A Note on Guaranteed Sparse Recovery via ℓ_1 -Minimization

Simon Foucart, Université Pierre et Marie Curie

Abstract

It is proved that every *s*-sparse vector $\mathbf{x} \in \mathbb{C}^N$ can be recovered from the measurement vector $\mathbf{y} = A\mathbf{x} \in \mathbb{C}^m$ via ℓ_1 -minimization as soon as the 2*s*-th restricted isometry constant of the matrix A is smaller than $3/(4 + \sqrt{6}) \approx 0.4652$, or smaller than $4/(6 + \sqrt{6}) \approx 0.4734$ for large values of *s*.

We consider in this note the classical problem of Compressive Sensing consisting in recovering an *s*-sparse vector $\mathbf{x} \in \mathbb{C}^N$ from the mere knowledge of a measurement vector $\mathbf{y} = A\mathbf{x} \in \mathbb{C}^m$, with $m \ll N$, by solving the minimization problem

(P₁)
$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_1 \quad \text{ subject to } A\mathbf{z} = \mathbf{y}.$$

A much favored tool in the analysis of (P₁) has been the restricted isometry constants δ_k of the $m \times N$ measurement matrix A, defined as the smallest positive constants δ such that

(1) $(1-\delta) \|\mathbf{z}\|_2^2 \le \|A\mathbf{z}\|_2^2 \le (1+\delta) \|\mathbf{z}\|_2^2$ for all k-sparse vector $\mathbf{z} \in \mathbb{C}^N$.

This notion was introduced by Candès and Tao in [3], where it was shown that all s-sparse vectors are recovered as unique solutions of (P₁) as soon as $\delta_{3s} + 3\delta_{4s} < 2$. There are many such sufficient conditions involving the constants δ_k , but we find a condition involving only δ_{2s} more natural, since it is known [3] that an algorithm recovering all s-sparse vectors x from the measurements $\mathbf{y} = A\mathbf{x}$ exists if and only if $\delta_{2s} < 1$. Candès showed in [2] that s-sparse recovery is guaranteed as soon as $\delta_{2s} < \sqrt{2} - 1 \approx 0.4142$. This sufficient condition was later improved to $\delta_{2s} < 2/(3 + \sqrt{2}) \approx 0.4531$ in [5], and to $\delta_{2s} < 2/(2 + \sqrt{5}) \approx 0.4721$ in [1], with the proviso that s is either large or a multiple of 4. The purpose of this note is to show that the threshold on δ_{2s} can be pushed further — we point out that Davies and Gribonval proved that it cannot be pushed further than $1/\sqrt{2} \approx 0.7071$ in [4]. Our proof relies heavily on a technique introduced in [1]. Let us note that the results of [2], [5], and [1], even though stated for \mathbb{R} rather than \mathbb{C} , are valid in both settings. Indeed, for disjointly supported vectors u and v, instead of using a real polarization formula to derive the estimate

(2)
$$|\langle A\mathbf{u}, A\mathbf{v}\rangle| \leq \delta_k \|\mathbf{u}\|_2 \|\mathbf{v}\|_2,$$

where k is the size of $\operatorname{supp}(\mathbf{u}) \cup \operatorname{supp}(\mathbf{v})$, we remark that $\delta_k = \max \{ \|A_K^*A_K - I\|_2, \operatorname{card}(K) \le k \}$, so that

$$|\langle A\mathbf{u}, A\mathbf{v}\rangle| = |\langle A_K\mathbf{u}, A_K\mathbf{v}\rangle| = |\langle A_K^*A_K\mathbf{u}, \mathbf{v}\rangle| = |\langle (A_K^*A_K - I)\mathbf{u}, \mathbf{v}\rangle| \le \delta_k \|\mathbf{u}\|_2 \|\mathbf{v}\|_2.$$

Using (2), we can establish our main result in the complex setting, as stated below.

Theorem 1. Every *s*-sparse vector $\mathbf{x} \in \mathbb{C}^N$ is the unique minimizer of (P₁) with $\mathbf{y} = A\mathbf{x}$ if

$$\delta_{2s} < \frac{3}{4+\sqrt{6}} \approx 0.4652,$$

and, for large s, if

$$\delta_{2s} < \frac{4}{6+\sqrt{6}} \approx 0.4734.$$

This theorem is a consequence of the following two propositions.

Proposition 2. Every *s*-sparse vector $\mathbf{x} \in \mathbb{C}^N$ is the unique minimizer of (P₁) with $\mathbf{y} = A\mathbf{x}$ if

 $\begin{array}{ll} 1) & \delta_{2s} < \frac{1}{2} & \text{when } s = 1, \\ 2) & \delta_{2s} < \frac{3}{4 + \sqrt{(6s - 2r)/(s - 1)}} & \text{when } s = 3n + r & \text{with } 1 \le r \le 3, \\ 3) & \delta_{2s} < \frac{4}{5 + \sqrt{(12s - 3r)/(s - 1)}} & \text{when } s = 4n + r & \text{with } 1 \le r \le 4, \\ 4) & \delta_{2s} < \frac{2}{3 + \sqrt{1 + s/(8n + \lfloor 8r/5 \rfloor)}} & \text{when } s = 5n + r & \text{with } 1 \le r \le 5. \end{array}$

Proposition 3. Every *s*-sparse vector $\mathbf{x} \in \mathbb{C}^N$ is the unique minimizer of (P₁) with $\mathbf{y} = A\mathbf{x}$ if

(3)
$$\delta_{2s} < \frac{1}{1 + \sqrt{s \,\widetilde{s} \,/ \left(8(\widetilde{s} - s)(3s - 2\widetilde{s})\right)}}$$
 where $\widetilde{s} = \lfloor \sqrt{3/2} \, s \rfloor$.

Proof of Theorem 1. For $2 \le s \le 8$, we determine which sufficient condition of Proposition 2 is the weakest, using the following table of values for the thresholds

	s = 2	s = 3	s = 4	s = 5	s = 6	s = 7	s = 8
Case 2)	0.4393	0.4652	0.4472	0.4580	0.4652	0.4558	0.4610
Case 3)	0.4328	0.4611	0.4726	0.4558	0.4633	0.4686	0.4726
Case 4)	0.4661	0.4627	0.4661	0.4679	0.4661	0.4674	0.4661

For these values of s, requiring $\delta_{2s} < 0.4652$ is enough to guarantee s-sparse recovery. As for the values $s \ge 9$, since the function of n appearing in Case 4) is nondecreasing when r is fixed, the corresponding sufficient condition holds for s as soon as it holds for s - 5. Then, because

requiring $\delta_{2s} < 0.4661$ is enough to guarantee *s*-sparse recovery from Case 4) when $4 \le s \le 8$, it is also enough to guarantee it when $s \ge 9$. Taking Case 1) into account, we conclude that the inequality $\delta_{2s} < 0.4652$ ensures s-sparse recovery for every integer $s \ge 1$, as stated in the first part of Theorem 1. The second part of Theorem 1 follows from Proposition 3 by writing

$$\frac{s\,\widetilde{s}}{8(\widetilde{s}-s)(3s-2\widetilde{s})} \xrightarrow[s \to \infty]{} \frac{\sqrt{3/2}}{8(\sqrt{3/2}-1)(3-2\sqrt{3/2})} = \frac{6}{16(3-\sqrt{6})^2} = \left(\frac{\sqrt{6}}{4(3-\sqrt{6})}\right)^2 = \left(\frac{2+\sqrt{6}}{4}\right)^2,$$

and substituting this limit into (3).

and substituting this limit into (3).

A crucial role in the proofs of Propositions 2 and 3 is played by the following lemma, which is simply the shifting inequality introduced in [1] when $k \leq 4\ell$. We provide a different proof for the reader's convenience.

Lemma 4. Given integers $k, \ell \ge 1$, for a sequence $a_1 \ge a_2 \ge \cdots \ge a_{k+\ell} \ge 0$, one has

$$\left[\sum_{j=\ell+1}^{\ell+k} a_j^2\right]^{1/2} \le \max\left[\frac{1}{\sqrt{4\ell}}, \frac{1}{\sqrt{k}}\right] \left[\sum_{j=1}^k a_j\right].$$

Proof. The case $\ell + 1 \ge k$ follows from the facts that the left-hand side is at most $\sqrt{k} a_{\ell+1}$ and that the right-hand side is at least $\sqrt{k} a_k$. We now assume that $\ell + 1 < k$, so that the subsequences (a_1, \ldots, a_k) and $(a_{\ell+1}, \ldots, a_{\ell+k})$ overlap on $(a_{\ell+1}, \ldots, a_k)$. Since the left-hand side is maximized when $a_{k+1}, \ldots, a_{\ell}$ all equal a_k , while the right-hand side is minimized when a_1, \ldots, a_ℓ all equal $a_{\ell+1}$, it is necessary and sufficient to establish that

$$\left[a_{\ell+1}^2 + \dots + a_{k-1}^2 + (\ell+1)a_k^2\right]^{1/2} \le \max\left[\frac{1}{\sqrt{4\ell}}, \frac{1}{\sqrt{k}}\right] \left[(\ell+1)a_{\ell+1} + a_{\ell+2} + \dots + a_k\right].$$

By homogeneity, this is the problem of maximization of the convex function

$$f(a_{\ell+1},\ldots,a_k) := \left[a_{\ell+1}^2 + \cdots + a_{k-1}^2 + (\ell+1)a_k^2\right]^{1/2}$$

over the convex polygon

$$\mathcal{P} := \left\{ (a_{\ell+1}, \dots, a_k) \in \mathbb{R}^{k-\ell} : a_{\ell+1} \ge \dots \ge a_k \ge 0 \text{ and } (\ell+1)a_{\ell+1} + a_{\ell+2} + \dots + a_k \le 1 \right\}.$$

Because any point in \mathcal{P} is a convex combination of its vertices and because the function f is convex, its maximum over \mathcal{P} is attained at a vertex of \mathcal{P} . We note that the vertices of \mathcal{P} are obtained as intersections of $(k-\ell)$ hyperplanes arising by turning $(k-\ell)$ of the $(k-\ell+1)$ inequality constraints into equalities. We have the following possibilities:

- if $a_{\ell+1} = \cdots = a_k = 0$, then $f(a_{\ell+1}, \ldots, a_k) = 0$;
- if $a_{\ell+1} = \cdots = a_j < a_{j+1} = \cdots = a_k = 0$ and $(\ell+1)a_{\ell+1} + a_{\ell+2} + \cdots + a_k = 1$ for $\ell+1 \le j \le k$, then $a_{\ell+1} = \cdots = a_j = 1/j$, so that $f(a_{\ell+1}, \ldots, a_k) = [(j-\ell)/j^2]^{1/2} \le [1/(4\ell)]^{1/2}$ when j < k and that $f(a_{\ell+1}, \ldots, a_k) = [k/k^2]^{1/2} = [1/k]^{1/2}$ when j = k.

It follows that the maximum of the function f over the convex polygon \mathcal{P} does not exceed $\max\left[1/\sqrt{4\ell}, 1/\sqrt{k}\right]$, which is the expected result.

Proof of Proposition 2. It is well-known, see e.g. [6], that the recovery of *s*-sparse vectors is equivalent to the null space property, which asserts that, for any nonzero vector $\mathbf{v} \in \ker A$ and any index set *S* of size *s*, one has

$$\|\mathbf{v}_S\|_1 < \|\mathbf{v}_{\overline{S}}\|_1.$$

The notation \overline{S} stands for the complementary of S in $\{1, \ldots, N\}$. Let us now fix a nonzero vector $\mathbf{v} \in \ker A$. We may assume without loss of generality that the entries of \mathbf{v} are sorted in decreasing order

$$|v_1| \ge |v_2| \ge \cdots \ge |v_N|.$$

It is then necessary and sufficient to establish (4) for the set $S = \{1, \ldots, s\}$.

We start by examining Case 4). We partition $\overline{S} = \{s + 1, ..., N\}$ in two ways as $\overline{S} = S' \cup T_1 \cup T_2 \cup ...$ and as $\overline{S} = S' \cup U_1 \cup U_2 \cup ...$, where

$$\begin{split} S' &:= \{s+1, \dots, s+s'\} & \text{is of size } s', \\ T_1 &:= \{s+s'+1, \dots, s+s'+t\}, \quad T_2 &:= \{s+s'+t+1, \dots, s+s'+2t\}, \dots & \text{are of size } t, \\ U_1 &:= \{s+s'+1, \dots, s+s'+u\}, \quad U_2 &:= \{s+s'+u+1, \dots, s+s'+2u\}, \dots & \text{are of size } u. \end{split}$$

We impose the sizes of the sets $S \cup S'$, $S \cup T_k$, and $S' \cup U_k$ to be at most 2s, i.e.

$$s' \le s, \qquad t \le s, \qquad s' + u \le 2s.$$

Thus, with $\delta := \delta_{2s}$, we derive from (1) and (2)

$$\begin{aligned} \|\mathbf{v}_{S} + \mathbf{v}_{S'}\|_{2}^{2} &\leq \frac{1}{1-\delta} \|A(\mathbf{v}_{S} + \mathbf{v}_{S'})\|_{2}^{2} = \frac{1}{1-\delta} \Big[\langle A(\mathbf{v}_{S}), A(\mathbf{v}_{S} + \mathbf{v}_{S'}) \rangle + \langle A(\mathbf{v}_{S'}), A(\mathbf{v}_{S} + \mathbf{v}_{S'}) \rangle \Big] \\ &= \frac{1}{1-\delta} \Big[\langle A(\mathbf{v}_{S}), \sum_{k\geq 1} A(-\mathbf{v}_{T_{k}}) \rangle + \langle A(\mathbf{v}_{S'}), \sum_{k\geq 1} A(-\mathbf{v}_{U_{k}}) \rangle \Big] \\ \end{aligned}$$

$$(5) \qquad \leq \frac{1}{1-\delta} \Big[\delta \|\mathbf{v}_{S}\|_{2} \sum_{k\geq 1} \|\mathbf{v}_{T_{k}}\|_{2} + \delta \|\mathbf{v}_{S'}\|_{2} \sum_{k\geq 1} \|\mathbf{v}_{U_{k}}\|_{2} \Big].$$

Introducing the shifted sets $\tilde{T}_1 := \{s + 1, ..., s + t\}, \tilde{T}_2 := \{s + t + 1, ..., s + 2t\}, ..., and <math>\tilde{U}_1 := \{s + 1, ..., s + u\}, \tilde{U}_2 := \{s + u + 1, ..., s + 2u\}, ..., Lemma 4$ yields, for $k \ge 1$,

$$\|\mathbf{v}_{T_k}\|_2 \le \max\left[\frac{1}{\sqrt{4s'}}, \frac{1}{\sqrt{t}}\right] \|\mathbf{v}_{\widetilde{T}_k}\|_1, \qquad \|\mathbf{v}_{U_k}\|_2 \le \max\left[\frac{1}{\sqrt{4s'}}, \frac{1}{\sqrt{u}}\right] \|\mathbf{v}_{\widetilde{U}_k}\|_1.$$

Substituting into (5), we obtain

(6)
$$\|\mathbf{v}_{S} + \mathbf{v}_{S'}\|_{2}^{2} \leq \frac{\delta}{1 - \delta} \left[\|\mathbf{v}_{S}\|_{2} \max\left[\frac{1}{\sqrt{4s'}}, \frac{1}{\sqrt{t}}\right] \|\mathbf{v}_{\overline{S}}\|_{1} + \|\mathbf{v}_{S'}\|_{2} \max\left[\frac{1}{\sqrt{4s'}}, \frac{1}{\sqrt{u}}\right] \|\mathbf{v}_{\overline{S}}\|_{1} \right]$$

To minimize the first maximum in (6), we have all interest in taking the free variable t as large as possible, i.e. t = s. We now concentrate on the second maximum in (6). The point (s', u) belongs to the region

$$\mathcal{R} := \left\{ s' \ge 0, u \ge 0, s' \le s, s' + u \le 2s \right\}$$

This region is divided in two by the line \mathcal{L} of equation u = 4s'. Below this line, the maximum equals $1/\sqrt{u}$, which is minimized for a large u. Above this line, the maximum equals $1/\sqrt{4s'}$, which is minimized for large s'. Thus, the maximum is minimized at the intersection of the line \mathcal{L} with the boundary of the region \mathcal{R} — other than the origin — which is given by

$$s'_* := \frac{2s}{5}, \qquad u_* := \frac{8s}{5}$$

If s is a multiple of 5, we can choose (s', u) to be (s'_*, u_*) . In view of $4s'_* \ge s$, (6) becomes

$$\|\mathbf{v}_{S}\|_{2}^{2} + \|\mathbf{v}_{S'}\|_{2}^{2} \leq \frac{\delta}{1-\delta} \frac{\|\mathbf{v}_{\overline{S}}\|_{1}}{\sqrt{s}} \left[\|\mathbf{v}_{S}\|_{2} + \sqrt{c} \|\mathbf{v}_{S'}\|_{2}\right] \quad \text{with } c = \frac{5}{8}.$$

Completing the squares, we obtain, with $\gamma := \left(\delta \|\mathbf{v}_{\overline{S}}\|_1\right) / \left(2(1-\delta)\sqrt{s}\right)$,

$$(\|\mathbf{v}_S\|_2 - \gamma)^2 + (\|\mathbf{v}_{S'}\|_2 - \sqrt{c}\gamma)^2 \le (1+c)\gamma^2.$$

Simply using the inequality $\left(\|\mathbf{v}_{S'}\|_2 - \sqrt{c}\,\gamma\right)^2 \geq 0$, we deduce

$$\|\mathbf{v}_S\|_2 \le \left(1 + \sqrt{1+c}\right)\gamma.$$

Finally, in view of $\|\mathbf{v}_S\|_1 \leq \sqrt{s} \|\mathbf{v}_S\|_2$, we conclude

$$\|\mathbf{v}_S\|_1 \leq \frac{(1+\sqrt{1+c})\delta}{2(1-\delta)} \|\mathbf{v}_{\overline{S}}\|_1.$$

Thus, the null space property (4) is satisfied as soon as

$$(1+\sqrt{1+c})\delta < 2(1-\delta),$$
 i.e. $\delta < \frac{2}{3+\sqrt{1+c}}.$

Substituting c = 5/8 leads to the sufficient condition $\delta_{2s} < 2/(3 + \sqrt{13/8}) \approx 0.4679$, valid when s is a multiple of 5. When s is not a multiple of 5, we cannot choose (s', u) to be (s'_*, u_*) , and we choose it to be a corner of the square $[\lfloor s'_* \rfloor, \lceil s'_* \rceil] \times [\lfloor u_* \rfloor, \lceil u_* \rceil]$. In all cases, the corner $(\lceil s'_* \rceil, \lceil u_* \rceil)$ is inadmissible since $\lceil s'_* \rceil + \lceil u_* \rceil > 2s$, and among the three admissible corners, one can verify that the smallest value of max $[1/\sqrt{4s'}, 1/\sqrt{u}]$ is achieved for $(s', u) = (\lceil s'_* \rceil, \lfloor u_* \rfloor)$. With this choice, in view of $4s' \ge s$, (6) becomes

$$\|\mathbf{v}_{S}\|_{2}^{2} + \|\mathbf{v}_{S'}\|_{2}^{2} \le \frac{\delta}{1-\delta} \frac{\|\mathbf{v}_{\overline{S}}\|_{1}}{\sqrt{s}} \left[\|\mathbf{v}_{S}\|_{2} + \sqrt{c} \, \|\mathbf{v}_{S'}\|_{2} \right] \qquad \text{with } c = \frac{s}{\lfloor 8s/5 \rfloor}.$$

The same arguments as before yield the sufficient condition $\delta_{2s} < 2/(3+\sqrt{1+s/\lfloor 8s/5 \rfloor})$, which is nothing else than Condition 4).

We now turn to Cases 2) and 3), which we treat simultaneously by writing s = pn+r, $1 \le r \le p$, for p = 3 and p = 4. We partition \overline{S} as $\overline{S} = S' \cup T_1 \cup T_2 \cup \ldots$ and $\overline{S} = S' \cup U_1 \cup U_2 \cup \ldots$, where $S' := \{s + 1, \ldots, s + s'\}$ is of size s' = n + 1, $T_1 := \{s + s' + 1, \ldots, s + s' + t\}$, $T_2 := \{s + s' + t + 1, \ldots, s + s' + 2t\}$,... are of size t = s, $U_1 := \{s + s' + 1, \ldots, s + s' + u\}$, $U_2 := \{s + s' + u + 1, \ldots, s + s' + 2u\}$,... are of size u = s - 1.

Moreover, we partition S as $S_1 \cup \cdots \cup S_p$, where S_1, \ldots, S_r are of size n + 1 and S_{r+1}, \ldots, S_p of size n. We then set $\mathbf{w}_0 := \mathbf{v}_S, \mathbf{w}_1 := \mathbf{v}_{S_2} + \cdots + \mathbf{v}_{S_p} + \mathbf{v}_{S'}, \mathbf{w}_2 := \mathbf{v}_{S_1} + \mathbf{v}_{S_3} + \cdots + \mathbf{v}_{S_p} + \mathbf{v}_{S'}, \ldots, \mathbf{w}_p := \mathbf{v}_{S_1} + \ldots + \mathbf{v}_{S_{p-1}} + \mathbf{v}_{S'}$, so that

$$\sum_{j=0}^{p} \mathbf{w}_{j} = p(\mathbf{v}_{S} + \mathbf{v}_{S}') \quad \text{and} \quad \sum_{j=0}^{p} \|\mathbf{w}_{j}\|_{2}^{2} = p\|\mathbf{v}_{S} + \mathbf{v}_{S}'\|_{2}^{2}$$

With $\delta := \delta_{2s}$, we derive from (1) and (2)

(7)
$$\|\mathbf{v}_{S} + \mathbf{v}_{S}'\|_{2}^{2} \leq \frac{1}{1-\delta} \|A(\mathbf{v}_{S} + \mathbf{v}_{S}')\|_{2}^{2} = \frac{1}{1-\delta} \langle A(\sum_{j=0}^{p} \mathbf{w}_{j}/p), A(-\mathbf{v}_{\overline{S\cup S'}}) \rangle$$
$$= \frac{1}{1-\delta} \frac{1}{p} \bigg[\sum_{j=0}^{r} \langle A(\mathbf{w}_{j}), \sum_{k\geq 1} A(-\mathbf{v}_{T_{k}}) \rangle + \sum_{j=r+1}^{p} \langle A(\mathbf{w}_{j}), \sum_{k\geq 1} A(-\mathbf{v}_{U_{k}}) \rangle \bigg]$$
$$\leq \frac{1}{1-\delta} \frac{1}{p} \bigg[\sum_{j=0}^{r} \delta \|\mathbf{w}_{j}\|_{2} \sum_{k\geq 1} \|\mathbf{v}_{T_{k}}\|_{2} + \sum_{j=r+1}^{p} \delta \|\mathbf{w}_{j}\|_{2} \sum_{k\geq 1} \|\mathbf{v}_{U_{k}}\|_{2} \bigg].$$

Taking into account that $s \le 4s'$ and $s - 1 \le 4s'$, Lemma 4 yields, for $k \ge 1$,

$$\|\mathbf{v}_{T_k}\|_2 \le \frac{1}{\sqrt{s}} \|\mathbf{v}_{\widetilde{T}_k}\|_1, \qquad \|\mathbf{v}_{U_k}\|_2 \le \frac{1}{\sqrt{s-1}} \|\mathbf{v}_{\widetilde{U}_k}\|_1,$$

where $\widetilde{T}_1 := \{s + 1, \dots, s + t\}, \ \widetilde{T}_2 := \{s + t + 1, \dots, s + 2t\}, \dots, \text{ and } \widetilde{U}_1 := \{s + 1, \dots, s + u\},\$

 $\widetilde{U}_2:=\{s+u+1,\ldots,s+2u\},\ldots$ Substituting into (7), we obtain

(8)

$$p \|\mathbf{v}_{S} + \mathbf{v}_{S'}\|_{2}^{2} \leq \frac{1}{1-\delta} \frac{1}{p} \bigg[\sum_{j=0}^{r} \delta \|\mathbf{w}_{j}\|_{2} \frac{\|\mathbf{v}_{\overline{S}}\|_{1}}{\sqrt{s}} + \sum_{j=r+1}^{p} \delta \|\mathbf{w}_{j}\|_{2} \frac{\|\mathbf{v}_{\overline{S}}\|_{1}}{\sqrt{s-1}} \bigg]$$

$$= \frac{\delta}{1-\delta} \frac{\|\mathbf{v}_{\overline{S}}\|_{1}}{\sqrt{s}} \bigg[\|\mathbf{v}_{S}\|_{2} + \sum_{j=1}^{r} \|\mathbf{w}_{j}\|_{2} + \sum_{j=r+1}^{p} \sqrt{\frac{s}{s-1}} \|\mathbf{w}_{j}\|_{2} \bigg].$$

We use the Cauchy-Schwarz inequality to derive

(9)
$$\sum_{j=1}^{r} \|\mathbf{w}_{j}\|_{2} + \sum_{j=r+1}^{p} \sqrt{\frac{s}{s-1}} \|\mathbf{w}_{j}\|_{2} \leq \sqrt{r + (p-r)\frac{s}{s-1}} \sqrt{\sum_{j=1}^{r} \|\mathbf{w}_{j}\|_{2}^{2}} = \sqrt{\frac{ps-r}{s-1}} \sqrt{p\|\mathbf{v}_{S} + \mathbf{v}_{S'}\|_{2}^{2} - \|\mathbf{v}_{S}\|_{2}^{2}}.$$

Setting $a := \|\mathbf{v}_S\|_2$ and $b := \sqrt{p\|\mathbf{v}_S + \mathbf{v}_{S'}\|_2^2 - \|\mathbf{v}_S\|_2^2}$, (8) and (9) imply

$$a^2 + b^2 \le \frac{\delta}{1 - \delta} \frac{\|\mathbf{v}_{\overline{S}}\|_1}{\sqrt{s}} \Big[a + \sqrt{c} \, b \Big], \qquad \text{with } c := \frac{ps - r}{s - 1}$$

Completing the squares, we obtain, with $\gamma := \left(\delta \|\mathbf{v}_{\overline{S}}\|_1\right) / \left(2(1-\delta)\sqrt{s}\right)$,

$$(a - \gamma)^2 + (b - \sqrt{c}\gamma)^2 \le (1 + c)\gamma^2.$$

Thus, the point (a, b) is inside the circle C passing through the origin, with center $(\gamma, \sqrt{c}\gamma)$. Since $b \ge \sqrt{p-1} a$, this point is above the line \mathcal{L} passing through the origin, with slope $\sqrt{p-1}$. If (a_*, b_*) denotes the intersection of C and \mathcal{L} — other than the origin — we then have

$$a \le a_* = \frac{2\left(1 + \sqrt{c(p-1)}\right)}{p}\gamma$$

as one can verify that the point on the circle C with maximal abscissa is below the line \mathcal{L} . Finally, in view of $\|\mathbf{v}_S\|_1 \le \sqrt{s} \|\mathbf{v}_S\|_2 = \sqrt{s} a$, we conclude that

$$\|\mathbf{v}_{S}\|_{1} \leq \frac{1+\sqrt{c(p-1)}}{p} \frac{\delta}{1-\delta} \|\mathbf{v}_{S}\|_{1}.$$

Thus, the null space property (4) is satisfied as soon as

$$(1 + \sqrt{c(p-1)}) \delta < p(1-\delta),$$
 i.e. $\delta < \frac{p}{p+1 + \sqrt{c(p-1)}}$

Specifying p = 3 and p = 4 yields Conditions 2) and 3), respectively.

As for Case 1), corresponding to s = 1, we simply write, with $\delta := \delta_2$,

$$\|\mathbf{v}_{\{1\}}\|_{2}^{2} \leq \frac{1}{1-\delta} \|A\mathbf{v}_{\{1\}}\|_{2}^{2} = \frac{1}{1-\delta} \langle A\mathbf{v}_{\{1\}}, \sum_{k\geq 2} A(-\mathbf{v}_{\{k\}}) \rangle \leq \frac{\delta}{1-\delta} \|\mathbf{v}_{\{1\}}\|_{2} \sum_{k\geq 2} \|\mathbf{v}_{\{k\}}\|_{2},$$

so that

$$\|\mathbf{v}_{\{1\}}\|_1 = \|\mathbf{v}_{\{1\}}\|_2 \le \frac{\delta}{1-\delta} \|\mathbf{v}_{\overline{\{1\}}}\|_1,$$

and the null space property (4) is satisfied as soon as $\delta/(1-\delta) < 1$, i.e. $\delta < 1/2$.

Proof of Proposition 3. As in the previous proof, we only need to establish that $\|\mathbf{v}_S\|_1 < \|\mathbf{v}_{\overline{S}}\|_1$ for a nonzero vector $\mathbf{v} \in \ker A$ sorted with $|v_1| \ge \cdots \ge |v_N|$ and for $S = \{1, \ldots, s\}$. We partition $\overline{S} = \{s + 1, \ldots, N\}$ as $\overline{S} = S' \cup T_1 \cup T_2 \cup \ldots$, where

$$\begin{split} S' &:= \{s+1, \dots, s+s'\} & \text{is of size } s', \\ T_1 &:= \{s+s'+1, \dots, s+s'+t\}, \quad T_2 &:= \{s+s'+t+1, \dots, s+s'+2t\}, \dots & \text{are of size } t. \end{split}$$

For an integer $r \le s + s'$, we consider the *r*-sparse vectors $\mathbf{w}_1 := \mathbf{v}_{\{1,...,r\}}$, $\mathbf{w}_2 := \mathbf{v}_{\{2,...,r+1\}}$, ..., $\mathbf{w}_{s+s'-r+1} := \mathbf{v}_{\{s+s'-r+1,...,s+s'\}}$, $\mathbf{w}_{s+s'-r+2} := \mathbf{v}_{\{s+s'-r+2,...,s+s',1\}}$, ..., $\mathbf{w}_{s+s'} := \mathbf{v}_{\{s+s',1,...,r-1\}}$, so that s+s'

$$\sum_{j=1}^{s+s'} \mathbf{w}_j = r(\mathbf{v}_S + \mathbf{v}_{S'}) \qquad \text{and} \qquad \sum_{j=1}^{s+s'} \|\mathbf{w}_j\|_2^2 = r\|\mathbf{v}_S + \mathbf{v}_{S'}\|_2^2$$

We impose

$$s' \le s, \qquad r+t \le 2s, \qquad t \le 4s',$$

in order to justify the chain of inequalities, where $\delta := \delta_{2s}$,

$$\begin{aligned} \|\mathbf{v}_{S} + \mathbf{v}_{S'}\|_{2}^{2} &\leq \frac{1}{1-\delta} \|A(\mathbf{v}_{S} + \mathbf{v}_{S'})\|_{2}^{2} = \frac{1}{1-\delta} \left\langle A\left(\sum_{j=0}^{s+s'} \mathbf{w}_{j}/r\right), A\left(-\sum_{k\geq 1} \mathbf{v}_{T_{k}}\right) \right\rangle \\ &= \frac{1}{1-\delta} \frac{1}{r} \sum_{j=1}^{s+s'} \left\langle A(\mathbf{w}_{j}), \sum_{k\geq 1} A(-\mathbf{v}_{T_{k}}) \right\rangle \leq \frac{1}{1-\delta} \frac{1}{r} \sum_{j=1}^{s+s'} \delta \|\mathbf{w}_{j}\|_{2} \sum_{k\geq 1} \|\mathbf{v}_{T_{k}}\|_{2} \\ &\leq \frac{\delta}{1-\delta} \frac{1}{r} \sum_{j=1}^{s+s'} \|\mathbf{w}_{j}\|_{2} \frac{\|\mathbf{v}_{\overline{S}}\|_{1}}{\sqrt{t}} \leq \frac{\delta}{1-\delta} \frac{1}{r} \sqrt{s+s'} \sqrt{\sum_{j=1}^{s+s'} \|\mathbf{w}_{j}\|_{2}^{2}} \frac{\|\mathbf{v}_{\overline{S}}\|_{1}}{\sqrt{t}} \\ &= \sqrt{\frac{s+s'}{rt}} \frac{\delta}{1-\delta} \|\mathbf{v}_{S} + \mathbf{v}_{S'}\|_{2} \|\mathbf{v}_{\overline{S}}\|_{1}. \end{aligned}$$

Simplifying by $\|\mathbf{v}_S + \mathbf{v}_{S'}\|_2$ and using $\|\mathbf{v}_S\|_1 \le \sqrt{s} \|\mathbf{v}_S\|_1 \le \sqrt{s} \|\mathbf{v}_S + \mathbf{v}_{S'}\|_2$, we arrive at

(10)
$$\|\mathbf{v}_{S}\|_{1} \leq \sqrt{\frac{s(s+s')}{rt}} \frac{\delta}{1-\delta} \|\mathbf{v}_{\overline{S}}\|_{1}$$

= $\sqrt{\frac{1+\sigma}{\rho\tau}} \frac{\delta}{1-\delta} \|\mathbf{v}_{\overline{S}}\|_{1},$ where $\sigma := \frac{s'}{s}, \ \rho := \frac{r}{s}, \text{ and } \tau := \frac{t}{s}.$

Pretending that the quantities σ , ρ , τ are continuous variables, we first minimize $(1+\sigma)/(\rho\tau)$, subject to $\sigma \leq 1$, $\rho + \tau \leq 2$, and $\tau \leq 4\sigma$. The minimum is achieved when ρ is largest possible, i.e. $\rho = 2 - \tau$. Subsequently, the minimum of $(1+\sigma)/((2-\tau)\tau)$, subject to $\sigma \leq 1$, $\tau \leq 2$, and $\tau \leq 4\sigma$, is achieved when σ is largest possible, i.e. $\sigma = \tau/4$. Finally, one can easily verify that the minimum of $(1+\tau/4)/((2-\tau)\tau)$ subject to $\tau \leq 2$ is achieved for $\tau = 2\sqrt{6} - 4$. This corresponds to $\sigma = \sqrt{3/2} - 1 \approx 0.2247$, and suggests the choice $s' = (\sqrt{3/2} - 1)s$. The latter does not give an integer value for s', so we take $s' = \lfloor (\sqrt{3/2} - 1)s \rfloor = \tilde{s} - s$, and in turn $t = 4s' = 4\tilde{s} - 4s$ and $r = 2s - t = 6s - 4\tilde{s}$. Substituting into (10), we obtain

$$\|\mathbf{v}_S\|_1 \le \sqrt{\frac{s\,\widetilde{s}}{8(\widetilde{s}-s)(3s-2\widetilde{s})}}\,\frac{\delta}{1-\delta}\,\|\mathbf{v}_{\overline{S}}\|_1.$$

Thus, the null space property (4) is satisfied as soon as Condition (3) holds.

Remark. For simplicity, we only considered exactly sparse vectors measured with infinite precision. Standard arguments in Compressive Sensing would show that the same sufficient conditions guarantee a reconstruction that is stable with respect to sparsity defect and robust with respect to measurement error.

References

- [1] Cai, T., L. Wang, and G. Xu, Shifting inequality and recovery of sparse signals, IEEE Transactions on Signal Processing, to appear.
- [2] Candès, E., The restricted isometry property and its implications for compressed sensing, Comptes Rendus de l'Académie des Sciences, Série I, 346(2008), 589–592.
- [3] Candès, E. and T. Tao, Decoding by linear programing, IEEE Trans. Inf. Theory 51(2005), 4203–4215.
- [4] Davies, M. and R. Gribonval, Restricted isometry constants where ℓ_p sparse recovery can fail for 0 , To appear in IEEE Trans. Inf. Th..
- [5] Foucart, S. and M. J. Lai, Sparsest solutions of underdetermined linear systems via ℓ_q minimization for $0 < q \le 1$, Applied and Comput. Harmonic Analysis, 26(2009), 395–407.
- [6] Gribonval, R, and M. Nielsen, Sparse representations in unions of bases, IEEE Trans. Inform. Theory, 49(2003), 3320–3325.