=1

|P(i−1)k+j,(k−1)k+jk | ≤ d.
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Next, if we introduce slack variables Di,1, Di,2, . . . , Di,k and impose, for all i ∈ J1 : kK,

Di,1 +Di,2 + · · ·+Di,k ≤ d,

as well as, for all i ∈ J1 : kK and all j1, j2, . . . , jk ∈ J1 : kK,

k∑
j=1

|P(i−1)k+j,j1 | ≤ Di,1,

k∑
j=1

|P(i−1)k+j,k+j2 | ≤ Di,2, . . . ,

k∑
j=1

|P(i−1)k+j,(k−1)k+jk | ≤ Di,k,

then the number of constraints has been reduced to k+ k3 by adding k2 variables. The complexity

now appears polynomial in k rather than exponential in k. To sum up, the minimization program

reads

minimize
d∈R,P∈Rk2×k2 ,D∈Rk×k

d subject to (U> ⊗ Ik2)vec(P ) = vec(U), (Ũ> ⊗ Ũ>)vec(P ) = 0,(7)

and to Di,1 +Di,2 + · · ·+Di,k ≤ d for all i ∈ J1 : kK,

and to

k∑
j=1

|P(i−1)k+j,(h−1)k+`| ≤ Di,h for all i, h, ` ∈ J1 : kK.

Likewise, for Mk×k
1→1, we would arrive at the following optimization program:

minimize
d∈R,P∈Rk2×k2 ,D∈Rk×k

d subject to (U> ⊗ Ik2)vec(P ) = vec(U), (Ũ> ⊗ Ũ>)vec(P ) = 0,(8)

and to D1,j +D2,j + · · ·+Dk,j ≤ d for all j ∈ J1 : kK,

and to

k∑
i=1

|P(i−1)k+j,(h−1)k+`| ≤ D`,j for all j, h, ` ∈ J1 : kK.

These optimization programs can be fed directly in the above form to CVX. But in fact, as for

coordinate spaces, we take a further step to transform them into linear programs by introducing

slack variables cs,t with cs,t ≥ |Ps,t| for all s, t ∈ J1 : k2K. In the package MinProj, these programs

are solved by calling the commands:

>>MinProjMatr(U,inf)

>>MinProjMatr(U,1)

These commands were used in a number of experiments designed to infer some particular projection

constants. The results of these experiments, which can be duplicated by running the reproducible

file for this article, are summarized in Table 1 for the spaceMk×k
∞→∞ — for the spaceMk×k

1→1 instead

of Mk×k
∞→∞, the results are similar after exchanging the role of rows and columns 2. The notation

2concerning the subspace of symmetric matrices, the fact that the projection M 7→ (M + M>)/2 is minimal in

Mk×k
∞→∞ and Mk×k

1→1 has been proved in [18]
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used in the table is the following: D` represents the matrix with 1’s on the `th diagonal above the

main diagonal and 0’s everywhere else (so that 〈M,D`〉F = tr(D>` M) is the sum of the entries

of M on the `th diagonal above the main diagonal), the matrix Ri represents the matrix with

1’s in the ith row and 0’s everywhere else, the matrix Cj represents the matrix with 1’s in the

jth column and 0’s everywhere else, X represents the matrix with 1’s on the main diagonal and

main antidiagonal and 0’s everywhere else, and X̃ represents the sum of the matrix with 1’s on the

main diagonal and 0’s everywhere else and of the matrix with 1’s on the main antidiagonal and

0’s everywhere else (so that X̃ = X if k is even and X̃ = X + E(k+1)/2,(k+1)/2 if k is odd). The

orthogonal complement is understood with respect to the Frobenius inner product. Note that once

the projection constant is determined, verifying that the projection given in the third column is

indeed minimal only requires to bound its norm from above by the value from the second column.

It is particularly instructive to perform this exercise by hand for the subspace {C1 + · · ·+ C`}⊥ to

explain the difference between the cases ` = 1 and ` ≥ 2.

Table 1: Empirically determined projection constants in Mk×k
∞→∞, k ≥ 2

Subspace Projection Constant Minimal Projection

Symmetric matrices
1 + k

2
M 7→ 1

2

(
M + M>

)
Zero-trace matrices 2− 1

k
M 7→M− 1

k
tr(M)I

{D`}⊥ 2− 1

k − `
M 7→M− 1

k − `
tr(D>` M)D`

{R1 + · · ·+ R`}⊥ 2− 2

`k
M 7→M− 1

`k

∑̀
i=1

k∑
j=1

Mi,j

 (R1 + · · ·+ R`)

{C1 + · · ·+ C`}⊥ 2− 2

max{2, `}k
M 7→M− 1

`k

 k∑
i=1

∑̀
j=1

Mi,j

 (C1 + · · ·+ C`)

{X}⊥ 2− 1

k
M 7→M− 1

2k
tr(XM)X̃

Although it is conceivable that extensive experiments could allow for the empirical determination

of a general formula for the projection constant of a hyperplane3 in Mk×k
∞→∞ or Mk×k

1→1, the case

of the orthogonal complement of the matrix with 1’s on the first row and first column and 0’s

everywhere else is already uncertain.

3the projection constant of a hyperplane is always bounded above by 2, as confirmed by Table 1.
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4.2 Unitarily invariant norms

In this subsection, we consider the space Rk×k equipped with a unitarily invariant norm ‖ · ‖, i.e.,

one that satisfies

‖UMV‖ = ‖M‖ for all M,U,V ∈ Rk×k with U,V orthogonal.

For such a norm, the quantity ‖M‖ depends only on the singular values of M (as a consequence of

[4, Theorem IV.2.1]). Besides the straightforward observation that M 7→ (M + M>)/2 is always

a minimal projection onto the subspace of symmetric matrices in this setting (since it has norm

one), we shall establish the following result.

Theorem 1. If the matrix space Rk×k is equipped with a unitarily invariant norm, then the map

M 7→M− tr(M)

k
Ik

is a minimal projection onto the subspace of zero-trace matrices.

We first isolate the following fact about hyperplanes of Rk×k, which by trace duality can all be

described as

UB :=
{
M ∈ Rk×k : tr(BM) = 0

}
for some B ∈ Rk×k.

Proposition 2. If the matrix B ∈ Rk×k is symmetric, then there is a minimal projection from

Rk×k onto UB of the form

M 7→M− tr(BM)A for some symmetric A ∈ Rk×k with tr(BA) = 1.

Proof. We first remark that UB is transposition-invariant, since

tr(BM>) = tr(B>M>) = tr((MB)>) = tr(MB) = tr(BM).

If P is a projection onto UB, we define P ′ : Rk×k → Rk×k by P ′(M) = [P(M>)]>, M ∈ Rk×k.
Using the transposition-invariance of UB, we notice that P ′ has values in UB and that it acts as

the identity on UB, since

M ∈ UB ⇒M> ∈ UB ⇒ P(M>) = M> ⇒ P ′(M) = [M>]> = M.

In short, P ′ is a projection onto UB. It is also plain to see that P ′ has the same norm as P, since

|||P ′||| ≤ |||P||| is apparent from

‖P ′(M)‖ = ‖[P(M>)]>‖ = ‖P(M>)‖ ≤ |||P|||‖M>‖ = |||P|||‖M‖, M ∈ Rk×k,

13
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and since the reverse inequality |||P||| ≤ |||P ′||| holds because (P ′)′ = P. Thus, if P is a minimal

projection, then so is P ′, and P ′′ := (P + P ′)/2 is a minimal projection, too. Observing that any

projection from Rk×k takes the form

P(M) = M− tr(BM)A for some A ∈ Rk×k with tr(BA) = 1,

if P written in this form is a minimal projection, then the minimal projection P ′′ takes the form

P ′′(M) =
1

2
(M− tr(BM)A) +

1

2

(
M− tr(BM>)A>

)
= M− tr(BM)

A + A>

2
.

Our claim is finally justified by the immediate facts that (A + A>)/2 is a symmetric matrix and

that tr(B(A + A>)/2) = 1.

With Proposition 2 in place, we continue with the proof of the main result of this subsection.

Proof of Theorem 1. According to Proposition 2 applied to B = I, there is a minimal projection P
from Rk×k onto the subspace UI of zero-trace matrices that takes the form

M 7→M− tr(M)A for some symmetric A ∈ Rk×k with tr(A) = 1.

Now, given an orthogonal matrix V ∈ Rk×k, we define

PV(M) := V>P(VMV>)V = M− tr(M)V>AV.

We easily notice that PV takes values in UI and that it acts as the identity on UI, since

M ∈ UI ⇒ VMV> ∈ UI ⇒ P(VMV>) = VMV> ⇒ PV(M) = V>(VMV>)V = M.

In short, PV is a projection onto UI. It is in fact a minimal projection, since unitarily invariance

yields |||PV||| ≤ |||P||| in view of

‖PV(M)‖ = ‖V>P(VMV>)V‖ = ‖P(VMV>)‖ ≤ |||P|||‖VMV>‖ ≤ |||P|||‖M‖, M ∈ Rk×k.

Then, with µ denoting the Haar measure on the group O(k) of orthogonal matrices in Rk×k, one

readily sees that

P̂(M) :=

∫
O(k)
PV(M)dµ(V) = M− tr(M)Â, Â :=

∫
O(k)

V>AVdµ(V),

also defines a minimal projection onto UI. The symmetric matrix Â satisfies Â = U>ÂU for

all orthogonal matrices U ∈ Rk×k. This implies that Â is a diagonal matrix (by taking U with

columns composed of eigenvectors of A), next that the diagonal entries of Â are all equal (by taking

U as a permutation matrix), and finally that Â = Ik/k (by virtue of tr(Â) = tr(A) = 1). We have

therefore proved that the minimal projection P̂ takes the required form.

14
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It is worth pointing out that the projection exhibited in Theorem 1 is just the orthogonal projection

onto the subspace of zero-trace matrices with respect to the Frobenius norm. Its minimality was

of course clear when Rk×k is equipped with the Frobenius norm, i.e., the Schatten 2-norm, but it

was a priori not clear when Rk×k is equipped with the spectral norm (aka operator norm), i.e., the

Schatten ∞-norm, or with the nuclear norm (aka trace norm), i.e., the Schatten 1-norm. We may

now deduce the value of the projection constants for these norms.

Theorem 3. The projection constants of the subspace UI of zero-trace matrices in Rk×k equipped

with the spectral norm and with the nuclear norm are given by

λ
(
UI,Mk×k

S∞

)
= 2− 2

k
and λ

(
UI,Mk×k

S1

)
= 2− 2

k
.

Moreover, for any p ∈ [1,∞], the projection constant of this subspace in Mk×k
Sp

satisfies

λ
(
UI,Mk×k

Sp

)
≤
[
2− 2

k

]|p−2|/p

Proof. For the first part, Theorem 1 guarantees that it is enough to prove that, for all M ∈ Rk×k,

‖P(M)‖S∞ ≤ 2
k − 1

k
‖M‖S∞ and ‖P(M)‖S1 ≤ 2

k − 1

k
‖M‖S1 ,

where P(M) = M−(tr(M)/k)Ik, and that these inequalities turn to equalities for some M ∈ Rk×k.
Let then M ∈ Rk×k, or more generally M ∈ Ck×k. By Schur’s unitary triangularization theorem,

there is an upper triangular matrix T ∈ Ck×k and a unitary matrix U ∈ Ck×k such that

M = UTU∗, hence P(M) = U[T− (tr(T)/k)Ik]U
∗.

With λ1, . . . , λk ∈ C denoting the diagonal entries of T, the diagonal entries of [T − (tr(T)/k)Ik]

are λ1 −
(∑k

`=1 λ`

)
/k, . . . , λk −

(∑k
`=1 λ`

)
/k. Thus, we need to prove that

max
i∈J1:kK

∣∣∣∣∣λi − 1

k

k∑
`=1

λ`

∣∣∣∣∣ ≤ 2
k − 1

k
max
j∈J1:kK

|λj |,(9)

k∑
i=1

∣∣∣∣∣λi − 1

k

k∑
`=1

λ`

∣∣∣∣∣ ≤ 2
k − 1

k

k∑
j=1

|λj |,(10)

and that these inequalities are sharp for some λ1, . . . , λk ∈ R. To obtain (9), we write that, for all

i ∈ J1 : kK, ∣∣∣∣∣λi − 1

k

k∑
`=1

λ`

∣∣∣∣∣ =

∣∣∣∣∣∣
(

1− 1

k

)
λi +

1

k

n∑
`=1,`6=i

λ`

∣∣∣∣∣∣ ≤
(

1− 1

k

)
|λi|+

1

k

n∑
`=1,`6=i

|λ`|

≤
(

1− 1

k

)
max
j∈J1:kK

|λj |+
k − 1

k
max
j∈J1:kK

|λj | = 2
k − 1

k
max
j∈J1:kK

|λj |,
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as expected. Note that equality occurs by taking i = 1, λ1 = 1, and λ2 = · · · = λk = −1. To

obtain (10), we write

k∑
i=1

∣∣∣∣∣λi − 1

k

k∑
`=1

λ`

∣∣∣∣∣ =
k∑
i=1

∣∣∣∣∣∣
(

1− 1

k

)
λi +

1

k

∑
`=1,`6=i

λ`

∣∣∣∣∣∣ ≤
(

1− 1

k

) k∑
i=1

|λi|+
1

k

k∑
i,`=1,i 6=`

|λ`|

≤
(

1− 1

k

) k∑
i=1

|λi|+
1

k

n∑
`=1

(k − 1)|λ`| = 2
k − 1

k

k∑
j=1

|λj |,

as expected. Note that equality occurs by taking λ1 = 1 and λ2 = · · · = λk = 0.

For the second part, we simply apply Riesz–Thorin theorem to the operator

F : [λ1; . . . ;λk] ∈ Ck 7→

[
λ1 −

1

k

k∑
`=1

λ`; . . . ;λk −
1

k

k∑
`=1

λ`

]
∈ Ck,

which has just been shown to satisfy |||F |||∞→∞ = |||F |||1→1 = 2(k − 1)/k and which also satisfies

|||F |||2→2 = 1 (because the orthogonal projection P has norm one relative to the Schatten 2-norm).

It gives the required bound on |||F |||p→p, and in turn on |||P|||Sp→Sp
by the above arguments.

Theorem 3 has a direct implication on the value of the projection constant of the subspace of

zero-trace matrices relative to Ky-Fan norms, which are defined for s ∈ J1 : kK by

‖M‖(s) =
s∑
i=1

σi(M), M ∈ Rk×k.

We shall rely instead on an alternative characterization of these norms (see [4, Proposition IV.2.3]),

namely

‖M‖(s) = min
{
‖M′‖S1 + s‖M′′‖S∞ ,M = M′ + M′′

}
.

Corollary 4. The projection constant of the subspace UI of zero-trace matrices in Rk×k equipped

with the Ky-Fan s-norm obeys

λ
(
UI,Mk×k

(s)

)
≤ 2− 2

k
.

Proof. With P denoting the projection of Theorem 1, we are going to prove that, for all M ∈ Rk×k,

‖P(M)‖(s) ≤ 2
k − 1

k
‖M‖(s),

given that we already know |||P|||S1→S1
= |||P|||S∞→S∞ = 2(k − 1)/k. For M ∈ Rk×k, let us consider

M′,M′′ ∈ Rk×k with M = M′ + M′′ and ‖M‖(s) = ‖M′‖S1 + s‖M′′‖S∞ . Then the equality

P(M) = P(M′) + P(M′′) yields

‖P(M)‖(s) ≤ ‖P(M′)‖S1 + s‖P(M′′)‖S∞ ≤ |||P|||S1→S1
‖M′‖S1 + |||P|||S∞→S∞‖M

′′‖S∞

= 2
k − 1

k

(
‖M′‖S1 + s‖M′′‖S∞

)
= 2

k − 1

k
‖M‖(s),
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which is the desired result.

5 Minimal projections in polynomial spaces

In this section, we consider projections onto subspaces of Pn∞, i.e., of the n-dimensional space of

polynomials of degree at most n− 1 equipped with the max-norm

‖f‖∞ := max
x∈[−1,1]

|f(x)|.

5.1 Approximation of the optimization program

Given a subspace U of Pn∞, the original minimization program

minimize
P

|||P|||∞→∞ subject to P is a projection from Pn∞ onto U(11)

can be expressed in the equivalent form

minimize
d,P

d subject to P is a projection from Pn∞ onto U(12)

and to ‖Pf‖∞ ≤ d for all f ∈ Pn∞ with ‖f‖∞ ≤ 1.

As we do not see how to solve the program (12) exactly, we resort to computing the solutions of

approximate programs whose closeness to the true solution can be quantified. For this purpose,

the max-norm is substituted by the discrete norm

‖f‖[N ] := max
i∈J1:NK

|f(ti)|, ti := cos(θi), θi :=
(N − i)π
N − 1

.

On the one hand, it is clear that

‖f‖[N ] ≤ ‖f‖∞ for all f ∈ Pn∞.

On the other hand, given f ∈ Pn∞ and x ∈ [−1, 1] written as x = cos(θ) for some θ ∈ [0, π], we

choose i ∈ J1 : NK such that |θ − θi| ≤ π/(2(N − 1)), and we derive that

|f(x)| = |(f ◦ cos)(θ)| ≤ |(f ◦ cos)(θi)|+ |(f ◦ cos)(θ)− (f ◦ cos)(θi)|

≤ |f(ti)|+ ‖(f ◦ cos)′‖∞|θ − θi| ≤ ‖f‖[N ] + (n− 1)‖f ◦ cos ‖∞
π

2(N − 1)
,

where we have used Bernstein inequality for trigonometric polynomials of degree at most n− 1 in

the last step. Taking the maximum over x yields ‖f‖∞ ≤ ‖f‖[N ] + (π(n − 1))/(2(N − 1))‖f‖∞.
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Choosing N such that N − 1 is a multiple of n− 1, thus introducing a discretization index ν such

that

N = (n− 1)ν + 1,

a rearrangement gives

‖f‖∞ ≤
(

1− π/2

ν

)−1
‖f‖[N ] for all f ∈ Pn∞.

Thus, we obtain the estimates

max
f∈Pn

∞

‖Pf‖∞
‖f‖∞


≤

(
1− π/2

ν

)−1
× max

f∈Pn
∞

‖Pf‖[N ]

‖f‖[N ]
,

≥
(

1− π/2

ν

)
× max

f∈Pn
∞

‖Pf‖[N ]

‖f‖[N ]
,

max
f∈Pn

∞

‖Pf‖∞
‖f‖∞


≤

(
1− π/2

ν

)−1
× max

f∈Pn
∞

‖Pf‖[N ]

‖f‖∞
,

≥ 1 × max
f∈Pn

∞

‖Pf‖[N ]

‖f‖∞
.

It follows that the projection constant λn(U) of U in Pn∞, i.e., the solution of (11), satisfies(
1− π/2

ν

)
≤ λn(U)

λn(U;N,N)
≤
(

1− π/2

ν

)−1
and 1 ≤ λn(U)

λn(U;N)
≤
(

1− π/2

ν

)−1
,

where λn(U;N,N) is the solution of the program

minimize
d,P

d subject to P is a projection from Pn∞ onto U(13)

and to ‖Pf‖[N ] ≤ d for all f ∈ Pn∞ with ‖f‖[N ] ≤ 1

and λn(U;N) is the solution of the program

minimize
d,P

d subject to P is a projection from Pn∞ onto U(14)

and to ‖Pf‖[N ] ≤ d for all f ∈ Pn∞ with ‖f‖∞ ≤ 1.

We point out that both these optimization programs take the form

minimize
d,P

d subject to P is a projection from Pn∞ onto U

and to |(Pf)(ti)| ≤ d for all f ∈ Ω and all i ∈ J1 : NK

with different sets Ω for (13) and for (14). In the next two subsections, we show how familiar robust

optimization techniques (see e.g. [2, Theorem 1.3.4]) are used to transform (13) and (14) into a

linear program and into a semidefinte program, respectively. The details are spelled out for the

reader’s convenience.
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5.2 The first approximate program as a linear programming

We first look at a convenient parametrization of the set Ω corresponding to the program (13), which

is initially given by

Ω :=

{
f ∈ Pn∞ : ‖f‖[N ] = max

i∈J1:NK
|f(ti)| ≤ 1

}
.

Let (L̃1, . . . , L̃N ) denote the basis of PN∞ of fundamental Lagrange interpolating polynomials at the

Chebyshev points t1, . . . , tN of order N , i.e.,

L̃i ∈ PN∞ satisfies L̃i(tj) = δi,j .

Similarly, let (L1, . . . , Ln) denote the basis of Pn∞ of fundamental Lagrange interpolating polynomials

at the Chebyshev points of order n, which happen to be t1, tν+1, . . . , t(n−2)ν+1, t(n−1)ν+1 = tN . Any

f ∈ PN∞ with |f(ti)| ≤ 1 for all i ∈ J1 : NK can be written as f =
∑N

i=1 ciL̃i with −1 ≤ ci ≤ 1 for all

i ∈ J1 : NK, and the fact that f ∈ Pn∞ means that f can also be written as f =
∑n

j=1 c(j−1)ν+1Lj .

Since

Lj =

N∑
i=1

Bi,jL̃i, B ∈ RN×n having entries Bi,j = Lj(ti),

identifying the two expressions for f gives ci =
∑n

j=1Bi,jc(j−1)ν+1 for all i ∈ J1 : NK, or in short

c = B̃c, B̃ ∈ RN×Ncreated by inserting ν − 1 columns of 0’s between any two columns of B.

In summary, the set Ω can be parametrized as

Ω =


n∑
j=1

c(j−1)ν+1Lj , c ∈ RN satisfying c + 1 ≥ 0,−c + 1 ≥ 0, (I− B̃)c = 0

 .

It is then convenient to choose the basis v (hence also w) as the Lagrange basis (L1, . . . , Ln), so

that P(Lj) =
∑n

h=1 Ph,jLh. Thus, for f =
∑n

j=1 c(j−1)ν+1Lj ∈ Ω and for i ∈ J1 : NK, we have

P(f)(ti) =

 n∑
j=1

c(j−1)ν+1

(
n∑
h=1

Ph,jLh

) (ti) =

n∑
j=1

c(j−1)ν+1

n∑
h=1

Bi,hPh,j = ai(P )>c,

where ai(P ) ∈ RN is the vector with nonzero entries

ai(P )(j−1)ν+1 =

n∑
h=1

Bi,hPh,j = (BP)i,j , j ∈ J1 : nK,

i.e., ai(P ) is the (transpose of) the ith row of the matrix B̃P ∈ RN×N defined by inserting ν − 1

columns of 0’s between any two columns of BP ∈ RN×n. At this point, the program (13) can be
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expressed as

minimize
d,P

d subject to (U> ⊗ In)vec(P ) = vec(U), (Ũ> ⊗ Ũ>)vec(P ) = 0,

and to |ai(P )>c| ≤ d

whenever c + 1 ≥ 0,−c + 1 ≥ 0, (I− B̃)c = 0, all i ∈ J1 : NK.

Following robust optimization techniques, the above condition for a given i ∈ J1 : NK (where the

absolute value can be discarded by invariance upon the change c↔ −c) is written as[
max
c∈RN

ai(P )>c subject to c + 1 ≥ 0,−c + 1 ≥ 0, (I− B̃)c = 0

]
≤ d.

By classical duality theory (see e.g. [6, p.224-225]), this is equivalent to[
min

x,y,z∈RN
1>x + 1>y subject to x ≥ 0,y ≥ 0,x− y + (I− B̃)>z = −ai(P )

]
≤ d,

i.e., to the existence of xi,yi, zi ∈ RN with xi ≥ 0, yi ≥ 0, and xi − yi + (I − B̃)>zi = −ai(P )

such that 1>xi + 1>yi ≤ d. In conclusion, the program (13) is recast as the linear program

minimize
d,P,{xi,yi,zi}Ni=1

d subject to (U> ⊗ In)vec(P ) = vec(U), (Ũ> ⊗ Ũ>)vec(P ) = 0,(15)

to xi ≥ 0,yi ≥ 0,

to xi − yi + (I− B̃)>zi = −ai(P ),

and to 1>xi + 1>yi ≤ d, all i ∈ J1 : NK.

This is one of the programs implemented in the package MinProj. It is run by calling the command:

>>MinProjPoly(u,n,nu,’LP’)

The subspace U of V = Pn∞ is not input via the matrix of a basis of U relative to a basis of V as

done for coordinate and matrix spaces, but more conveniently as a polynomial basis of U listed

in a matlab cell u whose elements are classic chebfuns (the objects manipulated by the package

Chebfun). In this case, the dimension n of the polynomial superspace also needs to be specified.

The input nu represents the discretization index ν introduced earlier and ’LP’ indicates that the

user chooses to solve linear program (15). The output is a couple of values bounding the projection

constant of U in Pn∞ from below and above, respectively. An optional output can also be returned,

namely the pseudo minimal projection that solves the approximate program (15). Although the

latter has the appeal of being a linear program, we find the semidefinite program described below

more efficient.

5.3 The second approximate program as a semidefinite programming

The set Ω corresponding to the program (14) is initially given by

Ω = {f ∈ Pn∞ : ‖f‖∞ ≤ 1} .
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Note that the condition ‖f‖∞ ≤ 1 is equivalent to the two conditions 1−f(x) ≥ 0 for all x ∈ [−1, 1]

and 1 + f(x) ≥ 0 for all x ∈ [−1, 1]. In turn, expanding f on the basis of Chebyshev polynomials

of the first kind as f =
∑n

k=1 ckTk−1, these two nonnegativity conditions are equivalent (see e.g.

[13, Theorem 3]) to the existence of positive semidefinite matrices Q−,Q+ ∈ Rn×n such that∑
i,j∈J1:nK
i−j=k−1

Q±i,j =

{
± ck

2
, k ∈ J2 : nK,

1± c1, k = 1.

}
.

This is equivalent to

tr(Jk(Q
+ −Q−)) = ck and tr(Jk(Q

+ + Q−)) = δ1,k,

where J1 is half the identity matrix (it has 1/2’s on the main (first) diagonal and 0’s everywhere

else), and for k ∈ J2 : nK, Jk is the symmetric matrix with 1/2’s on the kth subdiagonal and kth

superdiagonal and 0’s everywhere else. Thus, the set Ω can be parametrized as

Ω =

{
n∑
k=1

tr(Jk(Q
+ −Q−))Tk−1, Q−,Q+ ∈ Rn×n satisfying Q− < 0,Q+ < 0,

and tr(Jk(Q
+ + Q−)) = δ1,k, k ∈ J1 : nK

}
.

It is then convenient to choose the basis v (hence also w) as the Chebyshev basis (T0, . . . , Tn−1),

so that P(Tk−1) =
∑n

h=1 Ph,kTh−1. Thus, for f =
∑n

k=1 tr(Jk(Q
+ −Q−))Tk−1 and for i ∈ J1 : NK,

we have

P(f)(ti) =

[
n∑
k=1

tr(Jk(Q
+ −Q−))

(
n∑
h=1

Ph,kTh−1

)]
(ti) = tr(Ai(P )(Q+ −Q−)),

where Ai(P ) ∈ Rn×n is the symmetric Toeplitz matrix depending linearly on P defined by

Ai(P ) =
n∑
k=1

n∑
h=1

Ph,kTh−1(ti)Jk.

The program (14) can now be expressed as

minimize
d,P

d subject to (U> ⊗ In)vec(P ) = vec(U), (Ũ> ⊗ Ũ>)vec(P ) = 0,

and to |tr(Ai(P )(Q+ −Q−))| ≤ d
whenever Q− < 0,Q+ < 0, tr(Jk(Q

+ + Q−)) = δ1,k, k ∈ J1 : nK, all i ∈ J1 : NK.

Following robust optimization techniques, the above condition for a given i ∈ J1 : NK (where the

absolute value can be discarded by invariance upon the change Q± ↔ Q∓) is written as[
max

Q−,Q+∈Rn×n
tr(Ai(P )(Q+ −Q−)) subject to Q− < 0,Q+ < 0,

and to tr(Jk(Q
+ + Q−)) = δ1,k, k ∈ J1 : nK

]
≤ d.
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By classical duality theory (see e.g. [6, p.264-265]), this is equivalent to[
min
z∈Rn

z1 subject to

n∑
k=1

zkJk < −Ai(P ),

n∑
k=1

zkJk < Ai(P )

]
≤ d,

i.e., to the existence of zi ∈ Rn with
∑n

k=1 z
i
kJk < −Ai(P ) and

∑n
k=1 z

i
kJk < Ai(P ) such that

zi1 ≤ d. In conclusion, the program (14) is recast as the semidefinite program

minimize
d,P,{zi}Ni=1

d subject to (U> ⊗ In)vec(P ) = vec(U), (Ũ> ⊗ Ũ>)vec(P ) = 0,(16)

to

n∑
k=1

zikJk < −Ai(P ),

n∑
k=1

zikJk < Ai(P ),

and to zi1 ≤ d, all i ∈ J1 : NK.

This is the other program implemented in the package MinProj to compute projection constants in

polynomial spaces. It is run by calling the command

>>MinProjPoly(u,n,nu,’SDP’)

As before, the input u is a cell listing a polynomial basis for the subspace U as classic chebfuns,

n is the dimension of the polynomial superspace, nu is the discretization parameter, and ’SDP’

indicates that the user chooses to solve the semidefinite program (16). A lower and upper bound

for the projection constant are output by default, and the pseudo minimal projection solving (16)

can also be returned optionally.

5.4 Computations of some projection constants

In this subsection, we exploit MinProjPoly to compute some lower and upper bounds for the

projection constants of some polynomial subspaces. The outcomes can be duplicated by running

the reproducible file of this article. We start by considering the 2-codimensional subspace Vn−20,0 of

Pn∞ consisting of polynomials vanishing at the endpoints −1 and 1. The solutions of the semidefinite

program from n = 3 to n = 11 are summarized in Table 2.

Table 2: Projection constants for polynomials vanishing at the endpoints (index ν = 200).

λ(Vn−20,0 ,Pn∞) n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

Lower bound 1.0000 1.1106 1.1358 1.1390 1.1374 1.1349 1.1323 1.1299 1.1277

Upper bound 1.0079 1.1194 1.1448 1.1480 1.1464 1.1439 1.1412 1.1388 1.1366

We continue by tabulating the values of lower and upper bounds for the projection constants of

Pm∞ interpreted as a subspace of Pn∞ for 2 ≤ m < n ≤ 11, see Table 3. It is instructive to compare

these values with the bounds for the absolute projection constants λ(Pm∞) = maxn>m λ(Pm∞,Pn∞)
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Table 3: Projection constants for m-dimensional polynomial spaces in n-dimensional polynomial

spaces (index ν = 200). Each box contains an lower bound (top) and an upper bound (bottom).

λ(Pm∞,Pn∞) m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

n = 3
1.0000

1.0079

n = 4
1.0000

1.0079

1.1992

1.2087

n = 5
1.0000

1.0079

1.1997

1.2092

1.3195

1.3300

n = 6
1.0000

1.0079

1.2125

1.2221

1.3195

1.3300

1.4063

1.4174

n = 7
1.0000

1.0079

1.2134

1.2230

1.3331

1.3437

1.4063

1.4174

1.4726

1.4842

n = 8
1.0000

1.0079

1.2153

1.2249

1.3347

1.3453

1.4168

1.4280

1.4726

1.4843

1.5251

1.5372

n = 9
1.0000

1.0079

1.2156

1.2252

1.3360

1.3466

1.4170

1.4282

1.4799

1.4916

1.5252

1.5373

1.5679

1.5803

n = 10
1.0000

1.0079

1.2163

1.2259

1.3368

1.3474

1.4208

1.4320

1.4799

1.4916

1.5306

1.5427

1.5688

1.5812

1.6034

1.6161

n = 11
1.0000

1.0079

1.2167

1.2263

1.3380

1.3486

1.4225

1.4337

1.4837

1.4954

1.5306

1.5427

1.5738

1.5863

1.6061

1.6188

1.6335

1.6464

that were tabulated up to m = 11 in [14] (the exact value of λ(Pm∞) is only known for m = 2 and

m = 3, see [8, 9]). It is also interesting to verify the statement of [16] that the minimal projection

Pmin from Pm+1
∞ to Pm∞ is an interpolating projection. Note that checking that there are indeed

m points x1, . . . , xm ∈ [−1, 1] such that Pmin(f)(xi) = f(xi) for all f ∈ Pm+1
∞ reduces to verifying

the fact that Pmin(Tm) − Tm has m zeros in [−1, 1]. For m = 5, say, this fact is substantiated

by Figure 2, which plots P(Tm) − Tm where P approximates the minimal projection Pmin as the

projection output by MinProjPoly.

6 Minimal extensions from coordinates spaces

We conclude the article by showing how minimal extensions can also be computed within the

framework we have presented. Since this is not the main topic of this work, the procedure has not

been implemented in the package MinProj, but the following example can nonetheless be duplicated

from the reproducible file. We focus on the case V = `n∞, although any space with a polyhedral

norm can in principle be handled in the same way, e.g. V = `n1 ,Mk×k
∞→∞, orMk×k

1→1. We also require

the norm on W to be computable, either explicitly or via a semidefinite relaxation. The latter is
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Figure 2: The pseudo minimal projections from P6
∞ to P5

∞ that solve programs (15) (left) and (16)

(right) are interpolating projections (index ν = 300).

the situation encountered below where W = P`∞ is the space of polynomials of degree at most `− 1

equipped with the max-norm on [−1, 1]. Taking n > `, we set V = `n∞ and we consider the subspace

U of V given by

U =
{

[P (t1), ; . . . ;P (tn)], P ∈ P`∞
}

relatively to an arbitrary choice of points t1 < · · · < tn ∈ [−1, 1]. With (L1, . . . , Ln) denoting the

Lagrange basis of Pn∞ at these points, we define the linear map A : U→ P`∞ by

(17) A : [c1; . . . ; cn] 7→
n∑
j=1

cjLj .

The map A has values in P`∞ by virtue of the identity P =
∑n

j=1 P (tj)Lj for all P ∈ Pn∞, and in

particular for all P ∈ P`∞. As usual, the problem of minimal extension of A is transformed into

minimize
d,P

d subject to P is an extension of A

and ‖Pε‖∞ ≤ d for all ε ∈ {±1}n.

Choosing u = {[Ti−1(t1); . . . ;Ti−1(tn)], i ∈ J1 : `K} as the basis for U and w = {Tj−1, j ∈ J1 : `K}
as the basis for W, the map A is clearly represented by the matrix A = I`. Therefore, with

U = [u1| · · · |u`] ∈ Rn×`, the constraint (i’) reads

(U> ⊗ I`)vec(P ) = vec(I`),

while the constraint (ii’) is absent in view of ran(A) = P`∞. The other constraints are, for all

ε ∈ {±1}n,

|P(ε)(x)| =

∣∣∣∣∣∣
n∑
j=1

εj

(∑̀
i=1

Pi,jTi−1

)
(x)

∣∣∣∣∣∣ ≤ d for all x ∈ [−1, 1].
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After eliminating the absolute value in view of invariance up to the change ε ↔ −ε, they reduce

to the 2n constraints

∑̀
i=1

 n∑
j=1

εjPi,j

Ti−1(x) ≥ −d for all x ∈ [−1, 1].

Each of these constraints, as a nonnegativity condition for a polynomial, admits a semidefinite

relaxation (note, however, that the exponential number of them makes the approach impracticable

for moderately large n). Precisely, according to [13, Theorem 3], the constraint corresponding to a

fixed ε ∈ {±1} is equivalent to the existence of a positive semidefinite matrix Qε ∈ R`×` such that,

for any k ∈ J1 : `K,

(18)
∑

i−j=k−1
Qε
i,j =

d+
∑n

j=1 P1,jεj , k = 1,∑n
j=1 Pk,jεj

2
, k > 1.

All in all, a minimal extension of A is determined by solving the semidefinite program

minimize
d,P,{Qε}ε

d subject to (U> ⊗ I`)vec(P ) = vec(I`)(19)

and to Qε < 0 together with (18), all ε ∈ {±1}n.

The extension constants of A are given for different values n in Table 4. The first row was computed

for ` = 3 with t1 < · · · < tn chosen as the locations of the extrema of the Legendre polynomial

Pn−1, while the second row was computed for ` = 4 with t1 < · · · < tn chosen as the locations of the

extrema of the Chebyshev polynomial Tn−1. We point out that each of these extension constants

is an upper bound for the absolute projection constant λ(P`∞) = λ(P`∞, C[−1, 1]) of the space P`∞.

Indeed, with P : `n∞ → P`∞ denoting a minimal extension of A and with D : C[−1, 1]→ `n∞ defined

by D(f) = [f(t1); · · · ; f(tn)], it is not hard to see that PD is a projection from C[−1, 1] onto P`∞
and that

‖PDf‖∞ ≤ |||P|||‖Df‖∞ ≤ |||P|||‖f‖∞ for all f ∈ C[−1, 1],

so that λ(P`∞) ≤ |||PD||| ≤ |||P|||. In particular, the upper bound 1.2206 for ` = 3 is quite close to

the true value ≈ 1.2201 obtained in [8] for the absolute projection constant of the quadratics and

the upper bound 1.3653 for ` = 4 is not too far either from the range [1.3539, 1.3576] obtained in

[14] for the absolute projection constant of the cubics.

Table 4: Extension constants of the map (17) with Legendre (` = 3) and Chebyshev (` = 4) points.

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14

` = 3 1.2282 1.2736 1.2238 1.2479 1.2221 1.2374 1.2211 1.2320 1.2206 1.2288

` = 4 1.7370 1.5106 1.4098 1.4183 1.3878 1.3840 1.3789 1.3689 1.3744 1.3653
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