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Abstract

It is proved that every s-sparse vector x ∈ CN can be recovered from the measurement
vector y = Ax ∈ Cm via `1-minimization as soon as the 2s-th restricted isometry constant
of the matrix A is smaller than 3/(4+

√
6) ≈ 0.4652, or smaller than 4/(6+

√
6) ≈ 0.4734 for

large values of s.

We consider in this note the classical problem of Compressive Sensing consisting in recovering
an s-sparse vector x ∈ CN from the mere knowledge of a measurement vector y = Ax ∈ Cm,
with m� N , by solving the minimization problem

(P1) minimize
z∈CN

‖z‖1 subject to Az = y.

A much favored tool in the analysis of (P1) has been the restricted isometry constants δk of
the m×N measurement matrix A, defined as the smallest positive constants δ such that

(1) (1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all k-sparse vector z ∈ CN .

This notion was introduced by Candès and Tao in [3], where it was shown that all s-sparse
vectors are recovered as unique solutions of (P1) as soon as δ3s + 3δ4s < 2. There are many
such sufficient conditions involving the constants δk, but we find a condition involving only δ2s

more natural, since it is known [3] that an algorithm recovering all s-sparse vectors x from
the measurements y = Ax exists if and only if δ2s < 1. Candès showed in [2] that s-sparse
recovery is guaranteed as soon as δ2s <

√
2 − 1 ≈ 0.4142. This sufficient condition was later

improved to δ2s < 2/
(
3 +
√

2
)
≈ 0.4531 in [5], and to δ2s < 2/

(
2 +
√

5
)
≈ 0.4721 in [1], with the

proviso that s is either large or a multiple of 4. The purpose of this note is to show that the
threshold on δ2s can be pushed further — we point out that Davies and Gribonval proved that
it cannot be pushed further than 1/

√
2 ≈ 0.7071 in [4]. Our proof relies heavily on a technique

introduced in [1]. Let us note that the results of [2], [5], and [1], even though stated for R
rather than C, are valid in both settings. Indeed, for disjointly supported vectors u and v,
instead of using a real polarization formula to derive the estimate

(2) |〈Au, Av〉| ≤ δk‖u‖2‖v‖2,

where k is the size of supp(u)∪supp(v), we remark that δk = max
{
‖A∗KAK−I‖2, card(K) ≤ k

}
,

so that

|〈Au, Av〉| = |〈AKu, AKv〉| = |〈A∗KAKu,v〉| = |〈(A∗KAK − I)u,v〉| ≤ δk‖u‖2‖v‖2.
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Using (2), we can establish our main result in the complex setting, as stated below.

Theorem 1. Every s-sparse vector x ∈ CN is the unique minimizer of (P1) with y = Ax if

δ2s <
3

4 +
√

6
≈ 0.4652,

and, for large s, if

δ2s <
4

6 +
√

6
≈ 0.4734.

This theorem is a consequence of the following two propositions.

Proposition 2. Every s-sparse vector x ∈ CN is the unique minimizer of (P1) with y = Ax if

1) δ2s <
1
2

when s = 1,

2) δ2s <
3

4 +
√(

6s− 2r
)
/
(
s− 1

) when s = 3n+ r with 1 ≤ r ≤ 3,

3) δ2s <
4

5 +
√(

12s− 3r
)
/
(
s− 1

) when s = 4n+ r with 1 ≤ r ≤ 4,

4) δ2s <
2

3 +
√

1 + s/
(
8n+ b8r/5c

) when s = 5n+ r with 1 ≤ r ≤ 5.

Proposition 3. Every s-sparse vector x ∈ CN is the unique minimizer of (P1) with y = Ax if

(3) δ2s <
1

1 +
√
s s̃
/(

8(s̃− s)(3s− 2s̃)
) where s̃ = b

√
3/2 sc.

Proof of Theorem 1. For 2 ≤ s ≤ 8, we determine which sufficient condition of Proposition 2 is
the weakest, using the following table of values for the thresholds

s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

Case 2) 0.4393 0.4652 0.4472 0.4580 0.4652 0.4558 0.4610

Case 3) 0.4328 0.4611 0.4726 0.4558 0.4633 0.4686 0.4726

Case 4) 0.4661 0.4627 0.4661 0.4679 0.4661 0.4674 0.4661

For these values of s, requiring δ2s < 0.4652 is enough to guarantee s-sparse recovery. As for
the values s ≥ 9, since the function of n appearing in Case 4) is nondecreasing when r is fixed,
the corresponding sufficient condition holds for s as soon as it holds for s − 5. Then, because
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requiring δ2s < 0.4661 is enough to guarantee s-sparse recovery from Case 4) when 4 ≤ s ≤ 8,
it is also enough to guarantee it when s ≥ 9. Taking Case 1) into account, we conclude that
the inequality δ2s < 0.4652 ensures s-sparse recovery for every integer s ≥ 1, as stated in the
first part of Theorem 1. The second part of Theorem 1 follows from Proposition 3 by writing

s s̃

8(s̃− s)(3s− 2s̃)
−→
s→∞

√
3/2

8(
√

3/2− 1)(3− 2
√

3/2)
=

6
16(3−

√
6)2

=
( √

6
4(3−

√
6)

)2

=
(

2 +
√

6
4

)2

,

and substituting this limit into (3).

A crucial role in the proofs of Propositions 2 and 3 is played by the following lemma, which is
simply the shifting inequality introduced in [1] when k ≤ 4`. We provide a different proof for
the reader’s convenience.

Lemma 4. Given integers k, ` ≥ 1, for a sequence a1 ≥ a2 ≥ · · · ≥ ak+` ≥ 0, one has[ `+k∑
j=`+1

a2
j

]1/2

≤ max
[

1√
4`
,

1√
k

][ k∑
j=1

aj

]
.

Proof. The case ` + 1 ≥ k follows from the facts that the left-hand side is at most
√
k a`+1

and that the right-hand side is at least
√
k ak. We now assume that ` + 1 < k, so that the

subsequences (a1, . . . , ak) and (a`+1, . . . , a`+k) overlap on (a`+1, . . . , ak). Since the left-hand
side is maximized when ak+1, . . . , a` all equal ak, while the right-hand side is minimized when
a1, . . . , a` all equal a`+1, it is necessary and sufficient to establish that[

a2
`+1 + · · ·+ a2

k−1 + (`+ 1)a2
k

]1/2

≤ max
[

1√
4`
,

1√
k

][
(`+ 1)a`+1 + a`+2 + · · ·+ ak

]
.

By homogeneity, this is the problem of maximization of the convex function

f(a`+1, . . . , ak) :=
[
a2

`+1 + · · ·+ a2
k−1 + (`+ 1)a2

k

]1/2

over the convex polygon

P :=
{

(a`+1, . . . , ak) ∈ Rk−` : a`+1 ≥ · · · ≥ ak ≥ 0 and (`+ 1)a`+1 + a`+2 + · · ·+ ak ≤ 1
}
.

Because any point in P is a convex combination of its vertices and because the function f is
convex, its maximum over P is attained at a vertex of P. We note that the vertices of P are
obtained as intersections of (k − `) hyperplanes arising by turning (k − `) of the (k − ` + 1)
inequality constraints into equalities. We have the following possibilities:
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• if a`+1 = · · · = ak = 0, then f(a`+1, . . . , ak) = 0;

• if a`+1 = · · · = aj < aj+1 = · · · = ak = 0 and (`+1)a`+1+a`+2+· · ·+ak = 1 for `+1 ≤ j ≤ k,
then a`+1 = · · · = aj = 1/j, so that f(a`+1, . . . , ak) =

[
(j − `)/j2

]1/2 ≤
[
1/(4`)

]1/2 when
j < k and that f(a`+1, . . . , ak) =

[
k/k2

]1/2 =
[
1/k
]1/2 when j = k.

It follows that the maximum of the function f over the convex polygon P does not exceed
max

[
1/
√

4`, 1/
√
k
]
, which is the expected result.

Proof of Proposition 2. It is well-known, see e.g. [6], that the recovery of s-sparse vectors is
equivalent to the null space property, which asserts that, for any nonzero vector v ∈ kerA and
any index set S of size s, one has

(4) ‖vS‖1 < ‖vS‖1.

The notation S stands for the complementary of S in {1, . . . , N}. Let us now fix a nonzero
vector v ∈ kerA. We may assume without loss of generality that the entries of v are sorted in
decreasing order

|v1| ≥ |v2| ≥ · · · ≥ |vN |.

It is then necessary and sufficient to establish (4) for the set S = {1, . . . , s}.

We start by examining Case 4). We partition S = {s + 1, . . . , N} in two ways as S = S′ ∪ T1 ∪
T2 ∪ . . . and as S = S′ ∪ U1 ∪ U2 ∪ . . ., where

S′ := {s+ 1, . . . , s+ s′} is of size s′,

T1 := {s+ s′ + 1, . . . , s+ s′ + t}, T2 := {s+ s′ + t+ 1, . . . , s+ s′ + 2t}, . . . are of size t,

U1 := {s+ s′ + 1, . . . , s+ s′ + u}, U2 := {s+ s′ + u+ 1, . . . , s+ s′ + 2u}, . . . are of size u.

We impose the sizes of the sets S ∪ S′, S ∪ Tk, and S′ ∪ Uk to be at most 2s, i.e.

s′ ≤ s, t ≤ s, s′ + u ≤ 2s.

Thus, with δ := δ2s, we derive from (1) and (2)

‖vS + vS′‖22 ≤ 1
1− δ

‖A(vS + vS′)‖22 =
1

1− δ

[
〈A(vS), A(vS + vS′)〉+ 〈A(vS′), A(vS + vS′)〉

]
=

1
1− δ

[
〈A(vS),

∑
k≥1

A(−vTk
)〉+ 〈A(vS′),

∑
k≥1

A(−vUk
)〉
]

≤ 1
1− δ

[
δ‖vS‖2

∑
k≥1

‖vTk
‖2 + δ‖vS′‖2

∑
k≥1

‖vUk
‖2
]
.(5)
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Introducing the shifted sets T̃1 := {s + 1, . . . , s + t}, T̃2 := {s + t + 1, . . . , s + 2t}, . . ., and
Ũ1 := {s+ 1, . . . , s+ u}, Ũ2 := {s+ u+ 1, . . . , s+ 2u}, . . ., Lemma 4 yields, for k ≥ 1,

‖vTk
‖2 ≤ max

[ 1√
4s′

,
1√
t

]
‖veTk

‖1, ‖vUk
‖2 ≤ max

[ 1√
4s′

,
1√
u

]
‖veUk

‖1.

Substituting into (5), we obtain

(6) ‖vS + vS′‖22 ≤
δ

1− δ

[
‖vS‖2 max

[ 1√
4s′

,
1√
t

]
‖vS‖1 + ‖vS′‖2 max

[ 1√
4s′

,
1√
u

]
‖vS‖1

]
.

To minimize the first maximum in (6), we have all interest in taking the free variable t as
large as possible, i.e. t = s. We now concentrate on the second maximum in (6). The point
(s′, u) belongs to the region

R :=
{
s′ ≥ 0, u ≥ 0, s′ ≤ s, s′ + u ≤ 2s

}
.

This region is divided in two by the line L of equation u = 4s′. Below this line, the maximum
equals 1/

√
u, which is minimized for a large u. Above this line, the maximum equals 1/

√
4s′,

which is minimized for large s′. Thus, the maximum is minimized at the intersection of the
line L with the boundary of the region R— other than the origin — which is given by

s′∗ :=
2s
5
, u∗ :=

8s
5
.

If s is a multiple of 5, we can choose (s′, u) to be (s′∗, u∗). In view of 4s′∗ ≥ s, (6) becomes

‖vS‖22 + ‖vS′‖22 ≤
δ

1− δ
‖vS‖1√

s

[
‖vS‖2 +

√
c ‖vS′‖2

]
with c =

5
8
.

Completing the squares, we obtain, with γ :=
(
δ‖vS‖1

)
/
(
2(1− δ)

√
s
)
,(

‖vS‖2 − γ
)2 +

(
‖vS′‖2 −

√
c γ
)2 ≤ (1 + c

)
γ2.

Simply using the inequality
(
‖vS′‖2 −

√
c γ
)2 ≥ 0, we deduce

‖vS‖2 ≤
(
1 +
√

1 + c
)
γ.

Finally, in view of ‖vS‖1 ≤
√
s‖vS‖2, we conclude

‖vS‖1 ≤
(
1 +
√

1 + c
)
δ

2
(
1− δ

) ‖vS‖1.

Thus, the null space property (4) is satisfied as soon as(
1 +
√

1 + c
)
δ < 2

(
1− δ

)
, i.e. δ <

2
3 +
√

1 + c
.
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Substituting c = 5/8 leads to the sufficient condition δ2s < 2/
(
3 +

√
13/8

)
≈ 0.4679, valid

when s is a multiple of 5. When s is not a multiple of 5, we cannot choose (s′, u) to be (s′∗, u∗),
and we choose it to be a corner of the square

[
bs′∗c, ds′∗e

]
×
[
bu∗c, du∗e

]
. In all cases, the corner(

ds′∗e, du∗e
)

is inadmissible since ds′∗e+du∗e > 2s, and among the three admissible corners, one
can verify that the smallest value of max

[
1/
√

4s′, 1/
√
u
]

is achieved for
(
s′, u

)
=
(
ds′∗e, bu∗c

)
.

With this choice, in view of 4s′ ≥ s, (6) becomes

‖vS‖22 + ‖vS′‖22 ≤
δ

1− δ
‖vS‖1√

s

[
‖vS‖2 +

√
c ‖vS′‖2

]
with c =

s

b8s/5c
.

The same arguments as before yield the sufficient condition δ2s < 2/
(
3+
√

1 + s/b8s/5c
)
, which

is nothing else than Condition 4).

We now turn to Cases 2) and 3), which we treat simultaneously by writing s = pn+r, 1 ≤ r ≤ p,
for p = 3 and p = 4. We partition S as S = S′ ∪ T1 ∪ T2 ∪ . . . and S = S′ ∪ U1 ∪ U2 ∪ . . ., where

S′ := {s+ 1, . . . , s+ s′} is of size s′ = n+ 1,

T1 := {s+ s′ + 1, . . . , s+ s′ + t}, T2 := {s+ s′ + t+ 1, . . . , s+ s′ + 2t}, . . . are of size t = s,

U1 := {s+ s′ + 1, . . . , s+ s′ + u}, U2 := {s+ s′ + u+ 1, . . . , s+ s′ + 2u}, . . . are of size u = s− 1.

Moreover, we partition S as S1 ∪ · · · ∪ Sp, where S1, . . . , Sr are of size n+ 1 and Sr+1, . . . , Sp of
size n. We then set w0 := vS , w1 := vS2 + · · ·+ vSp + vS′ , w2 := vS1 + vS3 + · · ·+ vSp + vS′ , . . .,
wp := vS1 + . . .+ vSp−1 + vS′ , so that

p∑
j=0

wj = p(vS + v′S) and
p∑

j=0

‖wj‖22 = p‖vS + v′S‖22.

With δ := δ2s, we derive from (1) and (2)

‖vS + v′S‖22 ≤ 1
1− δ

‖A(vS + v′S)‖22 =
1

1− δ
〈
A
( p∑

j=0

wj

/
p
)
, A
(
− vS∪S′

)〉
=

1
1− δ

1
p

[ r∑
j=0

〈
A(wj),

∑
k≥1

A(−vTk
)
〉

+
p∑

j=r+1

〈
A(wj),

∑
k≥1

A(−vUk
)
〉]

≤ 1
1− δ

1
p

[ r∑
j=0

δ‖wj‖2
∑
k≥1

‖vTk
‖2 +

p∑
j=r+1

δ‖wj‖2
∑
k≥1

‖vUk
‖2
]
.(7)

Taking into account that s ≤ 4s′ and s− 1 ≤ 4s′, Lemma 4 yields, for k ≥ 1,

‖vTk
‖2 ≤

1√
s
‖veTk

‖1, ‖vUk
‖2 ≤

1√
s− 1

‖veUk
‖1,

where T̃1 := {s + 1, . . . , s + t}, T̃2 := {s + t + 1, . . . , s + 2t}, . . ., and Ũ1 := {s + 1, . . . , s + u},
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Ũ2 := {s+ u+ 1, . . . , s+ 2u}, . . .. Substituting into (7), we obtain

p‖vS + vS′‖22 ≤ 1
1− δ

1
p

[ r∑
j=0

δ‖wj‖2
‖vS‖1√

s
+

p∑
j=r+1

δ‖wj‖2
‖vS‖1√
s− 1

]

=
δ

1− δ
‖vS‖1√

s

[
‖vS‖2 +

r∑
j=1

‖wj‖2 +
p∑

j=r+1

√
s

s− 1
‖wj‖2

]
.(8)

We use the Cauchy–Schwarz inequality to derive
r∑

j=1

‖wj‖2 +
p∑

j=r+1

√
s

s− 1
‖wj‖2 ≤

√
r + (p− r) s

s− 1

√√√√ r∑
j=1

‖wj‖22

=
√
ps− r
s− 1

√
p‖vS + vS′‖22 − ‖vS‖22.(9)

Setting a := ‖vS‖2 and b :=
√
p‖vS + vS′‖22 − ‖vS‖22, (8) and (9) imply

a2 + b2 ≤ δ

1− δ
‖vS‖1√

s

[
a+
√
c b
]
, with c :=

ps− r
s− 1

.

Completing the squares, we obtain, with γ :=
(
δ‖vS‖1

)
/
(
2(1− δ)

√
s
)
,

(a− γ)2 + (b−
√
c γ)2 ≤ (1 + c)γ2.

Thus, the point (a, b) is inside the circle C passing through the origin, with center (γ,
√
c γ).

Since b ≥
√
p− 1 a, this point is above the line L passing through the origin, with slope

√
p− 1.

If (a∗, b∗) denotes the intersection of C and L— other than the origin — we then have

a ≤ a∗ =
2
(
1 +

√
c (p− 1)

)
p

γ,

as one can verify that the point on the circle C with maximal abscissa is below the line L.
Finally, in view of ‖vS‖1 ≤

√
s‖vS‖2 =

√
s a, we conclude that

‖vS‖1 ≤
1 +

√
c (p− 1)
p

δ

1− δ
‖vS‖1.

Thus, the null space property (4) is satisfied as soon as(
1 +

√
c (p− 1)

)
δ < p

(
1− δ

)
, i.e. δ <

p

p+ 1 +
√
c (p− 1)

.

Specifying p = 3 and p = 4 yields Conditions 2) and 3), respectively.

As for Case 1), corresponding to s = 1, we simply write, with δ := δ2,

‖v{1}‖22 ≤
1

1− δ
‖Av{1}‖22 =

1
1− δ

〈
Av{1},

∑
k≥2

A(−v{k})
〉
≤ δ

1− δ
‖v{1}‖2

∑
k≥2

‖v{k}‖2,
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so that
‖v{1}‖1 = ‖v{1}‖2 ≤

δ

1− δ
‖v{1}‖1,

and the null space property (4) is satisfied as soon as δ/(1− δ) < 1, i.e. δ < 1/2.

Proof of Proposition 3. As in the previous proof, we only need to establish that ‖vS‖1 < ‖vS‖1
for a nonzero vector v ∈ kerA sorted with |v1| ≥ · · · ≥ |vN | and for S = {1, . . . , s}. We partition
S = {s+ 1, . . . , N} as S = S′ ∪ T1 ∪ T2 ∪ . . ., where

S′ := {s+ 1, . . . , s+ s′} is of size s′,

T1 := {s+ s′ + 1, . . . , s+ s′ + t}, T2 := {s+ s′ + t+ 1, . . . , s+ s′ + 2t}, . . . are of size t.

For an integer r ≤ s+ s′, we consider the r-sparse vectors w1 := v{1,...,r}, w2 := v{2,...,r+1}, . . .,
ws+s′−r+1 := v{s+s′−r+1,...,s+s′}, ws+s′−r+2 := v{s+s′−r+2,...,s+s′,1}, . . ., ws+s′ := v{s+s′,1,...,r−1}, so
that

s+s′∑
j=1

wj = r(vS + vS′) and
s+s′∑
j=1

‖wj‖22 = r‖vS + vS′‖22.

We impose
s′ ≤ s, r + t ≤ 2s, t ≤ 4s′,

in order to justify the chain of inequalities, where δ := δ2s,

‖vS + vS′‖22 ≤ 1
1− δ

‖A(vS + vS′)‖22 =
1

1− δ

〈
A
( s+s′∑

j=0

wj

/
r
)
, A
(
−
∑
k≥1

vTk

)〉

=
1

1− δ
1
r

s+s′∑
j=1

〈
A(wj),

∑
k≥1

A(−vTk
)
〉
≤ 1

1− δ
1
r

s+s′∑
j=1

δ‖wj‖2
∑
k≥1

‖vTk
‖2

≤ δ

1− δ
1
r

s+s′∑
j=1

‖wj‖2
‖vS‖1√

t
≤ δ

1− δ
1
r

√
s+ s′

√√√√s+s′∑
j=1

‖wj‖22
‖vS‖1√

t

=

√
s+ s′

rt

δ

1− δ
‖vS + vS′‖2 ‖vS‖1.

Simplifying by ‖vS + vS′‖2 and using ‖vS‖1 ≤
√
s‖vS‖1 ≤

√
s‖vS + vS′‖2, we arrive at

‖vS‖1 ≤
√
s(s+ s′)

rt

δ

1− δ
‖vS‖1(10)

=
√

1 + σ

ρτ

δ

1− δ
‖vS‖1, where σ :=

s′

s
, ρ :=

r

s
, and τ :=

t

s
.
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Pretending that the quantities σ, ρ, τ are continuous variables, we first minimize
(
1+σ

)
/
(
ρτ
)
,

subject to σ ≤ 1, ρ+τ ≤ 2, and τ ≤ 4σ. The minimum is achieved when ρ is largest possible, i.e.
ρ = 2− τ . Subsequently, the minimun of

(
1+σ

)
/
(
(2− τ)τ

)
, subject to σ ≤ 1, τ ≤ 2, and τ ≤ 4σ,

is achieved when σ is largest possible, i.e. σ = τ/4. Finally, one can easily verify that the
minimum of

(
1+ τ/4

)
/
(
(2− τ)τ

)
subject to τ ≤ 2 is achieved for τ = 2

√
6−4. This corresponds

to σ =
√

3/2 − 1 ≈ 0.2247, and suggests the choice s′ =
(√

3/2 − 1
)
s. The latter does not give

an integer value for s′, so we take s′ = b
(√

3/2− 1
)
sc = s̃− s, and in turn t = 4s′ = 4s̃− 4s and

r = 2s− t = 6s− 4s̃. Substituting into (10), we obtain

‖vS‖1 ≤

√
s s̃

8(s̃− s)(3s− 2s̃)
δ

1− δ
‖vS‖1.

Thus, the null space property (4) is satisfied as soon as Condition (3) holds.

Remark. For simplicity, we only considered exactly sparse vectors measured with infinite
precision. Standard arguments in Compressive Sensing would show that the same sufficient
conditions guarantee a reconstruction that is stable with respect to sparsity defect and robust
with respect to measurement error.
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