
Computing a Quantity of Interest from Observational Data

Ronald DeVore, Simon Foucart, Guergana Petrova, and Przemyslaw Wojtaszczyk ∗

March 28, 2018

Abstract

Scientific problems often feature observational data received in the form w1 = l1(f), . . .,
wm = lm(f) of known linear functionals applied to an unknown function f from some Banach
space X , and it is required to either approximate f (the full approximation problem) or to
estimate a quantity of interest Q(f). In typical examples, the quantities of interest can be the
maximum/minimum of f or some averaged quantity such as the integral of f , while the observa-
tional data consists of point evaluations. To obtain meaningful results about such problems, it
is necessary to possess additional information about f , usually as an assumption that f belongs
to a certain model class K contained in X . This is precisely the framework of optimal recovery,
which produced substantial investigations when the model class is a ball in a smoothness space,
e.g. when it is a unit ball in Lipschitz, Sobolev, or Besov spaces. This paper is concerned with
other model classes described by approximation processes, as studied in [15]. Its main contri-
butions are: (i) designing implementable optimal or near-optimal algorithms for the estimation
of quantities of interest, (ii) constructing linear optimal or near-optimal algorithms for the full
approximation of an unknown function using its point evaluations.

While the existence of linear optimal algorithms for the approximation of linear functionals
Q(f) is a classical result established by Smolyak, a numerically friendly procedure that performs
this approximation is not generally available. In this paper, we show that in classical recovery
settings such linear optimal algorithms can be produced by constrained minimization methods.
We illustrate these techniques on several examples involving the computation of integrals using
point evaluation data.

In addition, we show that linearization of optimal algorithms can be achieved for the full
approximation problem in the important situation where the lj are point evaluations and X is
a space of continuous functions equipped with the uniform norm. It is also revealed how quasi-
interpolation theory enables the construction of linear near-optimal algorithms for the recovery
of the underlying function.
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1 Introduction

In many scientific settings, data is given about an unknown function f , and the typical tasks consist
in using this data to either recover f (full approximation of f) or to answer some questions about it
(recovery of a quantity of interest for f), e.g., to evaluate its integral over a domain, its maximum
on the domain, etc. Such problems fall into the realm of optimal recovery and form a major topic in
information-based complexity, which provides a general theory describing optimal and near-optimal
algorithms. This theory requires the specification of (i) the form of the data; (ii) a measure for the
quality of performance; and (iii) what information about f is available, in addition to the data.

Most existing results on optimal recovery, as is the case here as well, treat the setting where
the data is given by linear functionals and where the quality of performance is measured by a norm
‖ · ‖X on a Banach space X . The departing point in the present paper lies in (iii). It is common in
optimal recovery to assume as an additional information about f that it lies in a compact subset
K of X , typically described by a smoothness condition such as membership to f in the unit ball
of Lipschitz, Sobolev, or Besov spaces. We assume instead that the additional information about
f quantifies how well it can be approximated by a fixed linear or nonlinear space. In this case,
we show that one can explicitly construct optimal or near-optimal algorithms for both the full
approximation problem and the quantity of interest problem and numerically implement them in
classical scenarios. Our results build on those of [15], but emphasize more the numerical feasibility
and computational performance of the recovery algorithms.

To give an overview of this paper, we consider first the task of approximating the function f it-
self, i.e., the full approximation problem, where f lives in an (infinite-dimensional) normed space X .
Our setting for (i) is that the data come in the form of a measurement map M : X → Rm, where

M(f) := (l1(f), . . . , lm(f)) = (w1, . . . , wm) = w ∈ Rm,

and where the lj ’s are linear functionals on X . Without loss of generality, we can assume that
these measurement functionals are linearly independent as elements of the dual space X ∗. By
an algorithm for approximating f from the data, we simply mean a (typically nonlinear) map
A : Rm → X taking the data w = M(f) and creating a substitute A(w) for f . For (ii), we fix a
norm ‖ · ‖X on X and we characterize the performance of the algorithm by the error

E(f,M,A)X := ‖f −A(M(f))‖X .

Concerning (iii), we note that without further information about f (other than the fact that
f ∈ X ), the zero algorithm A0, that is A0(w) = 0 for every w ∈ Rm, will be at least as good
as any algorithm A, in the sense that there is at least one g ∈ X \ {0} such that E(g,M,A)X ≥
E(g,M,A0)X = ‖g‖X . Indeed, for any nonzero h in the null space of M , we have

2‖h‖X = ‖h− (−h)‖X = ‖(h−A(0))− (−h−A(0))‖X
≤ ‖h−A(0)‖X + ‖ − h−A(0)‖X = E(h,M,A)X + E(−h,M,A)X ,

so either E(h,M,A)X ≥ ‖h‖X , in which case we select g = h, or E(−h,M,A)X ≥ ‖ − h‖X , in
which case we select g = −h. Thus, to obtain meaningful results, we need additional information
about f , as mentioned in (iii). This takes the form of a postulate that the functions f belong to a
certain model class K ⊂ X . It is often assumed (e.g. in information-based complexity) that K is
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a compact set, but we will mostly deal with noncompact sets in this paper. Given this additional
information, we consider the global performance of the proposed algorithm A,

E(K,M,A)X := sup
f∈K

E(f,M,A)X ,

which is the maximal error over the model class K, and the pointwise performance as defined by

E(Kw,M,A)X := sup
f∈Kw

E(f,M,A)X ,

where Kw := {f ∈ K : M(f) = w} is the set of all functions f in the given model class whose
measurement vector is w.

We are interested in optimal or near-optimal recovery algorithms for approximation from data,
namely, in the algorithms that attain or come close to attaining

E∗(K,M)X := inf
A
E(K,M,A)X ,

where the infimum is taken over all maps A : Rm → X . This is the central problem of optimal
recovery. There is a simple theoretical description of best algorithms for recovery (see, for example,
[8, 22, 23, 28]) using the so-called Chebyshev ball. Namely, given the measurement vector w ∈ Rm,
we let B(gw, Rw) be a smallest ball in X that contains Kw. Then an optimal algorithm A∗ : Rm → X
is the mapping which sends w to gw and whose performance is given by

E(Kw,M,A∗)X = Rw.

This is the pointwise optimal error. The algorithm A∗ also yields the global optimal error, namely

E∗(K,M)X = E(K,M,A∗)X = sup
w∈Rm

Rw.

While the above provides a nice theoretical description of optimal algorithms, it is not readily
applicable since it may be a formidable task to find the Chebyshev ball of Kw. Typical results in
optimal recovery consider special sets K (often unit balls of smoothness spaces) with the error metric
chosen as an Lp norm or the uniform norm. The present paper focuses on different model classes,
involving approximability criteria by a set V of functions used as approximants. Usually, V is a
finite-dimensional linear space of polynomials, splines, or wavelets, or a nonlinear set encountered
in sparse approximation. More precisely, we introduce the following model classes.

Approximation Set: Given an ε > 0 and a set V ⊂ X , we define the approximation set as

K(ε, V )X := {f ∈ X : dist(f, V )X ≤ ε}.

A finer model class is obtained by taking the intersection of such approximation sets.

Approximation Class: Given a nonincreasing sequence of numbers ε0 ≥ · · · ≥ εn ≥ εn+1 ≥
· · · ≥ 0 and a sequence of sets V0, . . . , Vn, Vn+1, . . . ⊂ X , we define the approximation class as

K((εn), (Vn))X :=
⋂
n≥0

K(εn, Vn)X .
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Our motivation for studying these two cases of model classes is threefold. Firstly, classical
smoothness spaces can be described as approximation classes by using the existing theory of ap-
proximation, precisely, direct and inverse theorems. For instance, standard theorems about ap-
proximation by trigonometric polynomial, spline, and wavelet spaces Vn characterize approxima-
tion classes with εn � n−r as Besov spaces (see [14]). Similar characterizations hold for nonlinear
approximation as well (see [13]). Secondly, in some cases of interest to us, such as parametric PDEs
where K is the solution manifold to the PDE as the parameter varies, our information about K
tells us how well K can be approximated by certain finite-dimensional spaces V . For more on this,
we refer the reader to the discussion in [6]. Lastly, any numerical algorithm for optimal recovery
will be based on some form of approximation and its performance will be determined by the ap-
proximation sets or approximation classes for this form of approximation. A benefit of studying
model classes consisting of approximation sets is that we can very precisely characterize optimal
performance and describe optimal algorithms (see [6, 15]).

The majority of this paper studies the performance of algorithms on approximation sets. In
the previous works [6, 15], we have constructed near-optimal algorithms for the approximation sets
K = K(ε, V )X for general Banach spaces X when V is a linear space of dimension n ≤ m, and we
have shown that the performance of such algorithms can be determined a priori. To recall the main
points, we introduce, for any two sets A,B ⊂ X , the quantity

µ(A,B)X := sup
f∈A,g∈B−B

‖f‖X
‖f − g‖X

, (1.1)

which can be interpreted as the reciprocal of the angle between A and B−B := {b1−b2, b1, b2 ∈ B}.
Notice that µ(A,B)X ≥ 1. The quantities µ(A,B)X and µ(B,A)X are generally different, but in
case A and B are linear spaces, we have

µ(A,B)X ≤ 1 + µ(B,A)X . (1.2)

Now, let N := {f ∈ X : M(f) = 0} be the null space of the measurement map M . Then, the
performance estimates in [15] show that

E(K(ε, V )X ,M,A)X ≤ 2µ(N , V )X ε

holds for an appropriately chosen algorithm A, and it is proved that such an estimate cannot be
improved in the sense that

E∗(K(ε, V )X ,M)X ≥ µ(N , V )X ε.

One can then view µ(N , V )X as assessing the quality of the data when coupled with the assumption
that the class of functions is well approximated by V .

Another interesting point proved in [15] (see Theorem 5.1 there) is the construction of near-
optimal algorithms that do not require knowledge of the value of ε defining the model class K =
K(ε, V )X . Such algorithms are universal in the sense that they can be applied to the general setting
of data fitting. Thus, since an arbitrary f ∈ X always belongs to the approximation set K(ε, V )X
with ε := dist(f, V )X , the approximation A(M(f)) to f uses only the data M(f) and the knowledge
of the space V to guarantee the performance bound

‖f −A(M(f))‖X ≤ C µ(N , V )X dist(f, V )X , f ∈ X .
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The quantity µ(N , V )X can be explicitly evaluated in several concrete situations discussed in
[15] and [7]. Note that there are other results in this direction (see e.g. [27, 28, 2, 3]) addressing
the general problem of reconstruction in Hilbert spaces, and considering in particular the full
approximation problem in specific settings, such as X being the space of continuous functions, V a
space of polynomials, and data consisting of values at equispaced points, or X being an L2 space,
V a space of polynomials, and data consisting of Fourier coefficients.

The present paper discusses two main topics: the full recovery of unknown functions f and
the recovery of quantities of interest Q(f), both using only the measurement M(f) ∈ Rm. We
are particularly concerned with the construction of numerically friendly optimal or near-optimal
algorithms. Note that, for the task of computing a quantity of interest Q(f) instead of fully
approximating f , one expects a smaller error than for the full approximation problem. We will
clarify this gain.

We begin in §2 by discussing some results on optimal performance that are valid for the recovery
of f as well as for the estimation of quantities of interest Q(f). These simple and somewhat folklore
extensions of the full approximation theory show that, for approximation sets and for the estimation
of quantities of interest, the optimal performance can be explicitly determined.

In §3, we consider quantities of interest q that are linear functionals. It is a well-known fact,
first discovered by Smolyak (see e.g. [5]), that the problem of approximating q admits optimal
algorithms that are linear maps from Rm to R. To our knowledge, the proofs of this fact are
functional analytic and it is not apparent how to convert them into numerical algorithms. In §3.1,
we give another proof of the existence of a linear optimal algorithm for the approximation of the
linear functional q (see Theorem 3.1), and later in the paper we use the proof ingredients to actually
implement the linear algorithm. In §3.2, we discuss the case of compressed sensing and the gain
in approximating directly q(x), rather than first finding an approximant x̃ to the vector x and
then calculating q(x̃). In §3.3, we apply our theory to the concrete example of finding optimal
quadrature formulas based on values at equidistant points in order to estimate the integral (our
quantity of interest) of functions in C[−1, 1].

Next, the paper examines the full approximation of functions f ∈ C(D) based on point values.
After recalling some known results in §4.1, we establish in §4.2 the existence of a linear optimal
algorithm for the recovery of f (see Theorem 4.2). Despite being a theoretically interesting fact,
the theorem does not directly provide a numerical recipe for constructing such a linear optimal
algorithm. As a remedy, we exploit in §4.3 quasi-interpolation theory to propose computable linear
near-optimal maps for the recovery of f . Indeed, the fact that the space V admits explicit quasi-
interpolants in many classical settings, such as polynomial and spline approximation, enables us
to computationally construct linear near-optimal algorithms for the full approximation problem in
C(D). Finally, in §4.4, we apply our theory and discuss the full recovery of f ∈ C[−1, 1] based on
values at equidistant points.

In closing, §5 puts our algorithms to the test of several examples involving construction of
optimal quadrature formulas and computation of function approximants in C[−1, 1]. We also
provide details about our practical implementations.

2 Optimal performance for full recovery and quantities of interest

In this section, algorithmic considerations are left aside. The goal is merely to highlight what is
theoretically achievable. We present easy extensions of the results from [6, 15] in two directions,
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when V may not be a linear space and when a full approximation of f may not be necessary but only
a quantity of interest for f needs to be evaluated. In order to handle the cases of full approximation
and estimation of functionals at once, we let Q denote a mapping from X into another normed
space Y. So in the case of full approximation, we simply take Y = X and Q = I (the identity map)
and in the case of estimating a functional l applied to f (e.g. the integral of f over D), we take
Y = R and Q = l.

As before, to obtain meaningful results, we require the additional information that f belongs
to some model class K. The global performance of an algorithm A : Rm → Y that approximates
Q(f) from the data M(f) is characterized by the worst case error over K, i.e.,

E(Q,K,M,A) := sup
f∈K
‖Q(f)−A(M(f))‖Y . (2.1)

The global optimal performance is then given by

E∗(Q,K,M) := inf
A
E(Q,K,M,A), (2.2)

where the infimum is taken over all maps A : Rm → Y. We also consider the pointwise optimal
performance given, for any w ∈ Rm, by

E∗(Q,Kw,M) := inf
A

sup
f∈Kw

‖Q(f)−A(w)‖Y . (2.3)

For any subset V of X , we introduce the set

V := V − V = {f − g, f, g ∈ V }, (2.4)

and define the quantity

µ(N , V,Q)X := sup
η∈N

‖Q(η)‖Y
dist(η,V)X

, (2.5)

where N denotes again the null space of the measurement map M . Note that (2.5) agrees with (1.1)
when Q = I. The crucial role played by µ(N , V,Q)X is revealed in the following theorem, which
follows from well-known results in optimal recovery [28, 22] adapted to our case of approximation
sets. We shall write

rad(S)Y := inf{r : S ⊂ B(y, r) for some y ∈ Y}

to denote the Chebyshev radius of a set S ⊂ Y.

Theorem 2.1. Let Q : X → Y be any map between normed spaces X and Y.
(i) For any set K ⊂ X and any w ∈ Rm,

E∗(Q,Kw,M) = rad(Q(Kw))Y . (2.6)

If the infimum defining rad(Q(Kw))Y is attained for a ball B(y, r), then the algorithm assigning to
w ∈ Rm the center y of this ball is an optimal algorithm.
(ii) For any ε > 0 and any set V ⊂ X ,

E∗(Q,K(ε, V )X ,M) = sup
w

rad(Q(Kw(ε, V )X ))Y ≤ sup
w

diam(Q(Kw(ε, V )))Y

≤ 2µ(N , V,Q)X ε. (2.7)
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(iii) If Q : X → Y is a linear map, then for any ε > 0 and any set V ⊂ X satisfying the property
αV ⊂ V for all α > 0, one has

sup
w

diam(Q(Kw(ε, V )))Y = 2µ(N , V,Q)X ε, (2.8)

and
µ(N , V,Q)X ε ≤ E∗(Q,K(ε, V )X ,M) ≤ 2µ(N , V,Q)X ε. (2.9)

Proof: (i) This well-known fact follows from the pointwise optimal performance (2.3), that is

E∗(Q,Kw,M) = inf
y∈Y

sup
g∈Q(Kw)

‖g − y‖Y = rad(Q(Kw))Y .

(ii) For w ∈ Rm, let us consider f, g ∈ Kw(ε, V )X . Note that

dist(f − g,V)X ≤ dist(f, V )X + dist(g, V )X ≤ 2ε,

where the first inequality holds because, for all v1, v2 ∈ V, the definition (2.4) ensures that

dist(f − g,V)X ≤ ‖(f − g)− (v1 − v2)‖X = ‖(f − v1)− (g − v2)‖X ≤ ‖f − v1‖X + ‖g − v2‖X .

Then, the fact that f − g ∈ N and the definition (2.5) of µ := µ(N , V,Q)X yield

‖Q(f − g)‖Y ≤ µ dist(f − g,V)X ≤ 2µ ε.

Therefore, we have diam(Q(Kw(ε, V )))Y ≤ 2µ ε for all w ∈ Rm, which is the rightmost inequality
in (2.7). Since E∗(Q,K(ε, V )X ,M) = supw E

∗(Q,Kw(ε, V )X ,M), the rest of (2.7) follows from (i)
and the standard comparison between the Chebyshev radius and diameter of a set.

(iii) Because of (ii), we can clearly assume that µ > 0. Let us fix µ′ ∈ (0, µ) and then choose
η ∈ N such that ‖Q(η)‖Y > µ′ dist(η,V)X . With α = 2ε/dist(η,V)X , the linearity of Q gives
‖Q(αη)‖Y = α‖Q(η)‖Y > 2εµ′, while αV ⊂ V yields dist(αη,V)X ≤ αdist(η,V)X = 2 ε. So,
replacing η ∈ N by αη ∈ N , we may assume that ‖Q(η)‖Y > 2εµ′ and dist(η,V)X ≤ 2ε. The latter
means that there exist v1, v2 ∈ V such that h := (η − v1 + v2)/2 satisfies ‖h‖X≤ε (if existence is
not guaranteed, we can argue using limiting arguments). Since η = 2h+v1−v2 ∈ N , we can define
w ∈ Rm by

w := M(h+ v1) = M(−h+ v2).

Note that
dist(h+ v1, V )X ≤ ‖h‖X≤ε, dist(−h+ v2, V )X ≤ ‖ − h‖X≤ε,

and therefore h+ v1 and −h+ v2 both belong to Kw(ε, V )X for our choice of w. We derive that

diam(Q(Kw(ε, V )))Y ≥ ‖Q(h+ v1)−Q(−h+ v2)‖Y = ‖Q(2h+ v1 − v2)‖Y = ‖Q(η)‖Y > 2µ′ ε.

Since this is true for all µ′ ∈ (0, µ), we have that

diam(Q(Kw(ε, V )))Y ≥ 2µ ε,

and the desired equality (2.8) follows by taking (ii) into consideration. To prove (2.9), we only need
to show the leftmost inequality. To do so, with w as defined above, we observe that

E∗(Q,K(ε, V )X ,M) ≥ E∗(Q,Kw(ε, V )X ,M) = rad(Q(Kw(ε, V )))Y ≥
1

2
diam(Q(Kw(ε, V )))Y

= µ(N , V,Q)X ε,

where we used (2.6) and the fact that the diameter of a set is at most twice its Chebyshev radius. 2
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Remark 2.2. The lower bound for E∗(Q,K(ε, V )X ,M) in (2.9) does not hold in general, even
when V is a linear space, since we can find a nonlinear quantity of interest Q : X → R for
which E∗(Q,K(ε, V )X ,M) = 0 while µ(N , V,Q)X > 0. Indeed, let us pick some η ∈ N such
that dist(η, V )X > 0, choose ε := dist(η, V )X /2, and consider the quantity of interest defined by
Q(f) := dist(f,K)X , with K denoting K(ε, V ) here. For any f ∈ K, selecting v ∈ V such that
‖f − v‖X ≤ ε, we have

‖η − f‖X ≥ ‖η − v‖X − ‖f − v‖X ≥ dist(η, V )X − ε = dist(η, V )X /2,

so that Q(η) = dist(η,K)X ≥ dist(η, V )X /2. It follows from (2.5) that µ(N , V,Q)X ≥ 1/2. On the
other hand, with A0 denoting the zero algorithm, we derive form (2.1)-(2.2) that

E∗(Q,K(ε, V )X ,M) ≤ sup
f∈K
|Q(f)−A0(M(f))| = sup

f∈K
dist(f,K)X = 0.

2.1 Theoretical optimal and near-optimal algorithms for full approximation

Theorem 2.1 reveals the optimal performance achievable for the full recovery of f or the evaluation
of a quantity of interest for f from the measurement M(f), but it does not provide an optimal or
near-optimal algorithm to do so. In this subsection, we review what the existing theory (mainly
the results from [15]) says about near-optimal algorithms in the case Q = I. This existing theory
will be extended in several directions later on.

It is known (and established again in Theorem 2.1) that the mapping A∗ sending w to the
center of a Chebyshev ball of Kw(ε, V )X is a pointwise optimal algorithm. However, A∗ is only of
theoretical interest, since it is usually impractical to find a Chebyshev center.1

On the other hand, any map A sending w = M(f) to an arbitrary point in Kw(ε, V )X is a
pointwise near-optimal algorithm as it provides the performance bound

‖f −A(w)‖X ≤ 2 rad(Kw(ε, V )X ), f ∈ K(ε, V )X .

One way of producing such a point in Kw(ε, V )X is to solve the minimization problem

A(w) := argmin
f∈X

dist(f, V )X subject to M(f) = w, (2.10)

since A(w) will always belong Kw(ε, V )X provided this set is nonempty. But again, this algorithm
may only be of theoretical interest because implementing it numerically could be impractical,
especially if V is not a convex set. However, the algorithm (2.10) has the attractive feature that it
does not require an a priori knowledge of ε to be executed and performs according to the estimate

‖f −A(M(f))‖X ≤ 2µ(N , V )X dist(f, V )X , f ∈ X ,

as a result of (2.7) applied with ε = dist(f, V )X .

1It is worth mentioning that the classical notion of Chebyshev center of a set considered in this paper is different
from the more computable notion considered in [9], which corresponds to the center of the largest ball contained in
the given set.
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2.2 Theoretical optimal and near-optimal algorithms for quantities of interest

Instead of the full approximation of f , we consider in this subsection the approximation of a quantity
of interest Q(f) from the given measurement M(f), where Q : X → R is a (not necessarily linear)
functional. The implications of Theorem 2.1 in this case are again somewhat folklore and are
included only for completeness of our presentation. Under the assumption that N ∩ V = {0}
(which we always make, since otherwise µ(N , V )X = +∞), the set Kw(ε, V ) is bounded for any
w ∈ Rm since it has a finite diameter (see Theorem 2.1 (ii) in the case of full approximation).
If its image under Q is also bounded2, then the Chebyshev ball of Q(Kw(ε, V )) is the interval
[Q−(w), Q+(w)], where

Q−(w) := inf
f∈Kw(ε,V )

Q(f) and Q+(w) := sup
f∈Kw(ε,V )

Q(f),

with center

A∗Q(w) :=
Q−(w) +Q+(w)

2
.

Clearly the theoretical algorithm A∗Q is pointwise optimal with performance given by the Chebyshev
radius

δ(w) := E∗(Q,Kw(ε, V )X ,M) =
Q+(w)−Q−(w)

2
, (2.11)

and the global optimal performance is

E∗(Q,K(ε, V )X ,M) = sup
w∈Rm

Q+(w)−Q−(w)

2
. (2.12)

From here, we can improve the estimate (ii) of Theorem 2.1 for the Chebyshev radius when Q is a
sublinear functional (e.g. Q(f) = max f), as the following lemma indicates.

Lemma 2.3. Let Q : X → R be a functional and let V be an arbitrary subset of X .
(i) If Q is a sublinear functional, namely Q(αf) = αQ(f), for α > 0 and Q(f+g) ≤ Q(f)+Q(g),

then, for any w ∈ Rm for which Q(Kw(ε, V )) is bounded, the Chebyshev radius δ(w) satisfies the
estimate

δ(w) = E∗(Q,Kw(ε, V ),M) ≤ µ(N , V,Q)X ε. (2.13)

(ii) If Q is a linear functional and N is the null space of the measurement map M = (l1, . . . , lm),
then

µ(N , V,Q)X ≤ dist(Q,L)X ∗µ(N , V )X , (2.14)

where L := span{l1, . . . , lm} ⊂ X ∗.
(iii) If Q is a linear functional and V ⊂ X satisfies the property αV ⊂ V for all α > 0, then

E∗(Q,K(ε, V )X ,M) = µ(N , V,Q)X ε ≤ dist(Q,L)X ∗µ(N , V )X ε.

Proof: If f+, f− ∈ Kw(ε, V ) are functions for which Q(f±) equal Q±(w) (or are arbitrarily close
to Q±(w) in case the extrema are not attained), then (2.11) and the fact that f+ − f− ∈ N give

2δ(w) = Q(f+)−Q(f−) ≤ Q(f+ − f−) ≤ µ(N , V,Q)X dist(f+ − f−,V)X

≤ µ(N , V,Q)X [dist(f+, V )X + dist(f−, V )X ] ≤ 2µ(N , V,Q)X ε,

2There are various conditions on Q ensuring that Q(Kw(ε, V )) is bounded, e.g. Q being a Lipschitz map.
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and the proof of (i) is completed. As for (ii), with l∗ denoting a best approximation to Q from L
relative to the norm in X ∗, estimate (2.14) follows from

µ(N , V,Q)X = sup
η∈N

|Q(η)|
dist(f,V)X

= sup
η∈N

|(Q− l∗)(η)|
dist(f,V)X

≤ sup
η∈N

‖Q− l∗‖X ∗‖η‖X
dist(f,V)X

= dist(Q,L)X ∗µ(N , V )X .

A combination of the left inequality in (2.9), of (2.13), and of (2.14) yields (iii). 2

From a numerical point of view, we have to determine if the optimal algorithm A∗Q or some
near-optimal algorithm A′Q can be computed without an exhaustive search over all elements from
Kw(ε, V ). This can of course be done in the following simple way: use a construction for the full
approximation problem to produce f ′ = A(M(f)) ∈ Kw(ε, V ) and apply Q to form Q(f ′), namely
consider the algorithm A′Q(w) := Q(A(w)). Clearly A′Q is a pointwise near-optimal algorithm since
Q(f ′) ∈ [Q−(w), Q+(w)], and hence

|Q(f)−Q(f ′)| ≤ 2δ(w).

The pressing question is now whether there exist other near-optimal algorithms for quantities of
interest that can be computed at a fraction of the cost of solving the full approximation problem.
We will show in §3.1 that the answer to this question is affirmative. We emphasize that the
optimal performance is also improved by approximating the quantity of interest directly rather
than performing the full approximation and then applying Q.

3 Linear real-valued quantities of interest

In this section, we consider quantities of interest Q : X → R that are linear functionals. We will
denote them by q. It is a well-known fact that there is a linear map A∗ : Rm → R which is an
optimal algorithm for the computation of q(f) from the measurements w = M(f) whenever f ∈ K,
with K being a general symmetric convex set. The existence of such an A∗ was first established
by Smolyak and then discussed in several papers (see e.g. [5]). All proofs we have seen are based
on supporting functionals for convex sets and it is not clear to us whether such an approach can
be implemented numerically (with the possible exception of special cases where the linear optimal
algorithm is unique).

In §3.1, we give another construction of a linear optimal algorithm in the case where K is
an approximation set. The advantage of this new construction is that it can be implemented
numerically. Indeed, later in this paper, we employ this proof to numerically construct such linear
maps in a variety of classical settings. In §3.2, we give a striking example with a nonlinear space V ,
showing the benefit of approximating q(f) directly rather than first approximating f in full and
applying q next. In §3.3, we close the section with an application of the theory to the case of
equispaced point evaluations.

3.1 A linear optimal algorithm when V is a linear space

We assume here that V is a linear subspace of X . We prove that, in this favorable but not
uncommon situation, one can find an optimal (not just near-optimal) linear algorithm A∗q for the
approximation of q. The map A∗q is precomputed offline once and for all by solving a minimization
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problem and can be used for all observational data w = M(f) ∈ Rm. This was also observed in [5]
for a more general situation (see also [25] for the complex setting), but the proof given there is not
constructive. Here, we propose an explicit construction of A∗q that will be implemented in several
examples (see §5.1 and §5.2) and will also be the basis for our treatment of the full approximation
problem in §4.

As before, we denote by L := span{l1, . . . , lm}, where the lj ’s are the measurement functionals
in M = (l1, . . . , lm). It follows from our standing assumption V ∩ N = {0} (recall that otherwise
µ(N , V )X =∞) that the set Lq := {l ∈ L : l(v) = q(v) for all v ∈ V } is nonempty. Thus, we may
consider a best approximation to q from the convex set Lq, i.e.,

l∗ ∈ argmin
l∈Lq

‖q − l‖X ∗ . (3.1)

Because l∗ ∈ L, we can write

l∗ =
m∑
j=1

a∗j lj (3.2)

for some a∗ ∈ Rm. Such a vector a∗ is not unique in general, as we shall see in §5.1.

Theorem 3.1. Let X be a Banach space and V ⊂ X be a finite-dimensional subspace in X of
dimension n ≤ m. Let q ∈ X ∗ be a linear functional on X . If a∗ ∈ Rm satisfies (3.1)-(3.2), then
the mapping A∗q : Rm → R defined by

A∗q(w) =

m∑
j=1

a∗jwj , w ∈ Rm,

is a linear optimal algorithm for the approximation of q(f) from the data w = M(f), namely

|q(f)−A∗q(M(f))| ≤ µ(N , V, q)X dist(f, V )X for all f ∈ X . (3.3)

Proof: Consider the linear functional λ defined on N+V by λ(η) = q(η) for all η ∈ N and λ(v) = 0
for all v ∈ V . Any extension λ̃ of λ defined on the whole X is precisely of the form λ̃ = q − l for
some l ∈ Lq. Since a Hahn–Banach extension of λ is an extension with minimal norm, it follows
from the definition of l∗, see (3.1), that q − l∗ is a Hahn–Banach extension of λ, and

‖q − l∗‖X ∗ = ‖q − l∗‖(N+V )∗ .

As such, we have

‖q − l∗‖X ∗ = sup
‖η+v‖X≤1

|(q − l∗)(η + v)| = sup
‖η+v‖X≤1

|(q − l∗)(η)|

= sup
‖η+v‖X≤1

|q(η)| = sup
dist(η,V )X≤1

|q(η)| = µ(N , V, q)X , (3.4)

where the third equality uses the fact that q − l∗ vanishes on V , the fourth equality uses the fact
that l∗ vanishes on N , and the last equality is the definition of µ(N , V, q)X . Then, for any f ∈ X ,
picking v ∈ V such that ‖f − v‖X = dist(f, V )X , we obtain

|q(f)−A∗q(M(f))| = |q(f)− l∗(f)| = |q(f − v)− l∗(f − v)| = |(q − l∗)(f − v)|
≤ ‖q − l∗‖X ∗‖f − v‖X = µ(N , V, q)X dist(f, V )X .

This proves (3.3), and therefore E(q,K(ε, V )X ,M,A∗q) ≤ µ(N , V, q) ε. Together with Lemma 2.3,
part (iii), this establishes the optimality of the algorithm A∗q . 2
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Remark 3.2. The algorithm A∗q possesses the attractive feature that it does not require an a priori
knowledge of ε to be executed.

3.2 Nonlinear space V : the case of compressive sensing

We now place ourselves in the well-studied setting of compressive sensing to emphasize another
advantage of directly computing linear quantities of interest q(x), x ∈ RN , from the measurements
M(x) ∈ Rm. More precisely, we show that the approximation of q(x) with a desired accuracy may
be feasible whereas the full approximation to x with the same accuracy is impossible.

Here, we deal with the space X = `Np , 1 ≤ p ≤ ∞, and the set V = Σs of s-sparse vectors in RN .
Note that V is not a linear space and that V = Σ2s. The measurement map M can be viewed as an
m×N matrix acting on vectors x ∈ RN . One premise of compressive sensing is the user’s ability
to select good matrices M for the purpose of recovering exactly the elements of Σs. Our view is
different here, as the measurements are given to us and we do not have the luxury of choosing
them. Nonetheless, (2.10) provides an algorithm A with the performance bound

‖x−A(M(x))‖`Np ≤ 2µ(N ,Σs)`Np σs(x)`Np , (3.5)

where σs(x)`Np is the error of best s-term approximation, i.e.,

σs(x)`Np := inf
z∈Σs

‖x− z‖`Np .

Two major achievements of compressive sensing were the realizations that there exist many
measurement matrices M yielding µ(N ,Σs)`N1

≤ 2 provided m & s ln(eN/s) (this result is known

in relation with the so-called null space property, see [10], [18, Chapter 11]) and that the `1-
minimization

A(w) := argmin
Mz=w

‖z‖`N1 (3.6)

constitutes a near-optimal algorithm for these favorable matrices. We note that, even though the
performance estimate (3.5) holds for any measurement matrix M , it is unclear that constructing a
near-optimal algorithm with an acceptable cost (like (3.6)) can be done for arbitrary M . We also
note that, when p > 1, a number of measurements m much larger than s ln(eN/s) is needed to
make µ(N ,Σs)`Np bounded by an absolute constant. For example, when p = 2, one needs m � N
even with s = 1.

The situation becomes more interesting for the approximation of a quantity of interest q that
is a linear functional, namely

q(x) = 〈ξ,x〉, (3.7)

where ξ ∈ RN is a fixed vector assumed without loss of generality to satisfy ‖ξ‖`N2 = 1. Let us

restrict our attention to the most detrimental case, namely X = `N2 . Since the performance of the
optimal algorithm is governed by µ(N ,Σs, q)`N2

, see Lemma 2.3, part (iii), we inquire about the
range of m making it possible to bound the quantity

µ(N ,Σs, q)`N2
= sup

η∈N

〈ξ, η〉
σ2s(η)`N2

(3.8)
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by an absolute constant. This clearly depends on ξ. At one extreme, if ξ is a row of M , then
µ(N ,Σs, q)`N2

= 0. At the other extreme, if ξ is an extremal vector in the definition of µ(N ,Σs)`N2
,

i.e., ξ ∈ N , ‖ξ‖`N2 = 1, and σ2s(ξ)`N2
= 1/µ(N ,Σs)`N2

, then

µ(N ,Σs, q)`N2
≥ 〈ξ, ξ〉
σ2s(ξ)`N2

= µ(N ,Σs)`N2
. (3.9)

In other words, the approximation of this quantity of interest is as bad as the full approximation,
so that m � N measurements are needed even with s = 1.

In a more positive direction, we isolate the following simple result.

Lemma 3.3. If ξ ∈ RN is such that ‖ξ‖`N2 = 1 and |ξj | ≤ C/
√
N , j = 1, . . . , N , then the linear

functional q(·) = 〈ξ, ·〉 satisfies the inequality

µ(N ,Σs, q)`N2
≤ Cµ(N ,Σs)`N1

. (3.10)

Proof: For any η ∈ N , we have

|q(η)| = |〈ξ, η〉| ≤ C√
N
‖η‖`N1 ≤

C√
N
µ(N ,Σs)`N1

σ2s(η)`N1
≤ Cµ(N ,Σs)`N1

σ2s(η)`N2
.

Dividing throughout by σ2s(η)`N2
and taking the supremum over η yields (3.10). 2

This simple result has an interesting consequence for m×N matrices M with m � s log(eN/s)
and µ(N ,Σs)`N1

bounded by an absolute constant. Indeed, for such matrices and for ξ as in the

lemma, approximating the quantity of interest q(x) = 〈ξ,x〉 can be performed to accuracy σs(x)`N2
for all x ∈ `N2 , whereas the approximation of x itself to this accuracy is not possible because m � N
does not hold.

3.3 Integral approximation from equispaced point evaluations

In this subsection, we discuss a concrete example where our abstract theory applies. We work with
X = C[−1, 1], the linear space V = Pn−1 of algebraic polynomials of degree at most n − 1, and a
measurement map M given by point evaluations at the equispaced points −1 = τ1 < · · · < τm = 1
defined by

τj = −1 +
2(j − 1)

m− 1
, j = 1, . . . ,m.

The quantity of interest is q(f) =
1∫
−1

f(x) dx.

Let us take a step back, though, and not work with equispaced points and polynomial spaces
right away. Thus, we are looking for quadrature formulas where the points x1, . . . , xm are specified.
We have seen that the optimal performance is dictated by the quantity

µint(x1, . . . , xm;V ) := sup
η(x1)=···=η(xm)=0

1∫
−1

η

dist(η, V )C[−1,1]
. (3.11)
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We want to understand the dependence of this quantity on m and n, in particular for the equispaced
points. We also seek to establish that one can do better (in terms of error and not only in terms of
computational cost) when directly computing this integral rather than fully approximating f and
taking the integral afterwards. We start by pointing out an alternative expression which is easier
to handle than (3.11).

Lemma 3.4. For any x1, . . . , xm ∈ [−1, 1] and any n-dimensional subspace V of C[−1, 1],

µint(x1, . . . , xm;V ) = 2 + sup
v∈V

1∫
−1

v

max
1≤j≤m

|v(xj)|
.

Proof: Let us denote

σ := sup
v∈V

1∫
−1

v

max
1≤j≤m

|v(xj)|
.

Given a function η ∈ C[−1, 1] with η(x1) = · · · = η(xm) = 0, we consider an element v ∈ V such that
‖η−v‖C[−1,1] = dist(η, V )C[−1,1]. From max1≤j≤m |v(xj)| = max1≤j≤m |(η−v)(xj)| ≤ ‖η−v‖C[−1,1],
we derive that

1∫
−1

η

dist(η, V )C[−1,1]
=

1∫
−1

(η − v + v)

‖η − v‖C[−1,1]
≤

1∫
−1

η − v
‖η − v‖C[−1,1]

+

1∫
−1

v

max1≤j≤m |v(xj)|
≤ 2 + σ.

Taking the supremum over η yields µint(x1, . . . , xm;V ) ≤ 2 + σ. To prove the reverse inequality,

let us consider v ∈ V such that max1≤j≤m |v(xj)| = 1 and
1∫
−1

v = σ. For an arbitrarily small δ > 0,

choose hδ ∈ C[−1, 1] with ‖hδ‖C[−1,1] = 1, hδ(xj) = −v(xj) for all j = 1, . . . ,m, and hδ(x) = 1 for
all x in a set of measure 2 − δ. Setting η := hδ + v ∈ C[−1, 1], we have η(x1) = · · · = η(xm) = 0
and dist(η, V )C[−1,1] ≤ ‖η − v‖C[−1,1] = ‖hδ‖C[−1,1] = 1. Therefore,

µint(x1, . . . , xm;V ) ≥

1∫
−1

η

dist(η, V )C[−1,1]
≥

1∫
−1

(hδ + v) =

1∫
−1

hδ +

1∫
−1

v ≥ 2− 2δ + σ.

Since δ > 0 was arbitrary, we arrive at µint(x1, . . . , xm;V ) ≥ 2 + σ, which concludes the proof. 2

Let us now return to the case of the space Pn−1 and of equidistant points τj , j = 1, . . . ,m. We
use the notation

µint
m,n := µint(τ1, . . . , τm;Pn−1),

while µ̃m,n stands for a quantity closely related to µ(N ,Pn−1)C[−1,1] (see (4.28)-(4.29) below),
namely

µ̃m,n := max
p∈Pn−1

‖p‖C[−1,1]

max
1≤j≤m

|p(τj)|
.

The following lemma relating µint
m,n and µ̃m,n holds.
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Lemma 3.5. For all integers m ≥ n ≥ 1, one has

2 +
8

(n+ 1)2
µ̃2
m,b(n−1)/2c ≤ µ

int
m,n ≤ 4 +

n− 1

m− 1
µ̃m,n.

Proof: According to Lemma 3.4, it is enough to show that

8

(n+ 1)2
µ̃m,b(n−1)/2c ≤ σ ≤ 2 +

n− 1

m− 1
µ̃m,n, where σ := max

p∈Pn−1

1∫
−1

p

max
1≤j≤m

|p(τj)|
.

To prove the upper estimate, let us consider p ∈ Pn−1 with max1≤j≤m |p(τj)| = 1. Note that
‖p‖C[−1,1] ≤ µ̃ := µ̃m,n. For an arbitrary γ > 1, let

J := {j = 1, . . . ,m− 1 : max
[τj ,τj+1]

p > γ}.

Since there are at least two zeros of p− γ in (τj , τj+1) for each j ∈ J , and since p− γ has at most
n− 1 zeros in total, we derive that |J | ≤ (n− 1)/2. It follows that

1∫
−1

p =
∑
j 6∈J

τj+1∫
τj

p+
∑
j∈J

τj+1∫
τj

p ≤
∑
j 6∈J

τj+1∫
τj

γ +
∑
j∈J

τj+1∫
τj

µ̃ ≤ 2γ +
n− 1

2

2

m− 1
µ̃ = 2γ +

n− 1

m− 1
µ̃.

We obtain the required upper bound by letting γ → 1 and then by taking the maximum over p.
For the lower estimate, consider an extremal polynomial q ∈ Pb(n−1)/2c in the definition of

µ̃m,b(n−1)/2c, normalized so that max1≤j≤m |q(τj)| = 1 and ‖q‖C[−1,1] = µ̃m,b(n−1)/2c. Note that the
polynomial p := q2 ∈ Pn−1 satisfies max1≤j≤m |p(τj)| = 1. Therefore, we have

σ ≥
1∫
−1

p =

1∫
−1

q2 ≥ 2

(b(n− 1)/2c+ 1)2
‖q‖2C[−1,1] ≥

8

(n+ 1)2
µ̃2
m,b(n−1)/2c,

where we have used the sharp comparison between the C[−1, 1] and L2[−1, 1] norms on Pd with
d = b(n− 1)/2c, that is (see Lemma 6.1 in the Appendix)

‖r‖2C[−1,1] ≤
(d+ 1)2

2
‖r‖2L2[−1,1], r ∈ Pd. (3.12)

The proof is now complete.
2

The latter lemma provides an error estimate for the quadrature formula generated by our theory,
as formalized in the following theorem.

Theorem 3.6. Let
1∫
−1

f ≈ A∗(f(τ1), . . . , f(τm))
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be a quadrature formula produced by Theorem 3.1 with X = C[−1, 1], V = Pn−1, and equispaced
points −1 = τ1 < · · · < τm = 1. There are constants c, C > 0 such that, if n ≤ c

√
m lnm, then

∣∣∣∣
1∫
−1

f −A∗(f(τ1), . . . , f(τm))

∣∣∣∣ ≤ C dist(f,Pn−1)C[−1,1] for all f ∈ C[−1, 1]. (3.13)

Proof: Theorem 3.1 ensures that, for all f ∈ C[−1, 1],

∣∣∣∣
1∫
−1

f −A∗(f(τ1), . . . , f(τm))

∣∣∣∣ ≤ µint
m,n dist(f,Pn−1)C[−1,1].

From Lemma 3.5 and the fact that µ̃m,n ≤ β
n2

m for some β > 1 (see [11]), when n ≤ c
√
m lnm with

c2 = 1/(3 lnβ), we have

µint
m,n ≤ 4 +

n

m
β
n2

m ≤ 4 +
c
√

lnm√
m

e(lnβ)c2(lnm) = 4 +
c
√

ln(m)√
m

m1/3 ≤ C,

which implies that (3.13) holds. 2

We are now ready to deliver the main message of this section: given data at m equispaced
points, the range of n enabling the approximation of the integral of continuous functions f with
accuracy dist(f,Pn−1)C[−1,1] is larger than the range enabling the approximation of the functions
themselves with the same accuracy. Indeed, we know on the one hand (see Theorem 2.1, part (iii)
with Q = I) that no matter the procedure A : Rm → C[−1, 1], there is an f ∈ C[−1, 1] with
dist(f,Pn−1)C[−1,1] ≤ ε such that

‖f −A(f(τ1), . . . , f(τm))‖C[−1,1] ≥ µm,n ε,

where

µm,n := µ(N ,Pn−1)C[−1,1] = sup
η(τ1)=···=η(τm)=0

‖η‖C[−1,1]

dist(η,Pn−1)C[−1,1]
.

Thus, if targeted estimates of the type ‖f −A(f(τ1), . . . , f(τm))‖C[−1,1] ≤ C dist(f,Pn−1)C[−1,1] are
to be valid for all f ∈ C[−1, 1], we must have µm,n ≤ C, which imposes n ≤ c

√
m, as will become

apparent later in §4.4. On the other hand, Theorem 3.6 shows that (3.13) holds with n as large as
c
√
m lnm. In passing, we also point out that A∗ constitutes a stable algorithm in the sense that

‖A∗‖`m∞→R ≤ C.

4 Algorithms for full approximation in C(D)

We return in this section to the task of providing a full approximation to f in the setting X = C(D)
from the measurements w = M(f) = (f(x1), . . . , f(xm)), where xj ∈ D, j = 1, . . . ,m. We also
assume that V is a linear space of dimension n ≤ m.

We start with a discussion (see §4.1) about what is known on numerically executable near-
optimal algorithms for the full recovery of f . We emphasize that, up to this point, the near-optimal
algorithms are generally nonlinear and involve the solution of a convex optimization problem, similar
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to `1-minimization in terms of complexity (see [15] or R2 in §4.1). Next, we further study the full
approximation problem and assume for some results that V contains constant functions. If this is
not the case, one can append the function v ≡ 1 to V and end up with an (n + 1)-dimensional
space V̄ ⊃ V . Note however that µ(N , V̄ )C(D) will generally be larger than µ(N , V )C(D).

In §4.2, we first show that there always exist optimal algorithms which are linear. The proof
of this fact is not constructive. In §4.3, we turn next to the question of practical constructions of
linear algorithms which are near-optimal. Our constructions are based on quasi-projectors and can
be carried out numerically in classical settings, for example, when the approximation space V is a
space of trigonometric or algebraic polynomials. In §4.4, we close the section with an application
of the theory to the case of equispaced point evaluations.

4.1 Known results

The results listed below were obtained in [15], except for (4.1), which is proved in the appendix.

R1: Let N be the null space of the measurement map M . Then, we have

µ(N , V )C(D) = 1 + µ(V,N )C(D), (4.1)

and

µ(V,N )C(D) = max
v∈V

‖v‖C(D)

max
1≤j≤m

|v(xj)|
. (4.2)

R2: Given the data w = M(f) ∈ Rm, we consider the function v := v(w) ∈ V defined by

v := argmin
u∈V

max
1≤j≤m

|u(xj)− wj |, (4.3)

and make a correction3 to interpolate the data by forming

A(w) := v(w) +
m∑
i=1

(wi − v(w)(xi))ψi, (4.4)

where ψ1, . . . , ψm ∈ C(D) are any functions with disjoint supports, norm one, and satisfying
ψi(xj) = δi,j. Then the mapping A : Rm → C(D) provides a pointwise near-optimal algorithm, i.e.,
for each w ∈ Rm,

sup
f∈Kw

‖f −A(w)‖C(D) ≤ 2 rad(Kw)C(D).

R3: For each f ∈ C(D),

‖f −A(M(f))‖C(D) ≤ 4µ(N , V )C(D) dist(f, V )C(D).

Estimates of this type cannot be improved, except for reduction of the constant 4.

Although the algorithm just described is pointwise and globally near-optimal on approximation
sets, its deficiency lies in its numerical implementation. Indeed, given the observational data

3The correction (4.4) may be omitted, since a pointwise near-optimal algorithm is already provided by w 7→ v(w),
but it makes the algorithm A data-consistent.
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w = M(f), not only is the minimization problem (4.3) quite costly, but solving it has to be done
whenever new data w ∈ Rm comes in. In contrast, we will show in §4.2 that there is a linear
algorithm of the form

A(w) =

m∑
j=1

wjφj

for some suitably chosen functions φ1, . . . , φm ∈ C(D) which is optimal. Furthermore, in many
classical settings, i.e., for many choices for V , we will present an implementable numerical recipe
to find a linear algorithm of the above form which is near-optimal. Such linear algorithms have the
clear advantage of avoiding to solve (4.3) for each new set of measurements.

4.2 Linear optimal algorithms

We establish here the existence of a linear optimal algorithm A∗ : Rm → C(D) for the recovery
of functions f ∈ C(D) from the point values w = M(f) = (f(x1), . . . , f(xm)) at m distinct points
x1, . . . , xm ∈ D. For any x ∈ D, we write δx for the linear functional defined by δx(f) := f(x). As
before, we denote by L ⊂ C(D)∗ the subspace of all linear functionals spanned by the lj ’s, where
now lj = δxj , j = 1, . . . ,m, that is

L :=

{
λa =

m∑
j=1

ajδxj , a ∈ Rm
}
.

Continuing to work under the assumption that V is a linear subspace of C(D) of dimension n ≤ m,
we consider the subspace Lδx of L given by

Lδx := {λ ∈ L : λ(v) = δx(v) for all v ∈ V }.

We apply Theorem 3.1 to the linear functional q = δx. In the case x 6∈ {x1, . . . , xm}, since

‖δx − λa‖X ∗ = 1 +
m∑
j=1

|aj |,

a solution a∗ = a∗(x) ∈ Rm to the minimization problem

minimize
a∈Rm

m∑
j=1

|aj | subject to
m∑
j=1

ajv(xj) = v(x) for all v ∈ V (4.5)

provides a best approximation λa∗ to δx from Lδx and we observe that (see (3.4))

µ(N , V, δx)C(D) = ‖δx − λa∗‖X ∗ = 1 +

m∑
j=1

|a∗j (x)|. (4.6)

On the other hand, when x = xj for some j = 1, . . . ,m, we have δx = δxj , and therefore the best
approximation to δx from the set Lδx is δxj . We thus set a∗(xj) = ej , the j-th unit vector from the
standard basis for Rm. We now define the algorithm A∗ : Rm → C(D) by

A∗(w)(x) := A∗δx(w) =

m∑
j=1

wja
∗
j (x). (4.7)
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Clearly, the linear mapping A∗ is data-consistent, in the sense that

A∗(w)(xj) = wj for all w ∈ Rm and all j = 1, . . . ,m.

Moreover, it is a pointwise optimal algorithm for the recovery of f(x), x ∈ D, since (3.3) reads

|f(x)−A∗(M(f))(x)| = |f(x)−A∗δx(M(f))| ≤ µ(N , V, δx)C(D) dist(f, V )C(D).

As already observed by Bakhvalov (see [5]), it follows that, for any x ∈ D,

|f(x)−A∗(M(f))(x)| ≤ µ(N , V )C(D) dist(f, V )C(D),

so taking the supremum over x should provide a globally optimal algorithm, except that so far A∗

is only known to map into L∞(D) rather than in X = C(D). But let us recall that a∗(x) may not
be uniquely defined when x 6∈ {x1, . . . , xm}, i.e., the set

Λx := {a ∈ Rm : λa is a best approximation to δx from Lδx} (4.8)

may contain more than one element. We are going to show that we can select an element in this
set in such a way that x ∈ D 7→ a∗(x) ∈ Λx is continuous, so that the algorithm A∗ introduced
in (4.7) does indeed map into C(D). The proof uses the following result.

Lemma 4.1. Let θ1, . . . , θN be N distinct points in Rn with convex hull C := conv{θ1, . . . , θN}.
Then there exist continuous functions ψi : C → R, ψi ≥ 0, i = 1, . . . , N , with

N∑
i=1

ψi(θ) = 1,
N∑
i=1

ψi(θ)θi = θ, θ ∈ C.

Moreover, these functions can be chosen to satisfy

ψi(θj) = δi,j , i, j = 1, . . . , N. (4.9)

This lemma, except for (4.9), can be found in [19]. We supply a proof of the complete statement
in the appendix. We are now in the position to state and prove the main result of this subsection.

Theorem 4.2. Let V be an n-dimensional subspace of C(D) that contains the constant functions.
Then there is a linear pointwise optimal algorithm A∗ : Rm → C(D) for the recovery of any
f ∈ C(D) from the measurement M(f) = (f(x1), . . . , f(xm)) ∈ Rm, where xj are m distinct points
in D. More precisely, for each x ∈ D, one has

|f(x)−A∗(M(f))(x)| ≤ µ(N , V, δx)C(D)dist(f, V )C(D) for all f ∈ C(D).

The algorithm A∗ is also globally optimal for the full approximation problem, in the sense that

‖f −A∗(M(f))‖C(D) ≤ µ(N , V )C(D) dist(f, V )C(D) for all f ∈ C(D).

Proof: We shall rely on Lemma 4.1 to make a continuous selection x 7→ (a∗1(x), . . . , a∗m(x)) of the
functions appearing in the definition (4.7) of the algorithm A∗. Let (v1, . . . , vn) denote a basis for V
with v1 ≡ 1. For each x ∈ D, we consider the vector θ(x) ∈ Rn given by

θ(x) :=


v1(x)
v2(x)

...
vn(x)

 =


1

v2(x)
...

vn(x)

 ,
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and we define θ1, . . . , θm, θm+1, . . . , θ2m ∈ Rn by

θj := θ(xj), θm+j = −θj , j = 1, . . . ,m.

Note that each θm+i, i = 1, . . . ,m, is distinct from any θj , j = 1, . . . ,m, because their first
coordinates are different. It is easy to verify that the expression

‖θ‖ = min

{ m∑
j=1

|aj | :
m∑
j=1

ajθj = θ

}
, θ ∈ Rn, (4.10)

defines a norm on Rn (called the atomic norm for the set of atoms {θ1, . . . , θm, θm+1, . . . , θ2m})
whose unit ball is

C := conv{θ1, . . . , θm, θm+1, . . . , θ2m}.

We notice that, for every x ∈ D,
‖θ(x)‖ ≥ 1.

This follows from the definition (4.10), since
∑m

j=1 ajθj = θ(x) implies, by looking at the first
coordinate, that

∑m
j=1 aj = 1, and in turn that

∑m
j=1 |aj | ≥ 1. Moreover, we clearly have ‖θj‖ ≤ 1.

Therefore,
‖θj‖ = 1, j = 1, . . . ,m. (4.11)

We separate two cases.
Case 1: All of the θ1, . . . , θm are distinct. Since θ(x)/‖θ(x)‖ ∈ C, we use Lemma 4.1 to write

θ(x)

‖θ(x)‖
=

2m∑
j=1

ψj

(
θ(x)

‖θ(x)‖

)
θj ,

so that

θ(x) =

m∑
j=1

a∗j (x)θj , with a∗j (x) := ‖θ(x)‖
(
ψj

(
θ(x)

‖θ(x)‖

)
− ψm+j

(
θ(x)

‖θ(x)‖

))
. (4.12)

Since the vector θ(x) varies continuously with x ∈ D and the ψj ’s are continuous, the functions
a∗1, . . . , a

∗
m thus defined are also continuous on D.

Next, we prove that, for each x ∈ D, the vector a∗(x) = (a∗1(x), . . . , a∗m(x)) belongs to Λx (see
(4.8) for the definition of Λx). When x = xj for some j = 1, . . . ,m, this follows from (4.12), (4.11),
and (4.9), since

a∗i (xj) = ψi(θj)− ψm+i(θj) = δi,j − 0 = δi,j ,

hence a∗(xj) = ej ∈ Λxj . In the case x 6∈ {x1, . . . , xm}, we have to check that a∗(x) minimizes∑m
j=1 |aj | subject to the constraint

∑m
j=1 ajv(xj) = v(x) for all v ∈ V . The latter constraint can

be expressed as
∑m

j=1 ajθj(x) = θ(x), and thus we just need to check that
∑m

j=1 |a∗j (x)| ≤ ‖θ(x)‖,
which is easily obtained from

m∑
j=1

|a∗j (x)| ≤
m∑
j=1

‖θ(x)‖
(
ψj

(
θ(x)

‖θ(x)‖

)
+ ψm+j

(
θ(x)

‖θ(x)‖

))
= ‖θ(x)‖

2m∑
j=1

ψj

(
θ(x)

‖θ(x)‖

)
= ‖θ(x)‖.
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Case 2: Some of the θ1, . . . , θm coincide. Let there be exactly k distinct θj , and by reindexing
if necessary, we can assume that θ1, . . . , θk are distinct. We consider the continuous functions
a∗1, . . . , a

∗
k associated with θ1, . . . , θk as defined in Case 1. For each j = 1, . . . , k, we denote by

I(j) := {i : θi = θj},

and we consider nonegative continuous functions g
(j)
i , i ∈ I(j), defined on D and satisfying

g
(j)
i (xi′) = δi,i′ , i, i′ ∈ I(j), and

∑
i∈I(j)

g
(j)
i ≡ 1.

For each i = 1, . . . ,m, we denote by j(i) the index j = 1, . . . , k such that θj = θi, and we introduce

ãi(x) := g
(j(i))
i (x)a∗j(i)(x), x ∈ D.

Clearly, ã1, . . . , ãm are continuous, so we only need to check that ã(x) = (ã1(x), . . . , ãm(x)) ∈ Λx.
Suppose first that x = xi′ for some i′ = 1, . . . ,m. Notice that (4.12) yields a∗j (xi′) = a∗j (xj(i′)) for
all j = 1, . . . ,m. It follows that, for each i = 1, . . . ,m,

ãi(xi′) = g
(j(i))
i (xi′)a

∗
j(i)(xj(i′)) =

{
g

(j(i))
i (xi′)× 0 = 0, if j(i) 6= j(i′),

g
(j)
i (xi′)× 1 = δi,i′ , if j(i) = j(i′) =: j.

This shows that ãi(xi′) = δi,i′ , i.e., that ã(xi′) = ei′ ∈ Λxi′ . Turning to the case x 6∈ {x1, . . . , xm},
we start by verifying that

∑m
i=1 ãi(x)θi = θ(x), which is seen from

m∑
i=1

ãi(x)θi =
k∑
j=1

∑
i∈I(j)

ãi(x)θj =
k∑
j=1

∑
i∈I(j)

g
(j)
i (x)a∗j (x)θj =

k∑
j=1

a∗j (x)θj = θ(x).

Finally, we have to prove that

m∑
i=1

|ãi(x)| ≤
m∑
i=1

|ai| whenever
m∑
i=1

aiθi = θ(x). (4.13)

Since the latter can be written as

θ(x) =
m∑
i=1

aiθi =
k∑
j=1

( ∑
i∈I(j)

ai

)
θj ,

the minimal property of (a∗1, . . . , a
∗
k) implies that

k∑
j=1

|a∗j (x)| ≤
k∑
j=1

∣∣∣∣ ∑
i∈I(j)

ai

∣∣∣∣ ≤ k∑
j=1

∑
i∈I(j)

|ai| =
m∑
i=1

|ai|, (4.14)

while we also have

m∑
i=1

|ãi(x)| =
k∑
j=1

∑
i∈I(j)

|ãi(x)| =
k∑
j=1

∑
i∈I(j)

g
(j)
i (x)|a∗j (x)| =

k∑
j=1

|a∗j (x)|. (4.15)

Combining (4.15) and (4.14) yields (4.13). The proof is now complete. 2

One can drop the assumption that the space V contains the constant functions from Theorem 4.2
provided we do not insist on pointwise optimality. This is formally stated in the following result.
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Theorem 4.3. Let V be an arbitrary n-dimensional subspace of C(D). Then there is a linear
mapping A∗ : Rm → C(D) which is globally optimal for the recovery of any f ∈ C(D) from the
measurements M(f) = (f(x1), . . . , f(xm)), in the sense that

‖f −A∗(M(f))‖C(D) ≤ µ(N , V )C(D) dist(f, V )C(D) for all f ∈ C(D).

Proof: We use the same notation as in the proof of Theorem 4.2. Let us also denote by k the
number of extreme points of C among θ1, . . . , θm, which we may assume to be θ1, . . . , θk. Since
automatically ‖θ1‖ = · · · = ‖θk‖ = 1, we do not need the condition 1 ∈ V to construct an optimal
algorithm A∗ : w ∈ Rk 7→

∑k
j=1wja

∗
j ∈ C(D) based on the linear functionals δx1 , . . . , δxk . We keep

the same notation for the algorithm defined on Rm by A∗(w) =
∑k

j=1wja
∗
j , w ∈ Rm. We have

‖f −A∗(M(f))‖C(D) ≤ µ(N ′, V )C(D) dist(f, V )C(D), f ∈ C(D),

where N ′ := {η ∈ C(D) : η(x1) = · · · = η(xk) = 0}. To finish the proof, we have to show that
µ(N ′, V )C(D) = µ(N , V )C(D), which by (4.2) is equivalent to

max
v∈V

‖v‖C(D)

max
1≤j≤k

|v(xj)|
= max

v∈V

‖v‖C(D)

max
1≤i≤m

|v(xi)|
.

The latter will follow from max1≤i≤m |v(xi)| = max1≤j≤k |v(xj)| for any v ∈ V , and in turn from
|v(xi)| ≤ max1≤j≤k |v(xj)| for any v ∈ V and any i = 1, . . . ,m. To see this, we notice that θi, as a
convex combination of θ1, . . . , θk, can be written as

θi =
k∑

h=1

λi,hθh, where λi,h ≥ 0 and
k∑

h=1

λi,h = 1.

This translates into the identity v(xi) =
∑k

h=1 λi,hv(xh) valid for all v ∈ V , so we have

|v(xi)| ≤
k∑

h=1

λi,h|v(xh)| ≤
k∑

h=1

λi,h max
1≤j≤k

|v(xj)| = max
1≤j≤k

|v(xj)|,

as desired. This completes the proof. 2

Remark 4.4. Theorem 4.3 and Theorem 2.1, part (iii) with Q = I, imply that, for a linear subspace
V of C(D) and measurements of the type M(f) = (f(x1), . . . , f(xm)), one has

E∗(K(ε, V ),M)C(D) = µ(N , V )C(D) ε, K(ε, V ) = {f ∈ C(D) : dist(f, V )C(D) ≤ ε}.

This statement could also be derived from results in [12], except that the results in [12] say that one
can find linear algorithms that are arbitrarily close to optimal, whereas we additionally assert that
the infimum defining E∗(K(ε, V ),M)C(D) is actually a minimum in the case of point evaluations.

Remark 4.5. The results of [12] formalized an implicit understanding that the performance of
linear algorithms for linear problems is closely connected to extensions of linear operators, a topic
which has attracted some attention in geometry of Banach spaces (see [31] for a survey). Indeed,
the main task can be interpreted as extending the inverse (M|V )−1 of the restriction of M to V . The
memoir [20] certainly influenced our view and in fact Theorem 4.3 could be deduced from general
results contained in [20]. However, such a direct approach does not yield the pointwise optimality
obtained in Theorem 4.2. Moreover, not relying on abstract results was more suited to a numerical
treatment, especially in case of model classes given as approximation sets.
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4.3 Linear near-optimal algorithms

Theorem 4.2 shows that there always exist linear optimal algorithms for the recovery of f from
the measurements M(f) = (f(x1), . . . , f(xm)) in the case X = C(D). However, it does not give a
constructive procedure to create such an algorithm. In this section, we show how to create linear
near-optimal algorithms using quasi-interpolants, which we introduce next.

4.3.1 Quasi-interpolants

Given a Banach space X and a subspace V ⊂ X , we say that a bounded linear operator P : X → X
is a quasi-projector for V if P has a finite-dimensional range and

P (v) = v for all v ∈ V. (4.16)

When X = C(D) and the quasi-projectors are built on point evaluations, they shall be referred to as
quasi-interpolants. We highlight below the fact that quasi-interpolants for V with a norm arbitrarily
close to 1 always exist in the case under consideration. They have the form P (f) :=

∑N
i=1 f(ξi)ui for

some appropriately chosen points ξ1, . . . , ξN ∈ D and functions u1, . . . , uN ∈ C(D). The closer to 1
the norm of P is desired, the larger N needs to be. A linear near-optimal algorithm is constructed
based on the expression for P after invoking the quantity-of-interest procedure for approximating
each of the values f(ξ1), . . . , f(ξN ) using the available data f(x1), . . . , f(xm). The details are to be
found below.

Lemma 4.6. Let V be an n-dimensional subspace of C(D), let ξ1, . . . , ξN be points in D, and let
γ be a positive number. Then
(i) the following conditions are equivalent:

(a) with Nξ denoting the null space of the measurement map Mξ : f 7→ (f(ξ1), . . . , f(ξN )),

µ(V,Nξ)C(D) = max
v∈V

‖v‖C(D)

max
1≤j≤N

|v(ξj)|
≤ 1 + γ; (4.17)

(b) there are functions u1, . . . , uN ∈ C(D) such that the operator P : C(D)→ C(D) defined as

P (f) :=

N∑
i=1

f(ξi)ui, f ∈ C(D), (4.18)

is a quasi-interpolant for V and
‖P‖C(D)→C(D) ≤ 1 + γ; (4.19)

(ii) there exist points ξ1, . . . , ξN ∈ D, with N ≤ (3 + 2/γ)n, such that the above conditions hold.

Proof: (i) The equality in (4.17) is just (4.2). If (a) holds, we call upon Theorem 4.3 applied to
the space V and the points ξ1, . . . , ξN to produce an optimal algorithm A∗ : w ∈ RN 7→

∑N
i=1wia

∗
i .

Then the operator P := A∗ ◦Mξ : C(D)→ C(D) has the form (4.18) with ui = a∗i and satisfies

‖f − P (f)‖C(D) ≤ µ(Nξ, V )C(D) dist(f, V ) for all f ∈ C(D).
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The latter shows that P reproduces V , i.e., (4.16) holds. Therefore, P is a quasi-interpolant for V .
Moreover, in view of (4.6) and (4.1),

‖P‖C(D)→C(D) = sup
x∈D

N∑
i=1

|a∗i (x)| = sup
x∈D

(
µ(Nξ, V, δx)C(D) − 1

)
= µ(Nξ, V )C(D) − 1 = µ(V,Nξ)C(D) ≤ 1 + γ,

which establishes (4.19), so (b) holds. Conversely, if (b) holds, for v ∈ V and x ∈ D,

|v(x)| = |P (v)(x)| ≤
N∑
i=1

|v(ξi)||ui(x)| ≤ max
1≤i≤N

|v(ξi)|
N∑
i=1

|ui(x)|

≤ (1 + γ) max
1≤i≤N

|v(ξi)|,

and taking supremum over x ∈ D and v ∈ V yields (4.17), so (a) holds.
(ii) We let δ := γ/(1 + γ). It is known (see e.g [24, Lemma 2.6]) that there exist v1, . . . , vN ∈ V ,
with N ≤ (1 + 2/δ)n = (3 + 2/γ)n, such that ‖v1‖C(D) = · · · = ‖vN‖C(D) = 1 and

min
1≤j≤N

‖v − vj‖C(D) ≤ δ for all v ∈ V with ‖v‖C(D) = 1.

For each j = 1, . . . , N , we select ξj ∈ D such that |vj(ξj)| = 1. Then, for any v ∈ V with
‖v‖C(D) = 1, we can choose j such that ‖v − vj‖C(D) ≤ δ, and thereby obtain

|v(ξj)| ≥ |vj(ξj)| − |(v − vj)(ξj)| ≥ 1− δ =
1

1 + γ
.

This proves that, for all v ∈ V ,

max
1≤j≤N

|v(ξj)|/‖v‖C(D) ≥ 1/(1 + γ).

and the inequality in (4.17) follows. 2

For classical approximation spaces V , explicit quasi-interpolants can be constructed using much
fewer points ξ1, . . . , ξN than estimated in Lemma 4.6. We mention the following examples for spaces
of polynomials.

Trigonometric polynomials: Consider the space V = Tn of trigonometric polynomials of degree
at most n defined on D = [−π, π]. This is a linear space of dimension 2n + 1. It is classical (see
[21, Theorem 7]) that if ξ1, . . . , ξN consist of N > (1 + δ)2n equally spaced points, then

max
v∈V

‖v‖C(D)

max
1≤j≤N

|v(ξj)|
≤ 1 +

1

δ
.

The proof of this fact, given in [32, Chapter X, Theorem 7.28], produces an explicit quasi-interpolant.
Indeed, if

KN,n(t) =
N∑

j=−N
aje

it, where

 aj = 1, for |j| ≤ n,

aj = 1− |j| − n
N + 1− n

, for |j| > n,
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denotes the de la Vallée-Poussin kernel, then the operator defined by

PN,n(f)(x) =
1

πN

N∑
j=1

f(ξj)KN,n(x− ξj)

is a desired quasi-interpolant that satisfies ‖PN,n‖C(D)→C(D) ≤ 1 + 1/δ.

Algebraic polynomials: Consider the space V = Pn−1 of algebraic polynomials of degree at
most n − 1 defined on D = [−1, 1]. This is a linear space of dimension n. From the above
result for trigonometric polynomials, one can deduce that if ξ1, . . . , ξN consist of N > (1 + δ)n
zeros of the Chebyshev polynomial TN of degree N , then µ(V,Nξ)C(D) ≤ 1 + 1/δ and there exist

algebraic polynomials u1, . . . , uN of degree at most N such that P (f) =
∑N

j=1 f(ξj)uj defines a
quasi-interpolant with norm ≤ 1 + 1/δ.

4.3.2 Construction of linear near-optimal algorithms from quasi-interpolants

We now show how linear near-optimal algorithms can be constructed in practice, still in the setting
where X = C(D), V is a linear subspace of X of dimension n ≤ m, and with measurements
about f ∈ C(D) given as M(f) = (f(x1), . . . , f(xm)) for some x1, . . . , xm ∈ D. We start with a
quasi-interpolant of the form (4.18), i.e.,

P (f) =

N∑
i=1

f(ξi)ui, f ∈ C(D), (4.20)

which has norm

‖P‖C(D)→C(D) =

∥∥∥∥ N∑
i=1

|ui|
∥∥∥∥
C(D)

≤ 1 + γ. (4.21)

The number N in (4.20) is related to n (the dimension of the space V ) and to γ (recall that
we can take N ≈ (3 + 2/γ)n in general and N ≈ Cn/γ for polynomial spaces). Now, for each
i = 1, . . . , N , Theorem 3.1 can be applied to the linear functional q = δξi , hence creating a vector

a(i) = (a
(i)
1 , . . . , a

(i)
m ) ∈ Rm satisfying

m∑
j=1

a
(i)
j v(xj) = v(ξi) for all v ∈ V, (4.22)

as well as
m∑
j=1

|a(i)
j | ≤ µ(V,N )C(D). (4.23)

The latter is obvious if ξi = xk for some k = 1, . . . ,m, since then a(i) = ek and
∑m

j=1 |a
(i)
j | = 1,

while if ξi 6∈ {x1, . . . , xm}, using (4.6) and (4.1), we have

m∑
j=1

|a(i)
j (ξi)| = µ(N , V, δξi)C(D) − 1 ≤ µ(N , V )C(D) − 1 = µ(V,N )C(D).
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We now introduce the map A′ : Rm → C(D) defined by

A′(w) :=
N∑
i=1

( m∑
j=1

a
(i)
j wj

)
ui =

m∑
j=1

wjφj , φj :=
N∑
i=1

a
(i)
j ui. (4.24)

Before proving that the linear algorithm A′ is near optimal, we observe that, if the quasi-interpolant
P is explicitly known, then A′ is numerically constructed by solving N constrained `1-minimization

problem (one for each for each i = 1, . . . , N to produce the vector (a
(i)
1 , . . . , a

(i)
m )), so the number of

minimization problems is of order n when V is a space of trigonometric or algebraic polynomials
of degree at most n− 1.

Theorem 4.7. Let V be an n-dimensional subspace of C(D) and γ be an arbitrary positive number.
Then the linear algorithm A′ defined in (4.24) is globally near-optimal for the recovery of any
f ∈ C(D) from the measurements M(f) = (f(x1), . . . , f(xm)), in the sense that

‖f −A′(M(f))‖C(D) ≤ (1 + γ)µ(N , V )C(D) dist(f, V )C(D) for all f ∈ C(D). (4.25)

Proof: From (4.22) and the fact that P is a quasi-interpolant for V , we first observe that, for all
v ∈ V ,

A′(M(v)) =

N∑
i=1

( m∑
j=1

a
(i)
j v(xj)

)
ui =

N∑
i=1

v(ξi)ui = P (v) = v.

Next, from (4.23) and (4.21), we also observe that, for all w ∈ Rm and all x ∈ D,

|A′(w)(x)| ≤
N∑
i=1

m∑
j=1

|a(i)
j ||wj ||ui(x)| ≤ µ(V,N )C(D)‖w‖`m∞

N∑
i=1

|ui(x)|

≤ (1 + γ)µ(V,N )C(D)‖w‖`∞m .

In other words, we have
‖A′‖`m∞→C(D) ≤ (1 + γ)µ(V,N )C(D). (4.26)

Now, for any f ∈ C(D), choosing v ∈ V such that ‖f − v‖C(D) = dist(f, V )C(D), we derive that

‖f −A′(M(f))‖C(D) = ‖f − v −A′(M(f − v))‖C(D)

≤ ‖f − v‖C(D) + ‖A′‖`m∞→C(D)‖M(f − v)‖`m∞
≤

(
1 + (1 + γ)µ(V,N )C(D)

)
‖f − v‖C(D)

≤ (1 + γ)µ(N , V )C(D) dist(f, V )C(D),

where we have used (4.1) in the last inequality. This justifies (4.25) and completes the proof. 2

Remark 4.8. The construction of the linear near-optimal operator A′ : Rm → C(D) requires
explicit knowledge of the points ξ1, . . . , ξN and the functions u1, . . . , uN in the expression (4.20)
of a quasi-interpolant for V . We wish to point out that we could do with only the knowledge of
U := span{u1, . . . , uN}, at least on a theoretical level. This is based on three simple observations
(which incidentally give a fresh insight on the connection of extensions of operators with quasi-
interpolants). First, we notice that, for an operator P from C(D) to C(D) and a constant C, the
property

‖f − P (f)‖C(D) ≤ C µ(N , V )C(D) dist(f, V )C(D) for all f ∈ C(D)
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is readily equivalent to

P (v) = v for all v ∈ V and ‖I − P‖C(D)→C(D) ≤ C µ(N , V )C(D).

Second, we remark that the composition A ◦M of the measurement map M : C(D) → Rm and a
linear recovery algorithm A : Rm → C(D) is an operator from C(D) to C(D) of the form

P (f) =

m∑
j=1

f(xj)φj for some φ1, . . . , φm ∈ C(D).

Third, we point out the easy-to-verify fact that such an operator satisfies

‖I − P‖C(D)→C(D) = 1 +

∥∥∥∥ m∑
j=1

|φj |
∥∥∥∥
C(D)

= 1 + ‖P‖C(D)→C(D).

Therefore, when U is the range of a quasi-interpolant for V with bounded norm, a linear near-
optimal algorithm A : Rm → C(D) with range equal to U can be obtained as a solution of

minimize
φ1,...,φm∈U

∥∥∥∥ m∑
j=1

|φj |
∥∥∥∥
C(D)

subject to
m∑
j=1

v(xj)φj = v for all v ∈ V. (4.27)

This problem may be hard to solve in practice, but we will see in §5.3 that it is possible to solve an
ersatz problem and still produce a linear near-optimal algorithm.

4.4 Full approximation from equispaced point evaluations

This final subsection is dedicated to a concrete example where our abstract theory applies. We
suppose here that X = C[−1, 1], that V is the linear space Pn−1 of algebraic polynomials of degree
at most n− 1, and that the measurement map M is given by point evaluations at the equispaced
points −1 = τ1 < · · · < τm = 1. The problem of approximating f ∈ C[−1, 1] using the particular
measurements M(f) is well studied, so our goal here is solely to indicate how our theory sheds new
light on existing results.

Let us recall that the performance of an optimal recovery algorithm for the approximation set
K(ε,Pn−1)C[−1,1] is governed by the quantity

µm,n := µ(N ,Pn−1)C[−1,1] = sup
η(τ1)=···=η(τm)=0

‖η‖C[−1,1]

dist(η,Pn−1)C[−1,1]
, (4.28)

and that we have the relation (see R1)

µm,n = 1 + µ̃m,n, where µ̃m,n := max
p∈Pn−1

‖p‖C[−1,1]

max
1≤j≤m

|p(τj)|
. (4.29)

We work in the setting where the number m of measurements is given to us and we are free to
choose the dimension of the space V , that is the integer n ≤ m. Perhaps counterintuitively, it may
not be the best idea to choose n = m, because then µ̃m,m reduces to the Lebesgue constant for
polynomial interpolation at m equispaced points, which is known to behave like 2m/(em ln(m)) (see
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[29, 27]). For arbitrary n ≤ m, it was proved in [11] that there are absolute constants β ≥ α > 1
such that

α
n2

m ≤ µ̃m,n ≤ β
n2

m , 0 ≤ n ≤ m. (4.30)

Thus, it may be a better idea to chose n of the order of
√
m, because µ̃m,n would then be bounded

by an absolute constant.
Let us make this heuristic precise in the context of approximation classes. Previous studies

primarily considered model classes which are finite balls in the spaces Bρ, ρ > 1, of functions that
are analytic and bounded on the interior of the Bernstein ellipse Eρ, with norm

‖f‖Bρ := sup
z∈Eρ
|f(z)|.

This Bernstein ellipse has focii ±1 and its major and minor semi-axes have lengths summing
to ρ. It is well known that the functions f ∈ Bρ are characterized by their error of polynomial
approximation. Namely, we have

dist(f,Pn)C[−1,1] ≤ ‖f‖Bρρ−n for all n ≥ 0, (4.31)

and conversely any function satisfying dist(f,Pn)C[−1,1] ≤ Cρ−n for all n ≥ 0 is in the class Bρ
and ‖f‖Bρ ≤ C. It follows that the unit ball U(Bρ) is equivalent to the approximation class
K((εn), (Pn−1))C[−1,1] where εn = ρ−n, n ≥ 1. In particular, f ∈ Bρ implies that f is in the
approximation set K(εn−1,Pn−1) with εn−1 = ‖f‖Bρρ−n+1 for each n ≥ 1.

An important and extensively studied question is whether one can stably recover f ∈ Bρ from
equispaced point values. It is shown in [26] (and recently generalized for nonequispaced points in [4])
that it is in fact impossible to find a stable recovery procedure while maintaining an approximation
accuracy decaying exponentially with m. More precisely, for γ > 1, if Am : Rm → C[−1, 1] are
mappings yielding the estimates

‖f −Am(f(τ1), . . . , f(τm))‖C[−1,1] ≤ Cγ−m, m ≥ 0,

for all f ∈ U(Bρ), then necessarily the condition numbers of Am must grow exponentially as κm

for some κ > 1. This statement remains valid if γ−m and κm are replaced by γ−m
τ

and κm
2τ−1

for
any τ > 1/2.

The results of the present paper, applied to the case f ∈ Bρ, bring forward the following
observations.

Theorem 4.9. Let ρ > 1 be fixed and −1 = τ1 < · · ·< τm = 1 be the m equispaced points on [−1, 1].
(i) There are linear mappings Am : Rm → C[−1, 1] such that, for all f ∈ Bρ,

‖f −Am(f(τ1), . . . , f(τm))‖C[−1,1] ≤ C‖f‖Bργ−m, m ≥ 0, (4.32)

where C > 0 is an absolute constant and γ > 1 depends on ρ.
(ii) There are stable linear mappings Am : Rm → C[−1, 1] such that, for all f ∈ Bρ,

‖f −Am(f(τ1), . . . , f(τm))‖C[−1,1] ≤ C‖f‖Bρρ−
√
m, m ≥ 0, (4.33)

where C > 0 is an absolute constant.
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Proof: According to Theorem 4.7, for all integers m ≥ n ≥ 1, we can construct a linear operator
A′m,n : Rm → C[−1, 1] such that, for all f ∈ C[−1, 1],

‖f −A′m,n(f(τ1), . . . , f(τm))‖C[−1,1] ≤ Cµ̃m,n dist(f,Pn−1)C[−1,1].

We use (4.30) and (4.31) to deduce that, for all f ∈ Bρ,

‖f −A′m,n(f(τ1), . . . , f(τm))‖C[−1,1] ≤ C‖f‖Bρβ
n2

m ρ−n. (4.34)

To obtain (i), we take Am := A′m,n, where n is chosen as

n := dcme ≤ m with c ∈ (0, 1) small enough so that β−cρ > 1.

In view of cm ≤ n ≤ 1 + cm, we derive that

β
n2

m ρ−n ≤ β
(1+cm)2

m ρ−cm = β
1
mβ2cβc

2mρ−cm ≤ β1+2cγ−m, (4.35)

where we have set γ := (β−cρ)c > 1. It now suffices to substitute (4.35) into (4.34) to arrive at
(4.32), up to a change of the constant C.

To obtain (ii), we choose Am = A′m,n, where n = d
√
me ≤ 2

√
m, so that β

n2

m ρ−n ≤ β4ρ−
√
m. The

stability of Am is a consequence of (4.26), since ‖Am‖`m∞→C[−1,1] ≤ Cµ̃m,n ≤ Cβ4. 2

Let us comment on the significance of the two results from Theorem 4.9. In a way, (i) could have
been obtained from the fact, see Proposition 2.4 in [4], that the discrete least-squares procedure

Ãm,n(f(τ1), . . . , f(τm)) = argmin
p∈Pn−1

m∑
j=1

|f(τj)− p(τj)|2 (4.36)

provides, for all f ∈ Bρ, the approximation error

‖f − Ãm,n(f(τ1), . . . , f(τm))‖C[−1,1] ≤ C
√
mβ

n2

m ρ−n.

With Ãm := Ãm,n and the same choice of n as in the proof of Theorem 4.9, part (i), we obtain the
estimate

‖f − Ãm(f(τ1), . . . , f(τm))‖C[−1,1] ≤ C
√
mγ−m < Cγ−m0 , (4.37)

for an appropriately chosen 1 < γ0 < γ. The above theorem gives a slightly better result than
(4.37) in terms of the value of γ. Note that in both estimates we need a prior knowledge of ρ to
make our choice of n. Of course, our Am’s, just like the least-squares Ãm’s, cannot be stable. The
procedure proposed in (ii), on the other hand, is stable. It does not require a prior knowledge of ρ
and still guarantees good approximation performance. For comparison, the least-squares procedure
(4.36) with n = d

√
me ≤ 2

√
m would give a slightly worse bound than (4.33), featuring

√
mρ−m

instead of ρ−m. Note that approximation procedures with features similar to the one proposed in
(ii) are also byproducts of results previously obtained in [15], as a consequence of R3 in §4.1. Our
new contribution is the linearity of the approximation procedures, thanks to the fact that Pn−1

admits quasi-interpolants. We believe this result to be novel.
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5 Implementation of the linear algorithms

In this last section, we test the linear optimal and near-optimal algorithms developed in this paper
and discuss their implementation on three examples. Our matlab codes rely on CVX [1], a pack-
age for specifying and solving convex programs, and Chebfun [16], a package for computing with
functions, and can be downloaded from the second author’s webpage.

In all three cases, the measurements M(f) = (f(x1), . . . , f(xm)) are point evaluations. For the
first two examples, we estimate the quantity of interest q(f) =

∫
D

f (i.e., we build a quadrature

formula) relative to X = C(D) (see §5.1) or to a reproducing kernel Hilbert space X of functions
defined on D (see §5.2). We let V = Pn−1 be the space of algebraic polynomials of degree at most
n − 1, and perform the computations with three bases for V : the monomial basis vi(x) = xi−1,
the Chebyshev basis vi(x) = Ti−1(x), and the Legendre basis with vi(x) = Pi−1(x), i = 1, . . . , n.
Our experiments indicate that the result is sensitive to the choice of basis and that choosing the
monomial basis is not recommended. For the third example, we execute the full approximation
relative to C(D) (see §5.3). We emphasize again the advantage that all of the proposed algo-
rithms perform the approximations by simply computing an inner product between incoming data
(w1, . . . , wm) = (f(x1), . . . , f(xm)) and a vector (of numbers or of functions) computed once and
for all during an offline stage.

5.1 Optimal quadrature relative to C(D)

Given m distinct points x1, . . . , xm ∈ D, the task of optimal approximation of the quantity of
interest q(f) =

∫
D

f , f ∈ C(D), using the informationM(f) = (f(x1), . . . , f(xm)) (see Theorem 3.1),

is in fact the task of finding a vector a∗ = (a∗1, . . . , a
∗
m) which solves the problem

minimize
a∈Rm

m∑
j=1

|aj | subject to
m∑
j=1

ajv(xj) =

∫
D

v for all v ∈ V. (5.1)

Indeed, for q(f) =
∫
D

f , we have

∥∥∥∥q − m∑
j=1

ajδxj

∥∥∥∥
C(D)∗

= meas(D) +
m∑
j=1

|aj |,

because we can take f ∈ C(D) with ‖f‖C(D) = 1, f(xi) = − sign aj , j = 1, . . . ,m, and
∫
D

f as close

to meas(D) as we wish.
Once a∗ is constructed, the quadrature becomes∫

D

f ≈
m∑
j=1

a∗jf(xj), (5.2)

where the latter formula is exact for all elements of the space V . We solve (5.1) as a linear program
by introducing slack variables s1, . . . , sm and rewriting it as

minimize
a,s∈Rm

m∑
j=1

sj subject to Ba = c and − a ≤ s ≤ a, (5.3)
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where

B = (bi,j), bi,j = vi(xj), i = 1, . . . , n, j = 1, . . . ,m, and ci =

∫
D

vi, i = 1, . . . , n, (5.4)

where (v1, . . . , vn) is a fixed basis for the space V .
We point out that a minimizer of (5.1) is not necessarily unique. We have witnessed some depen-

dence on the choice of the basis (v1, . . . , vn) and on the solver selected to perform the minimization.
In particular, we have observed that not all minimization algorithms produce an n-sparse solutions,
i.e., a solution with at most n-nonzero entries, even though it is known that there exists an n-sparse
minimizer of (5.1) (see e.g. [17, Section 1.4]). Note that the existence of an n-sparse weight vector
a∗ in a quadrature formula (5.2), exact for all elements in the n-dimensional space V , seems to
have been noticed earlier only for V = Pn−1 and for the equispaced points τ1, . . . , τm of D = [−1, 1]
under the additional assumption that there is a quadrature formula based on τ1, . . . , τm which is
exact on Pn−1 and involves nonnegative weights (see [30]). In that paper, necessary conditions and
sufficient conditions for the existence of such formulas were derived. Essentially, [30] showed that,
if m∗(n) is the minimal value of m for which the equispaced points τ1, . . . , τm of [−1, 1] support a
nonnegative quadrature formula exact on Pn−1, then(

n+ 1

2π

)2

+ 1 ≤ m∗(n) ≤ n2. (5.5)

Let us observe that the existence of nonnegative quadrature formula based on τ1, . . . , τm and
exact on Pn−1 is equivalent to the fact that the value of the minimum in (5.1) equals 2. This follows

from the fact that a vector a ∈ Rm meeting the constraint
∑m

j=1 aiv(τj) =
1∫
−1

v for all v ∈ Pn−1

satisfies
m∑
j=1

|aj | ≥
m∑
j=1

aj =

1∫
−1

1 = 2,

with equality if and only if a is a nonnegative vector. We have computed solutions of (5.1) for
n = 1, . . . , 160 and m = n, . . . , 10, 000 (and made them available alongside our matlab reproducible
file), so we can determine the exact value of m∗(n) for n = 1, . . . , 160. The result is displayed in
Figure 5.1 and compared to the lower and upper bounds given in (5.5).

Remark 5.1. If we select a solution a∗ ∈ Rm of (5.3) which is n-sparse, see [17, Section 1.4] for
its existence, then the data at xj, j /∈ supp(a∗), are not involved in the optimal quadrature. More
than the sparsity, it is in fact known that we can select a solution a∗ ∈ Rm of (5.3) for which the
columns of B indexed by supp(a∗) are linearly independent. Therefore, for any w ∈ Rm, we can
find v∗ ∈ V such that v∗(xj) = wj for all j ∈ supp(a∗), and thus

A∗(w) =
m∑
j=1

a∗jwj =
m∑
j=1

a∗jv
∗(xj) =

1∫
−1

v∗,

which shows that the optimal integration algorithm for the set Kw(ε, V )C[−1,1], ε > 0, can be written

as
1∫
−1

v∗ for some v∗ ∈ Kw(ε, V )C[−1,1].
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Figure 5.1: Smallest integer m such that the m equispaced points of [−1, 1] support a nonnegative
quadrature formula which is exact on the space of algebraic polynomials of degree ≤ n− 1.

Remark 5.2. Given a quadrature formula∫
D

f ≈
m∑
j=1

ajf(xj) =: qm(f ; a1, . . . , am)

based on the points x1, . . . , xm ∈ D and exact on V , its condition number

κm(a1, . . . , am) := sup
f∈C(D)

lim
δ→0+

sup
g∈C(D)

0<‖g‖m≤δ

qm(f + g; a1, . . . , am)− qm(f ; a1, . . . , am)

‖g‖m
,

where ‖g‖m := max
i=1,...,m

|g(xi)|, reduces to

κm(a1, . . . , am) = sup
‖ν‖`m∞≤1

∣∣∣∣ m∑
j=1

ajνj

∣∣∣∣ =

m∑
j=1

|aj |.

Thus, the quadrature formula (5.2) can also be seen as one with a minimal condition number.

5.2 Optimal quadrature relative to a reproducing kernel Hilbert space

In this subsection, we again apply our theory to recover the quantity of interest q(f) =
∫
D

f using

point evaluations at given distinct points x1, . . . , xm ∈ D, hence building a quadrature formula∫
D

f ≈
m∑
j=1

ajf(xj),
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The difference is that the underlying space X is no longer assumed to be C(D), but rather a
reproducing kernel Hilbert space, i.e., a Hilbert space of functions defined on the domain D for
which point evaluations are continuous linear functionals. Note that the question of stable recovery
of a function from generalized samples in the case of Hilbert space has been extensively studied in
[2, 3]. The recovery of a quantity of interest, which is the object of our interest here, has not been
considered in these references.

Let 〈·, ·〉 denote the inner product on X and let us recall that there is a kernel K(·, ·) defined
on D ×D such that

f(x) = 〈f,K(·, x)〉 for all x ∈ D.
In particular, f(xj) = 〈f,K(·, xj)〉 and the quantity of interest can be expressed as

q(f) =

∫
D

〈f,K(·, x)〉dx = 〈f, h〉, where h :=

∫
D

K(·, x)dx.

In view of the identity∥∥∥∥q − m∑
j=1

ajδxj

∥∥∥∥
X ∗

= sup
‖f‖X=1

∣∣∣∣ ∫
D

f −
m∑
j=1

ajf(xj)

∣∣∣∣ = sup
‖f‖X=1

∣∣∣∣〈f, h− m∑
j=1

ajK(·, xj)〉
∣∣∣∣

=

∥∥∥∥h− m∑
j=1

ajK(·, xj)
∥∥∥∥
X
,

an optimal quadrature using the measurements M(f) = (f(x1), . . . , f(xm)) (see Theorem 3.1) is∫
D

f ≈
m∑
j=1

a∗jf(xj),

where the weights a∗ = (a∗1, . . . , a
∗
m) are a solution of

minimize
a∈Rm

∥∥∥∥h− m∑
j=1

ajK(·, xj)
∥∥∥∥ subject to

m∑
j=1

aj〈v,K(·, xj)〉 = 〈v, h〉 for all v ∈ V. (5.6)

This convex optimization problem could be solved using general purpose software, but we prefer to
present a more explicit procedure. We define the positive definite matrix P = (pi,j) ∈ Rm×m by

pi,j := K(xi, xj), i, j = 1, . . . ,m,

and the vector y ∈ Rm by
y = P−1/2(h(x1), . . . , h(xm))>.

We next express the square of the objective function as∥∥∥∥h− m∑
j=1

ajK(·, xj)
∥∥∥∥2

= ‖h‖2 − 2

m∑
j=1

aj〈h,K(·, xj)〉+

m∑
j,`=1

aja`〈K(·, xj),K(·, x`)〉

= ‖h‖2 − 2

m∑
j=1

ajh(xj) +

m∑
j,`=1

aja`K(xj , x`)

= ‖h‖2 − 2〈a, P 1/2y〉+ 〈Pa, a〉
= ‖h‖2 − 2〈P 1/2a, y〉+ 〈P 1/2a, P 1/2a〉
= ‖h‖2 − ‖y‖2`m2 + ‖y − P 1/2a‖2`m2 .
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Then the minimization problem (5.6) can be replaced by

minimize
a∈Rm

‖y − P 1/2a‖`m2 subject to Ba = c,

where the matrix B = (bi,j) ∈ Rn×m and the vector c ∈ Rn are as in (5.4). This equality-constrained
least squares problem can be recast as the standard least squares problem

minimize
z∈Rm−n

‖y − P 1/2ā− P 1/2Q2z‖`m2 , (5.7)

where ā ∈ Rm is a fixed vector satisfying Bā = c and Q2 ∈ Rm×(m−n) is the matrix coming from
the QR factorization of the transpose of B written as

B> =
[
Q1 | Q2

] [R
0

]
, Q1 ∈ Rm×n, Q2 ∈ Rm×(m−n).

The solution a∗ of (5.6) is then given by a∗ = ā+Q2z
∗, where z∗ is the solution of (5.7).

The method just described can be applied to any reproducing kernel Hilbert space X given via
its kernel. An example considered in the reproducible file for such a space is the Sobolev space
anchored at 0, which consists of all absolutely continuous functions defined on [0, 1] with square
integrable first derivative, equipped with the inner product

〈f, g〉 = f(0)g(0) +

1∫
0

f ′(t)g′(t)dt, f, g ∈ X .

It is easily seen that it admits the kernel K(t, x) = 2 + min{t, x}, t, x ∈ [0, 1], and that the function
h is given by h(t) = 7/2 + t− t2/2, t ∈ [0, 1].

5.3 Near-optimal recovery of functions in C[−1, 1]

In §4.3.2, we have uncovered a practical construction of a linear near-optimal algorithm for the
full approximation of functions f ∈ K(ε, V )C(D) in case of a linear space V and of measurements
M(f) = (f(x1), . . . , f(xm)), see Theorem 4.7. The construction required an explicit knowledge of
a bounded quasi-interpolant for V and, in terms of computational cost, the algorithm involves N
(with N � n if V = Pn−1 or V = Tn−1) `1-minimization problems with m variables and n equality
constraints, each of which is recast as a linear program with 2m variables, n equality constraints,
and 2m inequality constraints.

Based on Remark 4.8, we consider here a slightly different procedure requiring only the explicit
knowledge of the range U of a bounded quasi-interpolant P and of an approximation of the norm
on U , i.e., the knowledge of points ζ1, . . . , ζK such that

µ(U,Nζ)C(D) = max
u∈U

‖u‖C(D)

max
1≤k≤K

|u(ζk)|
≤ c

for some absolute constant c ≥ 1. This procedure involves just one linear program with � mn
variables, � n2 equality constraints, and � mn inequality constraints, see (5.9) below. Since a
solution of (4.27) might not be computable in practice, we solve instead the problem

minimize
ϕ1,...,ϕm∈U

max
1≤k≤K

m∑
j=1

|ϕj(ζk)| subject to

m∑
j=1

v(xj)ϕj = v for all v ∈ V. (5.8)
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With a risk of abusing notation, we denote by (ϕ1, . . . , ϕm) a solution of problem (5.8), which
can be viewed as an appropriate discretization of problem (4.27). This will still provide a linear
near-optimal algorithm, by virtue of

∥∥∥∥ m∑
j=1

|ϕj |
∥∥∥∥
C(D)

= max
θ∈{±1}m

∥∥∥∥ m∑
j=1

θjϕj

∥∥∥∥
C(D)

≤ c max
θ∈{±1}m

max
1≤k≤K

∣∣∣∣ m∑
j=1

θjϕj(ζk)

∣∣∣∣
= c max

1≤k≤K

m∑
j=1

|ϕj(ζk)| ≤ c max
1≤k≤K

m∑
j=1

|φj(ζk)|

≤ c

∥∥∥∥ m∑
j=1

|φj |
∥∥∥∥
C(D)

,

where φ1, . . . .φm are functions from Remark 4.8, i.e., a solution of problem (4.27).
Now, given a basis (u1, . . . , uN ) for U such that (u1, . . . , un) is a basis for V , we consider the

matrix A ∈ Rm×N containing the coefficients of the ϕi with respect to the basis (u1, . . . , uN ), i.e.,
ϕi =

∑N
`=1 ai,`u`. The optimization problem (5.8) can be recast as a linear program by introducing

slack variables dj,k and d such that |ϕj(ζk)| ≤ dj,k for all j = 1, . . . ,m and k = 1, . . . ,K and that∑m
j=1 dj,k ≤ d for all k = 1, . . . ,K. Precisely, with B ∈ Rn×m still representing the matrix with

entries bi,j = ui(xj) and with Z ∈ RN×K representing the matrix with entries z`,k = u`(ζk), the
minimization problem (5.8) is equivalent to the linear program

minimize
A∈Rm×N ,D∈Rm×K ,d∈R

d subject to BA =
[
In×n | 0n×(N−n)

]
,

−dj,k ≤ (AZ)j,k ≤ dj,k, j = 1, . . . ,m, k = 1, . . . ,K,
m∑
j=1

dj,k ≤ d, k = 1, . . . ,K. (5.9)

For illustration, Figure 5.2 displays the plots of the functions ϕ1, . . . , ϕm created by solving
(5.9) for equispaced points with m = 12, n = 5, N = 25, and K = 50. It is compared with the
plots of the functions a∗1, . . . , a

∗
m resulting from Theorem 4.2 (in fact, of their discretizations on a

fine grid).

6 Appendix

Finally, we provide full justifications for several unproven results we have relied on, namely (3.12),
(4.1) and Lemma 4.1. We start with (3.12).

Lemma 6.1. For any polynomial r ∈ Pd, one has

‖r‖2C[−1,1] ≤
(d+ 1)2

2
‖r‖2L2[−1,1], (6.1)

and the inequality is sharp.
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Figure 5.2: In case V = Pn−1, (a) functions ϕ1, . . . , ϕm obtained after solving (5.9) and (b) dis-
cretizations of functions a∗1, . . . , a

∗
n obtained by solving (4.5) for each point x from a grid of [−1, 1].

Proof: Let us consider the expansion of r with respect to the Legendre polynomials Pj normalized

so that Pj(1) = 1 and ‖Pj‖2L2[−1,1] =
2

2j + 1
, that is

r(x) =

d∑
j=0

‖Pj‖−2
L2[−1,1]

 1∫
−1

r(y)Pj(y) dy

Pj(x) =

1∫
−1

 d∑
j=0

Pj(x)Pj(y)

‖Pj‖2L2[−1,1]

 r(y) dy

=:

1∫
−1

k(x, y)r(y) dy.

Since

|r(x)| =
∣∣∣ 1∫
−1

k(x, y)r(y)dy
∣∣∣ ≤ ‖k(x, ·)‖L2[−1,1]‖r‖L2[−1,1],

the statement in the lemma follows from the fact that

‖k(x, ·)‖2L2[−1,1] =

1∫
−1

 d∑
j=0

Pj(x)Pj(y)

‖Pj‖2L2[−1,1]

2

dy =
d∑
j=0

P 2
j (x)

‖Pj‖4L2[−1,1]

1∫
−1

P 2
j (y) dy

=
d∑
j=0

P 2
j (x)

‖Pj‖2L2[−1,1]

≤
d∑
j=0

1

‖Pj‖2L2[−1,1]

=

d∑
j=0

2j + 1

2
=

(d+ 1)2

2
.

Inequality (6.1) is sharp because all inequalities become equalities for r = k(1, ·). 2

Next, we continue by restating (4.1).
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Lemma 6.2. Let V be an n-dimensional subspace of C(D) and x1, . . . , xm ∈ D be m distinct points
in D. If N := {η ∈ C(D) : η(x1) = · · · = η(xm) = 0}, then

µ(N , V )C(D) = 1 + µ(V,N )C(D).

Proof: In the view of (1.2), it is enough to establish that

µ(N , V )C(D) ≥ 1 + µ(V,N )C(D). (6.2)

Let us denote by

µ := µ(V,N )C(D) = max
v∈V

‖v‖C(D)

max
1≤j≤m

|v(xj)|
,

and pick v ∈ V with max1≤j≤m |v(xj)| = 1 and ‖v‖C(D) = µ. If µ > 1, choose x∗ ∈ D such that
|v(x∗)| = µ and therefore x∗ 6∈ {x1, . . . , xm}. If µ = 1, choose x∗ ∈ D \ {x1, . . . , xm} such that
|v(x∗)| ≥ µ− δ for an arbitrarily small δ > 0. We introduce a function h ∈ C(D) satisfying

h(xj) = v(xj), j = 1, . . . ,m, h(x∗) = −sgn(v(x∗)), ‖h‖C(D) = 1.

Clearly, the function η := v − h belongs to N , and we have

µ(N , V )C(D) ≥
‖η‖C(D)

‖η − v‖C(D)
=
‖v − h‖C(D)

‖h‖C(D)
≥ |v(x∗)− h(x∗)| ≥ µ− δ + 1.

Since δ > 0 was arbitrary, this proves (6.2). 2

Finally, we prove Lemma 4.1 stated in a slightly different version below.

Lemma 6.3. Let θ1, . . . , θN be N distinct points in Rn with convex hull C := conv{θ1, . . . , θN}.
Then, there exist functions ψ

(N)
j : C → R, j = 1, . . . , N , such that

(i) ψ
(N)
1 , . . . , ψ

(N)
N are continuous on C;

(ii) for any linear function λ : Rn → R (in particular for λ(θ) = 1 and λ(θ) = θ),

N∑
i=1

ψ
(N)
i (θ)λ(θi) = λ(θ) whenever θ ∈ C;

(iii) for all i = 1, . . . , N , ψ
(N)
i (θ) ≥ 0 whenever θ ∈ C;

(iv) for all i, j = 1, . . . , N , ψ
(N)
i (θj) = δi,j.

Proof: We proceed by induction on N ≥ 1. The result is clear for N = 1 and N = 2. Let us
assume that it holds up to N − 1 for some integer N ≥ 3 and that we are given N distinct points
θ1, . . . , θN ∈ Rn. We separate two cases.

Case 1: Each θj is an extreme point of C := conv{θ1, . . . , θN}. In this case, we invoke the result

of Kalman [19] and consider the functions ψ
(N)
1 , . . . , ψ

(N)
N from [19] satisfying (i)–(iii). Condition (iv)
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then occurs as a consequence of (ii)-(iii). Indeed, given j = 1, . . . , N , one can find a linear function
λ : Rn → R such that λ(θj) = 0 and λ(θi) > 0 for all i 6= j. Therefore,

N∑
i=1

ψ
(N)
i (θj)λ(θi) = λ(θj) = 0

implies that ψ
(N)
i (θj) = 0 for all i 6= j, and then ψ

(N)
j (θj) = 1 follows from

∑N
i=1 ψ

(N)
i (θj) = 1.

Case 2: One of the θj ’s belongs to the convex hull of the other θi’s, say θN ∈ conv{θ1, . . . , θN−1}.
Let ψ

(N−1)
1 , . . . , ψ

(N−1)
N−1 be the functions defined on C = conv{θ1, . . . , θN−1} = conv{θ1, . . . , θN}

which are obtained from the induction hypothesis applied to the N−1 distinct points θ1, . . . , θN−1.
Next, we introduce the set Ω, which has at least two elements, and the function τ , which is
continuous on C, given by

Ω := {j = 1, . . . , N − 1 : ψ
(N−1)
j (θN ) > 0}, τ(θ) := min

j∈Ω

ψ
(N−1)
j (θ)

ψ
(N−1)
j (θN )

, θ ∈ C.

Finally, we define functions ψ
(N)
1 , . . . , ψ

(N)
N by

ψ
(N)
i (θ) := ψ

(N−1)
i (θ)− ψ(N−1)

i (θN )τ(θ), i = 1, . . . , N − 1, ψ
(N)
N (θ) := τ(θ).

These are continuous functions of θ ∈ C, so (i) is satisfied. To verify (ii), given a linear function
λ : Rn → R, we observe that

N∑
i=1

ψ
(N)
i (θ)λ(θi) =

N−1∑
i=1

ψ
(N−1)
i (θ)λ(θi)− τ(θ)

N−1∑
i=1

ψ
(N−1)
i (θN )λ(θi) + τ(θ)λ(θN )

= λ(θ)− τ(θ)λ(θN ) + τ(θ)λ(θN ) = λ(θ).

As for (iii), given θ ∈ C, the fact that ψ
(N)
N (θ) ≥ 0 is clear from the definition of τ , and for

i = 1, . . . , N − 1, the fact that ψ
(N)
i (θ) ≥ 0 is equivalent to ψ

(N−1)
i (θN )τ(θ) ≤ ψ

(N−1)
i (θ), which

is obvious if i 6∈ Ω and follows from the definition of τ if i ∈ Ω. Finally, to prove (iv), it is

enough to verify that ψ
(N)
i (θi) = 1 for all i = 1, . . . , N , which clearly holds for i = N , and for

i = 1, . . . , N − 1, it is the identity ψ
(N−1)
i (θN )τ(θi) = 0, valid both when i 6∈ Ω and when i ∈ Ω,

that implies ψ
(N)
i (θi) = ψ

(N−1)
i (θi) = 1. We have now shown that the induction hypothesis holds

for N , and this concludes the inductive proof. 2
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