On the Norms and Minimal Properties of de la Vallée Poussin's type Operators

Beata Deregowska • Simon Foucart •
Barbara Lewandowska • Lesław Skrzypek

Received: date / Accepted: date

Abstract In this paper we consider the de la Vallée Poussin's type operators $H_{r n, s n}$

$$
H_{r n, s n}:=\frac{F_{r n}+F_{r n+1}+\ldots+F_{s n-1}}{(s-r) n}
$$

where F_{k} are classical Fourier projections onto Π_{k} (the space of trigonometric polynomials of degree less than or equal to k). We determine when $H_{n, s n}$ is the minimal generalized projection and provide the asymptotic behavior of the norm $\left\|H_{n, s n}\right\|$. Additionally, we contrast the results obtained for the trigonometric system to the results obtained for the Rademacher system.

Keywords de la Vallée Poussin's operators • Minimal projections
Mathematics Subject Classification (2000) 42A10 • 47A58 • 41A44

1 Introduction

The symbol $\mathscr{L}(X, Z)$ stands for the space of all linear continuous operators from a normed space X into a normed space Z. Let $V \subset Z$ be (closed) subspaces of a Banach

[^0]space X. Put
\[

$$
\begin{equation*}
\mathscr{P}_{V}(X, Z):=\left\{P \in \mathscr{L}(X, Z):\left.P\right|_{V}=i d\right\} . \tag{1}
\end{equation*}
$$

\]

Each element of $\mathscr{P}_{V}(X, Z)$ is called a generalized projection. We say that P_{o} is a minimal generalized projection (MGP) if it has the smallest possible norm, that is if

$$
\begin{equation*}
\left\|P_{o}\right\|=\lambda_{Z}(V, X):=\inf \left\{\|P\|: P \in \mathscr{P}_{V}(X, Z)\right\} \tag{2}
\end{equation*}
$$

The case $V=Z$ corresponds to standard projections and we denote $\mathscr{P}(X, V):=$ $\mathscr{P}_{V}(X, V)$ and $\lambda(V, X):=\lambda_{V}(V, X)$ for simplicity. Projections play an important role in numerical analysis. Given a projection P, we can approximate x by $P x$ and the error of such approximation $\|x-P x\|$ can be estimated by means of the elementary inequality

$$
\begin{equation*}
\|x-P x\| \leq\|i d-P\| \cdot \operatorname{dist}(x, V) \leq(1+\|P\|) \cdot \operatorname{dist}(x, V) \tag{3}
\end{equation*}
$$

where $\operatorname{dist}(x, V):=\inf \{\|x-v\|: v \in V\}$. From the above inequality we deduce that the smaller the norm of P the better the approximation of x by $P x$. Notice that inequality (3) also holds for generalized projections. Moreover, if $V \subset Z$ then $\mathscr{P}_{V}(X, V) \subset$ $\mathscr{P}_{V}(X, Z)$. The question arises, to what extent we can improve the approximation of x by $P x$ if we consider generalized projections. The related question is how smaller the norms of the generalized projections are in relation to $\lambda(V, X)$.

The classic example considers the Fourier projection. Let $X=\mathscr{C}_{2 \pi}(\mathbb{R})$ (the space of continuous 2π-periodic functions on \mathbb{R}) or $X=L_{1}[0,2 \pi]$ and denote by Π_{n} the space of all trigonometric polynomials of a degree less than or equal to n. The Fourier projection $F_{n}: X \rightarrow \Pi_{n}$ (that is the orthogonal projection onto Π_{n}) is given by

$$
\begin{equation*}
F_{n}(f)(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(s) D_{n}(t-s) d s \tag{4}
\end{equation*}
$$

where D_{n} is a Dirichlet kernel

$$
\begin{equation*}
D_{n}(t)=1+2 \cos (t)+\ldots+2 \cos (n t)=\frac{\sin \left(\frac{2 n+1}{2} t\right)}{\sin \left(\frac{t}{2}\right)} . \tag{5}
\end{equation*}
$$

Observe that, the Fourier projection is a self-adjoint operator so its operator norm induced by L_{1} norm and L_{∞} (or supremum) norm is the same. The Fourier projection is uniquely minimal ([13], [2] and [10]) and its norm is given by ([7] and [9])

$$
\begin{equation*}
\left\|F_{n}\right\|=\left\|D_{n}\right\| \approx \frac{4}{\pi^{2}} \ln n \tag{6}
\end{equation*}
$$

The main difficulty here is that $\left\|F_{n}\right\| \rightarrow \infty$ which, by Banach-Steinhaus theorem, means that the set of $f \in X$ for which the sequence $F_{n}(f)$ diverges is dense in X. We also refer the reader to [22], [8], [11], [12] and [18] for further reading regarding the properties of Fourier projection.

In 1918 de la Vallée Poussin ([15]) introduced the generalized projections considering the arithmetic means of Fourier projections

$$
\begin{equation*}
H_{n, 2 n}:=\frac{F_{n}+F_{n+1}+\ldots+F_{2 n-1}}{n} \in \mathscr{P}_{\Pi_{n}}\left(X, \Pi_{2 n-1}\right) . \tag{7}
\end{equation*}
$$

Observe that, the de la Vallée Poussin projection is a self-adjoint operator so its operator norm induced by L_{1} norm and L_{∞} (or supremum) norm is the same. The main advantage of de la Vallée Poussin generalized projections $H_{n, 2 n}$ is that their norms are uniformly bounded. Recently, it has been shown that $H_{n, 2 n}$ are in fact the generalized minimal projections ([5]) and their exact norms have been established ([14])

$$
\begin{equation*}
\left\|H_{n, 2 n}\right\|=\left\|F_{1}\right\|=\frac{1}{3}+\frac{2 \sqrt{3}}{\pi}=1.435991 \ldots \tag{8}
\end{equation*}
$$

We also refer the reader to [3], [4], [20] and [21] for further reading regarding the properties of de la Vallée Poussin operators.

In this paper we consider the de la Vallée Poussin's type operators $H_{n, s n}$

$$
\begin{equation*}
H_{n, s n}:=\frac{F_{n}+F_{n+1}+\ldots+F_{s n-1}}{n} \in \mathscr{P}_{\Pi_{n}}\left(X, \Pi_{s n-1}\right) . \tag{9}
\end{equation*}
$$

We provide a full characterization when $H_{n, s n}$ is the minimal generalized projection (see Theorems 12, 14 and 16)

Theorem $1 H_{n, s n}$ is $(M G P)$ in $\mathscr{P}_{\Pi_{n}}\left(X, \Pi_{s n-1}\right)$ if and only if $s=1$ or $s=2$.
We can easily see that $\left\|H_{n, s n}\right\| \rightarrow 1$ as $s \rightarrow \infty$. But how fast is the convergence? Or how much do we gain by setting the overspace Z to be $\Pi_{s n-1}$ (instead of $\Pi_{2 n-1}$)? We provide the tight asymptotic behavior of the L_{1} norm and L_{∞} (or supremum) norm of the de la Vallée Poussin operators (see Theorem 18 given on page 13).

Theorem $2\left\|H_{n, s n}\right\|=1+\Theta\left(\frac{1}{s}\right)$, for all $n \in \mathbb{N}$.
Here $a_{n}=\Theta\left(b_{n}\right)$ denotes that a_{n} is bounded both above and below by b_{n} asymptotically.

Summarizing, for the trigonometric system, we considered the sequence of subspaces Π_{n} and the sequence of corresponding overspaces such that

$$
\begin{equation*}
\Pi_{n} \subset \Pi_{n, 2 n-1} \subset \ldots \subset \Pi_{n, s n-1} \subset \ldots \subset X \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
& \lambda_{\Pi_{n}}\left(X, \Pi_{n}\right) \approx \frac{4}{\pi^{2}} \ln n \tag{11}\\
& \lambda_{\Pi_{n}}\left(X, \Pi_{2 n-1}\right)=\frac{1}{3}+\frac{2 \sqrt{3}}{\pi}=1.435991 \ldots \tag{12}\\
& \lambda_{\Pi_{n}}\left(X, \Pi_{s n-1}\right)=1+\Theta\left(\frac{1}{s}\right) \tag{13}
\end{align*}
$$

We contrast the results obtained for the trigonometric system to the results obtained for the Rademacher system. Let $X=L_{1}[0,1]$ and denote by $\operatorname{Rad}_{n}=\operatorname{span}\left\{r_{0}, \ldots, r_{n-1}\right\}$ the subspace spanned by the first n Rademacher functions. The Rademacher projection $R_{n}: X \rightarrow \operatorname{Rad}_{n}$ (that is the orthogonal projection into Rad_{n}) is given by

$$
\begin{equation*}
R_{n}(f)(t)=\int_{0}^{1} f(s) D_{A}^{r}(t \oplus s) d s \tag{14}
\end{equation*}
$$

where $D_{n}^{r}=\sum_{i=0}^{n-1} r_{i}$ is a corresponding Dirichlet kernel. The Rademacher projection is minimal ([1]) and the behavior of its norm is given by ([17])

$$
\begin{equation*}
\left\|R_{n}\right\|=\Theta(\sqrt{n}) \tag{15}
\end{equation*}
$$

Interestingly, and in contrast to the trigonometric system, we cannot improve anything by considering the generalized projections onto Rad_{m} (for $m>n$) as we obtain the following result (see Theorem 23).

Theorem $3 R_{n}$ is $(M G P)$ in $\mathscr{P}_{\operatorname{Rad}_{n}}\left(L_{1}[0,1], \operatorname{Rad}_{m}\right)$.
Furthemore, if we set the overspace Z to be S_{n} (the space of simple functions generated by characteristic functions of the intervals $I_{l, n}=\left[\frac{l}{2^{n}}, \frac{l+1}{2^{n}}\right)$, where $l \in\left\{0,1, \ldots, 2^{n}-\right.$ $1\}$) and consider the projection $L_{n} \in \mathscr{P}_{\operatorname{Rad}_{n}}\left(L_{1}[0,1], S_{n}\right)$ given by

$$
\begin{equation*}
L_{n}(f)=\sum_{l=0}^{2^{n}-1}\left(\int_{I_{l, n}} f(x) d x\right) \chi_{l_{l, n}} \tag{16}
\end{equation*}
$$

we establish the result below
Remark $4\left\|L_{n}\right\|=1$ and, therefore, L_{n} is $(M G P)$ in $\mathscr{P}_{\text {Rad }_{n}}\left(L_{1}[0,1], S_{n}\right)$.
The following well known characterization of best approximation is a direct consequence of Hahn-Banach theorem and will be our main tool in determining whether a given generalized projection is minimal or not.

Theorem 5 ([19], Theorem 1.1) Let X be a Banach space and $V \subset X$ be a linear subspace and let $x_{0} \in X \backslash \operatorname{cl}(V)$. Then v_{0} is a best approximation to x_{0} in V iff there exists $f \in S\left(X^{*}\right)$ such that

$$
\begin{equation*}
f\left(x_{0}-v_{0}\right)=\left\|x_{0}-v_{0}\right\| \quad \text { and }\left.\quad f\right|_{V} \equiv 0 . \tag{17}
\end{equation*}
$$

2 De la Vallée Poussin's type operators

Definition 6 Let $X=\mathscr{C}_{2 \pi}(\mathbb{R})$ or $X=L_{1}[0,2 \pi]$. Let $H_{r n, s n}: X \rightarrow \Pi_{s n-1}$ be given by

$$
\begin{equation*}
H_{r n, s n}(f)(t)=\frac{1}{(s-r) n} \sum_{k=r n}^{s n-1} F_{k}(f)(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(u) V_{r n, s n}(t-u) d u \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
V_{r n, s n}(t) & =\frac{1}{(s-r) n} \sum_{k=r n}^{s n-1} D_{k}(t)=\frac{\sin \left(\frac{s-r}{2} n t\right) \sin \left(\frac{s+r}{2} n t\right)}{(s-r) n\left(\sin \left(\frac{1}{2} t\right)\right)^{2}} \\
& =\frac{\sin ^{2}\left(\frac{s n t}{2}\right)-\sin ^{2}\left(\frac{r n t}{2}\right)}{(s-r) n\left(\sin \left(\frac{1}{2} t\right)\right)^{2}} \tag{19}
\end{align*}
$$

for some $r, s \in \mathbb{N}$ such that $r<s$. Then $H_{r n, s n} \in \mathscr{P}_{\Pi_{r n}}\left(X, \Pi_{s n-1}\right)$ is a generalized projection called de la Vallée Poussin's type operator.

Observe that for every operator P which is de la Vallée Poussin's type operator there exist unique natural numbers r, s, n such that r and s are relatively prime and $P=$ $H_{r n, s n}$.

Theorem 7 ([14], Theorem 1.1) Let $r, s, n \in \mathbb{N}$. Then

$$
\begin{equation*}
\left\|H_{r n, s n}\right\|=\left\|H_{r, s}\right\| . \tag{20}
\end{equation*}
$$

Proof. Using the identity

$$
\begin{equation*}
\frac{1}{\sin ^{2}(t)}=\sum_{k=-\infty}^{+\infty} \frac{1}{(t+k \pi)^{2}} \tag{21}
\end{equation*}
$$

we can provide a different and much shorter proof of the statement of this theorem. Indeed, by (21) we obtain

$$
\begin{aligned}
H_{r n, s n}(t) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(u) V_{r n, s n}(t-u) d u=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t-u) V_{r n, s n}(u) d u \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t-u) \frac{1}{(s-r) n} \sum_{k=-\infty}^{+\infty} \frac{\left.\sin ^{2}\left(\frac{s n u}{2}\right)-\sin ^{2}\left(\frac{r n u}{2}\right)\right)}{(u+2 k \pi)^{2}} d u .
\end{aligned}
$$

Since the above series is uniformly convergent on \mathbb{R} there follows

$$
\begin{aligned}
H_{r n, s n}(t) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t-u) \frac{1}{(s-r) n} \sum_{k=-\infty}^{+\infty} \frac{\left.\sin ^{2}\left(\frac{s n u}{2}\right)-\sin ^{2}\left(\frac{r n u}{2}\right)\right)}{(u+2 k \pi)^{2}} d u \\
& =\frac{1}{2 \pi(s-r) n} \sum_{k=-\infty}^{+\infty} \int_{0}^{2 \pi} f(t-u) \frac{\left.\sin ^{2}\left(\frac{s n u}{2}\right)-\sin ^{2}\left(\frac{r n u}{2}\right)\right)}{(u+2 k \pi)^{2}} d u \\
& =\frac{1}{2 \pi(s-r) n} \sum_{k=-\infty}^{+\infty} \int_{0}^{2 \pi} f(t-u-2 k \pi) \frac{\left.\sin ^{2}\left(\frac{s n(u+2 k \pi)}{2}\right)-\sin ^{2}\left(\frac{r n(u+2 k \pi)}{2}\right)\right)}{(u+2 k \pi)^{2}} d u \\
& =\frac{1}{2 \pi(s-r) n} \sum_{k=-\infty}^{+\infty} \int_{2 k \pi}^{2(k+1) \pi} f(t-u) \frac{\left.\sin ^{2}\left(\frac{s n u}{2}\right)-\sin ^{2}\left(\frac{r n u}{2}\right)\right)}{u^{2}} d u \\
& =\frac{1}{2 \pi(s-r) n} \int_{-\infty}^{+\infty} f(t-u) \frac{\left.\sin ^{2}\left(\frac{s n u}{2}\right)-\sin ^{2}\left(\frac{r n u}{2}\right)\right)}{u^{2}} d u \\
& =\frac{2}{\pi(s-r) n} \int_{-\infty}^{+\infty} f(t-u) \frac{\sin \left(\frac{s-r}{2} n u\right) \sin \left(\frac{s+r}{2} n u\right)}{u^{2}} d u
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|H_{r n, s n}\right\|=\frac{2}{\pi(s-r) n} \int_{-\infty}^{+\infty} \frac{\left|\sin \left(\frac{s-r}{2} n u\right) \sin \left(\frac{s+r}{2} n u\right)\right|}{u^{2}} d u \tag{22}
\end{equation*}
$$

Making the substitution $\frac{2}{(s-r) n} x=u$, we get

$$
\left\|H_{r n, s n}\right\|=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\left|\sin x \sin \left(\frac{s+r}{s-r} x\right)\right|}{x^{2}} d x
$$

which shows that the norm of the operator $H_{r n, s n}$ is independent of n.

Corollary 8 Let $p, q \in \mathbb{N}$ such that $p>q$ then

$$
\int_{-\infty}^{+\infty} \frac{\left|\sin x \sin \left(\frac{p}{q} x\right)\right|}{x^{2}} d x=\pi\left\|H_{p-q, p+q}\right\| .
$$

Lemma 9 ([5], Lemma 2.1) Let X be $\mathscr{C}_{2 \pi}(\mathbb{R})$ or $L_{1}[0,2 \pi]$. Let $\emptyset \neq A \subset B$ be finite subsets of \mathbb{Z}. We define $V:=\operatorname{span}\left\{e^{i k t}: k \in A\right\}$ and $Z:=\operatorname{span}\left\{e^{i k t}: k \in B\right\}$. For every $P \in \mathscr{P}_{V}(X, Z)$ there exists $\widetilde{P} \in \mathscr{P}_{V}(X, Z)$ such that

$$
\begin{equation*}
\|\widetilde{P}\| \leq\|P\| \text { and } \widetilde{P}(f)(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(s) \sum_{k \in B} a_{k} e^{i k(t-s)} d s \tag{23}
\end{equation*}
$$

for some $a_{k} \in \mathbb{C}$, such that $a_{k}=1$ for $k \in A$.
Lemma 10 Let X be $\mathscr{C}_{2 \pi}(\mathbb{R})$ or $L_{1}[0,2 \pi]$. Then $H_{r n, s n}$ is $(M G P)$ in $\mathscr{P}_{\Pi_{r n}}\left(X, \Pi_{s n-1}\right)$ iff for all $k \in \mathbb{Z}$ such that $r n<|k|<$ sn the following holds

$$
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r n, s n}(t)\right) e^{i k t} d t=0
$$

Proof. By Lemma 9 it is enough to show that $H_{r n, s n}$ is minimal in the set of generalized projections given by the convolutions (23). If P is a generalized projection of this form then there exists $b_{k} \in \mathbb{C}$, such that

$$
P(f)(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(s)\left(V_{n}(t-u)+\sum_{r n<|k|<s n} b_{k} e^{i k(t-u)}\right) d u .
$$

Then

$$
\|P\|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|V_{n}(t)+\sum_{r n<|k|<s n} b_{k} e^{i k t}\right| d t .
$$

Hence $H_{r n, s n}$ is MGP if and only if 0 is a best approximation to the function $V_{r n, s n}$ in $Y:=\operatorname{span}\left\{e^{i k t}:|k| \in\{r n+1, \ldots, s n-1\}\right\}$ equipped with L_{1}-norm. Since $\operatorname{sgn}\left(V_{r n, s n}\right) \in$ $L_{\infty}[0,2 \pi]$ is a unique norming functional for $V_{r n, s n} \in L_{1}[0,2 \pi]$, by Theorem 5 we obtain the assertion.

Lemma 11 Let $n, s, r \in \mathbb{N}$ and $s>r$. Then the function $\operatorname{sgn}\left(V_{r n, s n}\right):(0,2 \pi) \rightarrow \mathbb{R}$ (see (19)) has the following properties

1. $\operatorname{sgn}\left(V_{r n, s n}\right)$ is a $\frac{2 \pi}{n}$ periodic function;
2. $\operatorname{sgn}\left(V_{r n, s n}\left(\frac{\pi}{n}-t\right)\right)=\operatorname{sgn}\left(V_{r n, s n}\left(\frac{\pi}{n}+t\right)\right)$ for all $t \in\left(0, \frac{\pi}{n}\right)$;
3. zeros of the function $\operatorname{sgn}\left(V_{r n, s n}\right)$ in the interval $\left(0, \frac{\pi}{n}\right)$ have one of two forms:
(i) $\frac{2 \pi a}{(s+r) n}$ for $a \in\{1, \ldots, p\}$, where p is the biggest natural number which is less than $\frac{s+r}{2}$;
(ii) $\frac{2 \pi a}{(s-r)_{n}^{n}}$ for $a \in\{1, \ldots, q\}$, where q is the biggest natural number which is less than $\frac{s-r}{2}$.

Proof. Let $f(t):=\sin \left(\frac{s+r}{2} n t\right) \sin \left(\frac{s-r}{2} n t\right)$ for $t \in(0,2 \pi)$. By (19) we have $\operatorname{sgn}\left(V_{r n, s n}\right)=$ $\operatorname{sgn}(f)$. Observe that, if the function f has the above properties, $\operatorname{sgn}(f)$ has the same properties.

1. Fix $t \in\left(0, \frac{2 \pi(n-1)}{n}\right)$, then $f\left(t+\frac{2 \pi}{n}\right)=\sin \left(\frac{s+r}{2} n t+(s+r) \pi\right) \cdot \sin \left(\frac{s-r}{2} n t+(s-r) \pi\right)=$ $(-1)^{s+r}(-1)^{s-r} f(t)=f(t)$.
2. Let $t \in\left(0, \frac{\pi}{n}\right)$, then $f\left(\frac{\pi}{n}-t\right)=f\left(t-\frac{\pi}{n}\right)=(-1)^{s+r}(-1)^{s-r} f\left(t-\frac{\pi}{n}\right)=\sin \left(\frac{s+r}{2} n(t-\right.$ $\left.\left.\frac{\pi}{n}\right)+(s+r) \pi\right) \cdot \sin \left(\frac{s-r}{2} n\left(t-\frac{\pi}{n}\right)+(s-r) \pi\right)=f\left(\frac{\pi}{n}+t\right)$.
3. Follows from the definition of the function f.

For simplicity of notation, we denote $H_{r n}^{1}:=H_{r n,(r+1) n}, V_{r n}^{1}:=V_{r n,(r+1) n}$ and $H_{r n}^{2}:=$ $H_{r n,(r+2) n}, V_{r n}^{2}:=V_{r n,(r+2) n}$.

Theorem 12 Let $X=\mathscr{C}_{2 \pi}(\mathbb{R})$ or $X=L_{1}[0,2 \pi]$. Then for all $r \in \mathbb{N}$ operator $H_{r n}^{1}$ is $M G P$ in $\mathscr{P}_{\Pi_{r n}}\left(X, \Pi_{(r+1) n-1}\right)$.

Proof. By Lemma 10 it is sufficient to show that, for every $k \in \mathbb{Z}$, such that $|k| \in$ $(r n,(r+1) n)$ we have $\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r n}^{1}(t)\right) e^{i k t} d t=0$. According to Lemma 11, $V_{r n}^{1}(t)=0$ if and only if $t=\frac{2 \pi b}{(2 r+1) n}$ for $b \in\{1, \ldots,(2 r+1) n-1\}$. Moreover, only at double zeros of $V_{r n}^{1}\left(t=\frac{2 \pi a}{n}\right.$ for $\left.a \in\{1, \ldots n-1\}\right)$ the function does not change the sign. Denote $I_{b}=\left(\frac{2 \pi b}{(2 r+1) n}, \frac{2 \pi(b+1)}{(2 r+1) n}\right)$ for $b \in\{0, \ldots,(2 r+1) n-1\}$. Observe that between two double zeros there is always an even number of simple zeros, which implies that the function $V_{r n}^{1}$ changes the sign an even number of times between them. Hence $\left.\operatorname{sgn}(f)\right|_{I_{b}}=\left.\operatorname{sgn}(f)\right|_{\left(0, \frac{2 \pi}{(2 r+1) n}\right)}=1$ for $b=a(2 r+1)$, where $a \in\{0, \ldots, n-1\}$. Consequently for every $k \in\{0,2, \ldots, 2 r\}$

$$
\left.\operatorname{sgn}(f)\right|_{I_{b}}=\left.\operatorname{sgn}(f)\right|_{\left(0, \frac{2 \pi}{(2 r+1) n}\right)}=1 \text { for } b=a(2 r+1)+k,
$$

where $a \in\{0, \ldots, n-1\}$ and for $k \in\{1,3, \ldots, 2 r-1\}$

$$
\left.\operatorname{sgn}(f)\right|_{L_{b}}=\left.\operatorname{sgn}(f)\right|_{\left(0, \frac{2 \pi}{(2 r+1) n}\right)}=-1 \text { for } b=a(2 r+1)+k,
$$

where $a \in\{0, \ldots, n-1\}$. For simplicity of notation let $I_{a, l}=I_{a(2 r+1)+l}$ for $a \in\{0,1, \ldots, n-$ $1\}$ and $l \in\{0,1, \ldots 2 r\}$. Now, fix $k \in \mathbb{N} \backslash\{0\}$

$$
\begin{aligned}
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{n}(t)\right) e^{i k t} d t= & \sum_{l=0}^{2 r}(-1)^{l} \sum_{a=0}^{n-1} \int_{I_{a, l}} e^{i k t} d t \\
= & (i k)^{-1} \sum_{l=0}^{2 r}(-1)^{l} \sum_{a=0}^{n-1}\left(e^{\frac{2 \pi i k(a(2 r+1)+l+1)}{(2 r+1) n}}-e^{\frac{2 \pi i k(a(2 r+1)+l)}{(2 r+1) n}}\right) \\
= & (i k)^{-1} \sum_{l=0}^{2 r}(-1)^{l} e^{\frac{2 \pi i k(l+1)}{(2 r+1) n}} \sum_{a=0}^{n-1}\left(e^{\frac{2 \pi i k}{n}}\right)^{a} \\
& \quad-(i k)^{-1} \sum_{l=0}^{2 r}(-1)^{l} e^{\frac{2 \pi i k l}{2 r+1) n}} \sum_{a=0}^{n-1}\left(e^{\frac{2 \pi i k}{n}}\right)^{a} .
\end{aligned}
$$

If $r n<|k|<(r+1) n$, then $e^{\frac{2 \pi i k}{n}} \neq 1$. Hence

$$
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{n}(t)\right) e^{i k t} d t=(i k)^{-1} \sum_{l=0}^{2 r}(-1)^{l}\left(e^{\frac{2 \pi i k(l+1)}{(2 r+1) n}}-e^{\frac{2 \pi i k l}{(2 r+1) n}}\right) \frac{1-e^{2 \pi i k}}{1-e^{\frac{2 \pi i k}{n}}}=0
$$

which yields the conclusion.
By Theorem 7 we have the following formula for the norm of the operator $H_{r n}^{1}$.
Theorem 13 Let $X=\mathscr{C}_{2 \pi}(\mathbb{R})$ or $X=L_{1}[0,2 \pi]$. Fix $r \in \mathbb{N}$. Then for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left\|H_{r n}^{1}\right\|=L_{r}, \tag{24}
\end{equation*}
$$

where L_{r} is the r-th Lebesgue constant $\left(L_{r}=\left\|F_{r}\right\|=\left\|D_{r}\right\|\right)$.
Theorem 14 Let $X=\mathscr{C}_{2 \pi}(\mathbb{R})$ or $X=L_{1}[0,2 \pi]$. Then for all $r \in \mathbb{N}$, the operator $H_{r n}^{2}$ is $M G P$ in $\mathscr{P}_{\Pi_{r n}}\left(X, \Pi_{(r+2) n-1}\right)$.

Proof. By Lemma 10 it is sufficient to show that for every $k \in \mathbb{Z}$, such that $|k| \in$ $(r n,(r+2) n)$ holds $\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r n}^{2}(t)\right) e^{i k t} d t=0$. Accordingly to Lemma $11 V_{r n}^{2}(t)=0$ iff $t=\frac{\pi b}{(r+1) n}$ for $b \in\{1, \ldots, 2(r+1) n-1\}$. Moreover only in double zeros of $V_{r n}^{2}\left(t=\frac{\pi a}{n}\right.$ for $a \in\{1, \ldots 2 n-1\})$ does not change the sign. Denote $I_{b}:=\left(\frac{\pi b}{(r+1) n}, \frac{\pi(b+1)}{(r+1) n}\right)$ for $b \in\{0, \ldots, 2(r+1) n-1\}$. Observe that between two consecutive double zeros there are exactly r simple zeros. Hence $\left.\operatorname{sgn}(f)\right|_{I_{b}}=\left.\operatorname{sgn}(f)\right|_{I_{b+2 l(r+1)}}$ for all $b \in 0, \ldots, 2 r+1$ and $l \in\{1, \ldots, n-1\}$. Fix $k \in \mathbb{N} \backslash\{0\}$, then

$$
\begin{aligned}
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r n}^{2}(t)\right) e^{i k t} d t & =\left.\sum_{b=0}^{2 r+1} \operatorname{sgn}(f)\right|_{l_{b}} \sum_{l=0}^{n-1} \int_{I_{b+2 l(r+1)}} e^{i k t} d t \\
& =\left.(i k)^{-1} \sum_{b=0}^{2 r+1} \operatorname{sgn}(f)\right|_{l_{b}} \sum_{l=0}^{n-1}\left(e^{\frac{\pi i k(b+1+2 l(r+1))}{(r+1) n}}-e^{\frac{\pi i k(b+2 l(r+1))}{(r+1) n}}\right) \\
& =\left.(i k)^{-1} \sum_{b=0}^{2 r+1} \operatorname{sgn}(f)\right|_{l_{b}}\left(e^{\frac{\pi i k(b+1)}{(r+1) n}}-e^{\frac{\pi i k b}{(r+1) n}}\right) \sum_{l=0}^{n-1}\left(e^{\frac{2 \pi i k}{n}}\right)^{l}
\end{aligned}
$$

If $r n<|k|<(r+1) n$ or $(r+1) n<|k|<(r+2) n$ then $e^{\frac{2 \pi i k}{n}} \neq 1$. Hence

$$
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r n}^{2}(t)\right) e^{i k t} d t=\left.(i k)^{-1} \sum_{b=0}^{2 r+1} \operatorname{sgn}(f)\right|_{L_{b}}\left(e^{\frac{\pi i k(b+1)}{(r+1) n}}-e^{\frac{\pi i k b}{(r+1) n}}\right) \frac{1-e^{2 \pi i k}}{1-e^{\frac{2 \pi i k}{n}}}=0 .
$$

On the other hand for $|k|=(r+1) n$, we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r n}^{2}(t)\right) e^{i k t} d t & =\left.(i k)^{-1} \sum_{b=0}^{2 r+1} 2 n \operatorname{sgn}(f)\right|_{I_{b}}(-1)^{b+1} \\
& =(i k)^{-1} \sum_{b=0}^{r} 2 n(-1)^{2 b+1}+(i k)^{-1} \sum_{b=r+1}^{2 r+1} 2 n(-1)^{2 b}=0,
\end{aligned}
$$

which completes the proof.
By the above calculations it is easy to deduce the formula for $\left\|H_{r n}^{2}\right\|$.

Theorem 15 Let $X=\mathscr{C}_{2 \pi}(\mathbb{R})$ or $X=L_{1}[0,2 \pi]$. Then for all odd $r \in \mathbb{N}$

$$
\begin{equation*}
\left\|H_{r n}^{2}\right\|=\frac{4}{\pi} \sum_{m=0}^{\frac{r-1}{2}} \frac{\tan \left(\frac{(2 m+1) \pi}{2(r+1)}\right)}{2 m+1} \tag{25}
\end{equation*}
$$

Proof. Using Theorem 7 we get $\left\|H_{r n}^{2}\right\|=\left\|H_{r}^{2}\right\|$. Accordingly by Definition 6 we have

$$
\begin{aligned}
\left\|H_{r}^{2}\right\| & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|V_{r}^{2}(t)\right| d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r}^{2}(t)\right)\left(\sum_{k=-r}^{r} e^{i k t}+\frac{1}{2}\left(e^{i(r+1) t}+e^{-i(r+1) t}\right)\right) d t .
\end{aligned}
$$

By the proof of Theorem 14

$$
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r}^{2}(t)\right)\left(e^{i(r+1) t}+e^{-i(r+1) t}\right) d t=0
$$

and for $k \in \mathbb{Z}$ such that $0<|k| \leq r$

$$
\begin{aligned}
a_{k} & :=\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{r}^{2}(t)\right) e^{i k t} d t=(i k)^{-1} \sum_{b=0}^{r}(-1)^{b}\left(e^{\frac{\pi i k(b+1)}{r+1}}-e^{\frac{\pi i k b}{r+1}}\right) \\
& +(i k)^{-1} \sum_{b=r+1}^{2 r+1}(-1)^{b-1}\left(e^{\frac{\pi i k(b+1)}{r+1}}-e^{\frac{\pi i k b}{r+1}}\right)=(i k)^{-1} \sum_{b=0}^{r}(-1)^{b}\left(e^{\frac{\pi i k(b+1)}{r+1}}-e^{\frac{\pi i k b}{r+1}}\right) \\
& +\frac{e^{\pi i k}}{i k} \sum_{b=0}^{r}(-1)^{b+r}\left(e^{\frac{\pi i k(b+1)}{r+1}}-e^{\frac{\pi i k b}{r+1}}\right) .
\end{aligned}
$$

Hence for $k=2 m, a_{k}=0$, and for $k=2 m+1$ we have

$$
\begin{aligned}
a_{k} & =\frac{2}{i k} \sum_{b=0}^{r}(-1)^{b}\left(e^{\frac{\pi i k(b+1)}{r+1}}-e^{\frac{\pi i k b}{r+1}}\right)=4\left(\sum_{k=0}^{\frac{r-1}{2}} e^{\frac{\pi i k(2 b+1)}{r+1}}-\sum_{k=1}^{\frac{r-1}{2}} e^{\frac{2 \pi i k b}{r+1}}\right) \\
& =4\left(e^{\frac{\pi i k}{r+1}}-1\right) \sum_{k=1}^{\frac{r-1}{2}}\left(e^{\frac{2 \pi i k b}{r+1}}+4 e^{\frac{\pi i k}{r+1}}\right)=\frac{4}{i k} \cdot e^{\frac{\pi i k}{2(r+1)}-e^{\frac{\pi i k}{2(r+1)}}} e^{\frac{\pi i k}{2(r+1)}}+e^{\frac{-\pi i k}{2(r+1)}}
\end{aligned} \frac{4}{k} \tan \left(\frac{\pi k}{2(r+1)}\right) .
$$

Notice that zeros of the function V_{r}^{2} divide the interval $(0, \pi)$ into $r+1$ equal parts. Since all zeros in this interval are simple, sign of the function is equal 1 on $\frac{r+1}{2}$ parts and -1 on the $\frac{r+1}{2}$ parts. Hence by Lemma 11 (2) $a_{0}=0$. Now we can easily compute the norm

$$
\left\|H_{r n}^{2}\right\|=\left\|H_{r}^{2}\right\|=\frac{1}{2 \pi} \sum_{k=-r}^{k=r} a_{k}=\frac{1}{\pi} \sum_{m=0}^{\frac{r-1}{2}} a_{2 m+1}=\frac{4}{\pi} \sum_{m=0}^{\frac{r-1}{2}} \frac{\tan \left(\frac{(2 m+1) \pi}{2(r+1)}\right)}{2 m+1}
$$

Now we present a theorem, which shows that de la Vallée Poussin's type operators do not have to be (MGP).

Theorem 16 Let $n, s \in \mathbb{N}$ and $s>3$. Then $H_{n, s n}$ is not a minimal generalized projection in $\mathscr{P}_{\Pi_{n}}\left(X, \Pi_{s n-1}\right)$.

Proof. To the contrary, assume that $H_{n, s n}$ is MGP. According to Lemma 10, for all $|k| \in\{n+1, \ldots, s n-1\}$ we have $\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{n, s n}\right)(t) e^{i k t} d t=0$, and consequently

$$
\begin{equation*}
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{n, s n}(t)\right) \cos (k t) d t=0 \text { for all } k \in\{n+1, \ldots, s n-1\} \tag{26}
\end{equation*}
$$

Since $s>3, n<(s-2) n<s n$. The functions $\cos ((s-2) n t)$ and $\operatorname{sgn}\left(V_{n, s n}(t)\right)$ are $\frac{2 \pi}{n}$ periodic. Hence by (26) we get

$$
\int_{0}^{\frac{2 \pi}{n}} \operatorname{sgn}\left(V_{n, s n}(t)\right) \cos ((s-2) n t) d t=0 .
$$

Using Lemma 11 it is easy to see that $\operatorname{sgn}\left(V_{n, s n}(t)\right)=\operatorname{sgn}\left(V_{1, s}(n t)\right)$ for $t \in\left(0, \frac{2 \pi}{n}\right)$, and consequently

$$
\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{1, s}(t)\right) \cos ((s-2) t) d t=0
$$

Now assume that $s=2 l+1$ for some integer $l \geq 2$. In the proof of the next theorem we will show the equation ((29)) and thus
$\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{1, s}(t)\right) \cos ((s-2) t) d t=\frac{4}{s-2}\left(\cot \left(\frac{\pi(s-2)}{s+1}\right)-\cot \left(\frac{\pi(s-2)}{s-1}\right)\right) \neq 0$,
which leads to the contrary. Now consider $s=2 l$ for some integer $l \geq 2$. Then by (31) below
$\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{1, s}(t)\right) \cos ((s-2) t) d t=\frac{2}{s-2}\left(\tan \left(\frac{\pi(s-2)}{2(s+1)}\right)-\tan \left(\frac{\pi(s-2)}{2(s-1)}\right)\right) \neq 0$,
a contradiction.
Theorem 17 Let $n \geq 1$ and $l \geq 2$ be integers. Then

$$
\left\|H_{n,(2 l+1) n}\right\|=\frac{4}{\pi} \sum_{m=0}^{l-1} \frac{l-m}{l(2 m+1)}\left(\cot \left(\frac{(2 m+1) \pi}{2(l+1)}\right)-\cot \left(\frac{(2 m+1) \pi}{2 l}\right)\right)
$$

and

$$
\begin{aligned}
\left\|H_{n, 2 l n}\right\| & =\frac{2}{\pi} \sum_{m=0}^{l-1} \frac{2(l-m)-1}{(2 l-1)(2 m+1)}\left(\cot \left(\frac{(2 m+1) \pi}{2(2 l+1)}\right)-\cot \left(\frac{(2 m+1) \pi}{2(2 l-1)}\right)\right) \\
& +\frac{2}{\pi} \sum_{m=1}^{l-1} \frac{l-m}{(2 l-1) m}\left(\tan \left(\frac{m \pi}{2 l-1}\right)-\tan \left(\frac{m \pi}{2 l+1}\right)\right)+\frac{1}{4 l^{2}-1} .
\end{aligned}
$$

Proof. Using Theorem 7 we get $\left\|H_{n, s n}\right\|=\left\|H_{1, s}\right\|$. By Definition 6

$$
\left\|H_{1, s}\right\|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|V_{1, s}(t)\right| d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{sgn}\left(V_{1, s}(t)\right)\left(1+\sum_{k=1}^{s-1} \frac{s-k}{s-1}\left(e^{i k t}+e^{-i k t}\right)\right) d t
$$

For $k \in \mathbb{Z}$, denote

$$
a_{k}:=\int_{0}^{2 \pi} \operatorname{sgn}\left(V_{1, s}(t)\right) e^{i k t} d t
$$

Now, fix k such that $|k| \in\{1, \ldots s-1\}$. Then by Lemma 11

$$
\begin{aligned}
a_{k} & =\int_{0}^{\pi} \operatorname{sgn}\left(V_{1, s}(t)\right) e^{i k t} d t+\int_{0}^{\pi} \operatorname{sgn}\left(V_{1, s}(2 \pi-t)\right) e^{i k(2 \pi-t)} d t \\
& =\int_{0}^{\pi} \operatorname{sgn}\left(V_{1, s}(t)\right)\left(e^{i k t}+e^{-i k t}\right) d t=2 \sum_{a=1}^{\left[\frac{s}{2}\right]} \int_{\frac{2 \pi(a-1)}{s-1}}^{\frac{2 \pi a}{s+1}} \cos (k t) d t \\
& -2 \sum_{a=1}^{\left[\frac{s}{2}\right]-1} \int_{\frac{2 \pi a}{s+1}}^{\frac{2 \pi a}{s-1}} \cos (k t) d t-2 \int_{\frac{2 \pi\left[\frac{s}{s}\right]}{s+1}}^{\pi} \cos (k t) d t \\
& =\frac{4}{k} \sum_{a=1}^{\left[\frac{s}{2}\right]} \sin \left(\frac{2 \pi k}{s+1} a\right)-\frac{4}{k} \sum_{a=1}^{\left[\frac{s}{2}\right]-1} \sin \left(\frac{2 \pi k}{s-1} a\right) .
\end{aligned}
$$

By the above computation it is easy to see that $a_{-k}=a_{k}$, for all $k \in\{1, \ldots, s-1\}$. Hence

$$
\begin{equation*}
\left\|H_{1, s}\right\|=\frac{1}{2 \pi}\left(a_{0}+2 \sum_{k=1}^{s-1} a_{k}\right) . \tag{27}
\end{equation*}
$$

Now assume that $s=2 l+1$ for some $l \in \mathbb{N}_{2}$. In this case π is a double zero of the function $\operatorname{sgn}\left(V_{1, s}\right)$, so by Lemma 11 (2) $a_{0}=0$. If $k=2 m$ for some $m \in\{1, \ldots, l-1\}$, then by the above and the following trigonometric identity

$$
\begin{equation*}
\sum_{k=1}^{n} \sin k t=\frac{\sin \left(\frac{n+1}{2} t\right) \sin \left(\frac{n}{2} t\right)}{\sin \left(\frac{t}{2}\right)} \tag{28}
\end{equation*}
$$

we obtain

$$
a_{k}=\frac{2}{m}\left(\frac{\sin (\pi m) \sin \left(\frac{\pi m l}{l+1}\right)}{\sin \left(\frac{\pi m}{l+1}\right)}-\frac{\sin (\pi m) \sin \left(\frac{\pi m(l-1)}{l}\right)}{\sin \left(\frac{\pi m}{l}\right)}\right)=0,
$$

moreover for $k=2 l$ we have

$$
a_{k}=\frac{4}{k} \sum_{a=1}^{l} \sin \left(\frac{2 \pi l}{l+1} a\right)=\frac{2 \sin (\pi l) \sin \left(\frac{\pi l^{2}}{l+1}\right)}{l \sin \left(\frac{\pi l}{l+1}\right)}=0
$$

Analogously for $k=2 m+1(m \in\{0, \ldots, l-1\})$ we can compute

$$
\begin{align*}
a_{k} & =\frac{4}{k}\left(\frac{\sin \left(\frac{\pi k}{2}\right) \sin \left(\frac{\pi k}{2}-\frac{\pi k}{2(l+1)}\right)}{\sin \left(\frac{\pi k}{2(l+1)}\right)}-\frac{\sin \left(\frac{\pi k}{2}\right) \sin \left(\frac{\pi k}{2}-\frac{\pi k}{2 l}\right)}{\sin \left(\frac{\pi k}{2 l}\right)}\right) \tag{29}\\
& =\frac{4}{k}\left(\cot \left(\frac{\pi k}{2(l+1)}\right)-\cot \left(\frac{\pi k}{2 l}\right)\right) .
\end{align*}
$$

Hence by (27)

$$
\left\|H_{1,2 m+1}\right\|=\frac{4}{\pi} \sum_{m=0}^{l-1} \frac{l-m}{l(2 m+1)}\left(\cot \left(\frac{(2 m+1) \pi}{2(l+1)}\right)-\cot \left(\frac{(2 m+1) \pi}{2 l}\right)\right),
$$

which completes the proof of the first part of our theorem.
Now we are taking $s=2 l$ for some integer $l \geq 2$. Then

$$
\begin{equation*}
a_{0}=4 \sum_{a=1}^{l} \frac{2 \pi a}{(s+1)}-4 \sum_{a=1}^{l-1} \frac{2 \pi a}{(s-1)}-2 \pi=\frac{2 \pi}{4 l^{2}-1} \tag{30}
\end{equation*}
$$

and for $k=2 m$, where $m \in\{1, \ldots, l-1\}$

$$
\begin{align*}
a_{k} & =\frac{4}{k}\left(\frac{\sin \left(\pi m+\frac{\pi m}{2 l+1}\right) \sin \left(\pi m-\frac{\pi m}{2 l+1}\right)}{\sin \left(2 \frac{\pi m}{2 l+1}\right)}\right. \\
& \left.-\frac{\sin \left(\pi m+\frac{\pi m}{2 l-1}\right) \sin \left(\pi m-\frac{\pi m}{2 l-1}\right)}{\sin \left(2 \frac{\pi m}{2 l-1}\right)}\right) \tag{31}\\
& =\frac{2}{k}\left(\tan \left(\frac{\pi m}{2 l-1}\right)-\tan \left(\frac{\pi m}{2 l+1}\right)\right) .
\end{align*}
$$

Moreover for $k=2 m+1$, where $m \in\{0, \ldots, l-1\}$

$$
\begin{align*}
a_{k} & =\frac{4}{k}\left(\frac{\sin \left(\frac{\pi(2 m+1)}{2}+\frac{\pi(2 m+1)}{2(2 l+1)}\right) \sin \left(\frac{\pi(2 m+1)}{2}-\frac{\pi(2 m+1)}{2(2 l+1)}\right)}{\sin \left(2 \frac{\pi(2 m+1)}{2(2 l+1)}\right)}\right. \\
& \left.-\frac{\sin \left(\frac{\pi(2 m+1)}{2}+\frac{\pi(2 m+1)}{2(2 l-1)}\right) \sin \left(\frac{\pi(2 m+1)}{2}-\frac{\pi(2 m+1)}{2(2 l-1)}\right)}{\sin \left(2 \frac{\pi(2 m+1)}{2(2 l-1)}\right)}\right) \tag{32}\\
& =\frac{2}{k}\left(\cot \left(\frac{\pi(2 m+1)}{2(2 l+1)}\right)-\cot \left(\frac{\pi(2 m+1)}{2(2 l-1)}\right)\right) .
\end{align*}
$$

Hence by (27)

$$
\begin{aligned}
\left\|H_{1,2 l}\right\| & =\frac{2}{\pi} \sum_{m=0}^{l-1} \frac{2(l-m)-1}{(2 l-1)(2 m+1)}\left(\cot \left(\frac{(2 m+1) \pi}{2(2 l+1)}\right)-\cot \left(\frac{(2 m+1) \pi}{2(2 l-1)}\right)\right) \\
& +\frac{2}{\pi} \sum_{m=1}^{l-1} \frac{l-m}{(2 l-1) m}\left(\tan \left(\frac{m \pi}{2 l-1}\right)-\tan \left(\frac{m \pi}{2 l+1}\right)\right)+\frac{1}{4 l^{2}-1}
\end{aligned}
$$

as required.

Theorem 18 For all $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left\|H_{n, s n}\right\|=1+\Theta\left(\frac{1}{s}\right) \tag{33}
\end{equation*}
$$

Proof. Observe first that the upper estimation is a straightforward consequence of the Cauchy-Schwarz inequality. Indeed

$$
\begin{aligned}
\left\|H_{r n, s n}\right\| & =\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\left|\sin x \sin \left(\frac{s+r}{s-r} x\right)\right|}{x^{2}} d x=\frac{1}{\pi} \int_{-\infty}^{+\infty}\left|\frac{\sin x}{x} \cdot \frac{\sin \left(\frac{s+r}{s-r} x\right)}{x}\right| d x \\
& \leq \frac{1}{\pi}\left(\int_{-\infty}^{+\infty} \frac{\sin ^{2} x}{x^{2}} d x\right)^{1 / 2}\left(\int_{-\infty}^{+\infty} \frac{\sin ^{2}\left(\frac{s+r}{s-r} x\right)}{x^{2}} d x\right)^{1 / 2} \\
& =\frac{1}{\pi} \cdot \pi^{1 / 2} \cdot \sqrt{\frac{s+r}{s-r}} \cdot \pi^{1 / 2}=\sqrt{1+\frac{2 r}{s-r}} \leq 1+\frac{r}{s-r} .
\end{aligned}
$$

The main difficulty in Theorem 18 is in the lower estimation.
By Theorem 7, (18) and (19) we get

$$
\left\|H_{n, s n}\right\|=\left\|H_{1, s}\right\|=\frac{1}{2 \pi(s-1)} \int_{0}^{2 \pi}\left|\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}-1\right| d t
$$

Let Ω be a subset of $[0,2 \pi]$ and $\widehat{\Omega}:=[0,2 \pi] \backslash \Omega$. Then

$$
\begin{align*}
\left\|H_{n, s n}\right\| & \geq \frac{1}{2 \pi(s-1)}\left(\int_{\widehat{\Omega}}\left(\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}-1\right) d t+\int_{\Omega}\left(1-\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}\right) d t\right) \\
& =\frac{1}{2 \pi(s-1)}\left(\int_{0}^{2 \pi}\left(\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}-1\right) d t+2 \int_{\Omega}\left(1-\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}\right) d t\right) \\
& =\frac{1}{2 \pi(s-1)}\left(2 \pi s-2 \pi+2 \int_{\Omega}\left(1-\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}\right) d t\right) \\
& =1+\frac{1}{\pi(s-1)} \int_{\Omega}\left(1-\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}\right) d t . \tag{34}
\end{align*}
$$

Observe that

$$
\begin{equation*}
K(t)=1-\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}=\frac{\cos (s t)-\cos (t)}{1-\cos (t)} \tag{35}
\end{equation*}
$$

Let $\Omega=\bigcup_{k}\left[\frac{2 \pi}{s} k-\frac{c}{s}, \frac{2 \pi}{s} k+\frac{c}{s}\right]$ where the summation is over all integers k such that $\frac{2 \pi}{s} k$ is in the interval $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ and c is a fixed number $0<c \leq \frac{\pi}{4} \cdot \frac{s}{s+1}$. Note that on Ω it holds $K(t) \geq 0$ and as a result $K(t) \geq \frac{1}{2}(\cos (s t)-\cos (t))$. As a result, using (34), we have

$$
\left\|H_{n, s n}\right\| \geq 1+\frac{1}{\pi(s-1)} \int_{\Omega}\left(1-\frac{\sin ^{2}\left(\frac{s t}{2}\right)}{\sin ^{2}\left(\frac{t}{2}\right)}\right) d t \geq 1+\frac{1}{2 \pi(s-1)} \int_{\Omega} \cos (s t)-\cos (t) d t
$$

Since $\Omega \subset\left[\frac{\pi}{2}-\frac{c}{s}, \frac{3 \pi}{2}+\frac{c}{s}\right]$ then $\int_{\Omega}(-\cos (t)) d t>0$. Moreover

$$
\begin{equation*}
\int_{\frac{2 \pi}{s} k-\frac{c}{s}}^{\frac{2 \pi}{s} k+\frac{c}{s}} \cos (s t) d t=\frac{2 \sin (c)}{s} \tag{36}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left\|H_{n, s n}\right\| & \geq 1+\frac{1}{2 \pi(s-1)} \int_{\Omega} \cos (s t) d t \geq 1+\frac{1}{2 \pi(s-1)} \cdot \frac{2 \sin (c)}{s} \cdot \frac{s-1}{2} \\
& \geq 1+\frac{0.11}{s} . \tag{37}
\end{align*}
$$

We can asymptotically improve on the above estimate as follows

$$
\begin{align*}
\int_{\Omega}(-\cos (t)) d t=\sum_{k} \int_{\frac{2 \pi}{s} k-\frac{c}{s}}^{\frac{2 \pi}{s} k+\frac{c}{s}}-\cos (t) d t & =\sum_{k} \sin \left(\frac{2 \pi}{s} k-\frac{c}{s}\right)-\sin \left(\frac{2 \pi}{s} k+\frac{c}{s}\right) \\
& =\sum_{k}-2 \sin \left(\frac{c}{s}\right) \cos \left(\frac{2 \pi}{s} k\right) \\
& =2 \sin \left(\frac{c}{s}\right)\left(\sum_{k}-\cos \left(\frac{2 \pi}{s} k\right)\right) \tag{38}
\end{align*}
$$

Note that $\sum_{k}\left(-\cos \left(\frac{2 \pi}{s} k\right)\right) \cdot \frac{2 \pi}{s}$ is a Riemann sum of $\int_{\pi / 2}^{3 \pi / 2}(-\cos (t) d t)=2$. Therefore $\sum_{k}\left(-\cos \left(\frac{2 \pi}{s} k\right)\right) \approx 2 \cdot \frac{s}{2 \pi}=\frac{s}{\pi}$. Hence

$$
\begin{equation*}
\int_{\Omega}(-\cos (t)) d t \approx \frac{2 c}{\pi} \tag{39}
\end{equation*}
$$

Combining this and (36) we get

$$
\int_{\Omega}(\cos (s t)-\cos (t)) d t \approx \sin (c)+\frac{2 c}{\pi} .
$$

Remark 19 Letting $s \rightarrow \infty$ and setting $c=\frac{\pi}{4}$ we obtain

$$
1+\frac{0.192}{s-1}<\left\|H_{n, s n}\right\|<1+\frac{1}{s-1}
$$

for s sufficiently large.
By the above theorem and Corollary 8 we immediately get the following result.
Corollary 20 Let $n \in \mathbb{N}$. Then

$$
\int_{-\infty}^{+\infty} \frac{\left|\sin x \sin \left(1+\frac{1}{n}\right) x\right|}{x^{2}} d x=\pi+\Theta\left(\frac{1}{n}\right)
$$

3 Rademacher projections

We contrast the results obtained for the trigonometric system to the results obtained for the Rademacher system. The well-known Rademacher functions, r_{0}, r_{1}, \ldots, defined by $r_{j}(t)=(-1)^{\left[2^{j} t\right]}$ for $0 \leq t \leq 1$ plays a central role in many areas of analysis ($[x]$ denotes the integer part of x). For further investigations we will need a notion of dyadic group. We shall denote the set of dyadic rationals in the unit interval $[0,1)$ by Q. In particular, each element of Q has a form $p / 2^{n}$ for some $p, n \in \mathbb{N}, 0 \leq p<2^{n}$. Any $x \in[0,1]$ may be written in the form

$$
\begin{equation*}
x=\sum_{k=0}^{\infty} x_{k} 2^{-(k+1)}, \tag{40}
\end{equation*}
$$

where each $x_{k}=0$ or 1 . For each $x \in[0,1] \backslash Q$ there is only one expression of this form. We shall call it the dyadic expansion of x. When $x \in Q \backslash\{0\}$ there are two expression of this form, one which terminates in 0 's and one which terminates in 1's. By the dyadic expansion of $x \in Q$ we shall mean the one which terminates in 0 's. Notice that $1 \notin Q$ so the dyadic expansion of $x=1$ terminates in 1 's.
Now we can define the dyadic addition of two numbers x, y by

$$
\begin{equation*}
x \oplus y=\sum_{k=0}^{\infty}\left|x_{k}-y_{k}\right| 2^{-(k+1)} . \tag{41}
\end{equation*}
$$

Observe that $x \oplus x=0$ therefore $x \oplus y=x \ominus y$.
Theorem 21 (see e.g. [17]) The following holds true

$$
\begin{equation*}
r_{n}(x \oplus y)=r_{n}(x) r_{n}(y) \quad \text { for } x \oplus y \notin Q \tag{42}
\end{equation*}
$$

For many other interesting facts concerning Rademacher functions the reader is referred to [17]. Let A be a nonempty finite subset of \mathbb{N}. Denote

$$
\begin{equation*}
\operatorname{Rad}_{A}=\operatorname{span}\left\{r_{k}: k \in A\right\} . \tag{43}
\end{equation*}
$$

The Rademacher projection is defined by

$$
\begin{equation*}
R_{A}=\sum_{i \in A} r_{i} \otimes r_{i}: L_{1}[0,1] \rightarrow \operatorname{Rad}_{A} \tag{44}
\end{equation*}
$$

We can write the above projection as

$$
\begin{equation*}
R_{A}(f)=\sum_{i \in A}\left(\int_{0}^{1} r_{i}(t) f(t) d t\right) r_{i} \tag{45}
\end{equation*}
$$

or using Dirichlet kernel $D_{A}^{r}=\sum_{i \in A} r_{i}$ and orthogonality of Rademacher functions as

$$
\begin{equation*}
\left(R_{A} f\right)(s)=\int_{0}^{1} f(t) D_{A}^{r}(t \oplus s) d t \tag{46}
\end{equation*}
$$

Lemma 22 Let $A \subset B$ be nonempty finite subsets of \mathbb{N}. The norm of Rademacher projection R_{A} restricted to the subspace $R^{2} d_{B}$ is equal 1.

Proof. Let $Y:=\operatorname{span}\left\{r_{k}: k \in B \backslash A\right\} \subset L_{1}[0,1]$. Since for every function $f:=$ $\sum_{l \in B} a_{l} r_{l} \in \operatorname{Rad}_{B}$ we have $R_{A} f=\sum_{l \in A} a_{l} r_{l}$, it is sufficient to show that 0 is a best approximation to $R_{A} f$ in Y. According to Theorem 5 it suffices to prove that for every $k \in B \backslash A$ we have $\int_{0}^{1} \operatorname{sgn}\left(R_{A} f(s)\right) r_{k}(s) d s=0$. Fix $k \in B \backslash A$. Denote

$$
I_{j, k}:=\left[\frac{j-1}{2^{k}}, \frac{j}{2^{k}}\right) \text { for } j \in\left\{1, \ldots, 2^{k}\right\}
$$

Observe that, if $l<k$ then

$$
\left.r_{l}\right|_{I_{2 m-1, k} \cup I_{2 m, k}} \equiv \text { const for } m \in\left\{1, \ldots, 2^{k-1}\right\} .
$$

Moreover for $l>k$ we have

$$
r_{l}\left(t+\frac{1}{2^{k}}\right)=r_{l}(t)
$$

Hence if $t \in I_{2 m-1, k}$ for some $m \in\left\{1, \ldots, 2^{k-1}\right\}$ then

$$
R_{A} f\left(t+\frac{1}{2^{k}}\right)=\sum_{l \in A} a_{l} r_{l}\left(t+\frac{1}{2^{k}}\right)=\sum_{l \in A} a_{l} r_{l}(t)=R_{A} f(t)
$$

which implies

$$
\int_{0}^{1} \operatorname{sgn}\left(R_{A} f(t)\right) r_{k}(t) d s=\sum_{j=1}^{2^{k}} \int_{I_{j, k}} \operatorname{sgn}\left(R_{A} f(t)\right)(-1)^{j+1} d s=0
$$

as required.

Theorem 23 Let $A \subset B$ be nonempty finite subsets of \mathbb{N}. Then the Rademacher projection R_{A} is a minimal generalized projection in $\mathscr{P}_{\operatorname{Rad}_{A}}\left(L_{1}[0,1], \operatorname{Rad}_{B}\right)$.

Proof. Fixed $Q \in \mathscr{P}_{\operatorname{Rad}_{A}}\left(L_{1}[0,1], \operatorname{Rad}_{B}\right)$. Then $\widetilde{Q}:=R_{A} \circ Q$ is a projection from $L_{1}[0,1]$ onto Rad_{A} and by Lemma $22\|\widetilde{Q}\| \leq\|Q\|$, which implies

$$
\lambda\left(\operatorname{Rad}_{A}, L_{1}[0,1]\right) \leq \lambda_{\operatorname{Rad}_{B}}\left(\operatorname{Rad}_{A}, L_{1}[0,1]\right) .
$$

Consequently, the Rademacher projection R_{A}, which is minimal in $\mathscr{P}\left(L_{1}[0,1], \operatorname{Rad}_{A}\right)$, is also minimal generalized projection in $\mathscr{P}_{\operatorname{Rad}_{A}}\left(L_{1}[0,1], \operatorname{Rad}_{B}\right)$.

By the symmetry of Rademacher spaces and the well-known estimation of the classical Rademacher projection norm based on Khinchin's inequality (see [6]) we have the following result

Theorem 24 (see e.g. [17]) Let A be a nonempty finite subset of \mathbb{N}. Then

$$
\begin{equation*}
\left\|R_{A}\right\|=\left\|R_{n}\right\|=\Theta(\sqrt{n}), \tag{47}
\end{equation*}
$$

where n denotes the cardinality of A.

References

1. B.L. Chalmers, F.T. Metcalf, The determination of minimal projections and extensions in L_{1}, Trans. Amer. Math. Soc. 329 (1992) 289-305.
2. E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer, and D. E. Wulbert, On the minimal property of the Fourier projection, Trans. Amer. Math. Soc. 143 (1969), pp. 249-258.
3. E. W. Cheney, P. D. Morris, K. H. Price, On an approximation operator of de la Vallée Poussin, J. Approximation Theory Vol. 13 (1975), 375-391.
4. W. Dahmen, Best approximation and de la Vallée Poussin sums, Mat. Zametki 23 (5) (1978) 671-683 (in Russian).
5. B. Deregowska, B. Lewandowska, On the minimal property of de la Vallée Poussin's operator, Bull. Aust. Math. Soc. 91 (2015), no. 1, 129-133
6. J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995, 474 pp.
7. L. Fejer, Lebesguesche Konstanten und divergente Fourierreihen, J. Reine Angew. Math., 138(1910), 22-53.
8. S. D. Fisher, P. D. Morris and D. E. Wulbert, Unique minimality of Fourier projections, Trans. Amer. Math. Soc. Vol. 265, (1981), 235-246.
9. E. W. Hardy, Note on Lebesgue's constants in the theory of Fourier series, J. London Math. Soc. 17 (1942), pp. 4-13.
10. Pol V. Lambert, On the minimum norm property of the Fourier projection in L^{1}-spaces, Bull. Soc. Math. Belg. 21 (1969), pp. 370-391.
11. G. Lewicki, G. Marino, P. Pietramala, Fourier-type minimal extensions in real L_{1}-spaces, Rocky Mountain J. Math., Vol. 30, No. 3, (2000), 1025-1037.
12. G. Lewicki, A. Micek, Uniqueness of minimal Fourier-type extensions in L_{1}-spaces, Monatsh. Math. Vol. 170, No. 2 (2013), 161-178.
13. S. M. Lozinski, On a class of linear operations, Doklady Akad. Nauk SSSR (N. S.) 61 (1948), pp. 193-196.
14. H. Mehta, The L ${ }^{1}$ norms of de la Vallée Poussin kernels, J. Math. Anal. Appl. 422 (2015) 825-837.
15. C. de la Vallée Poussin, Sur la meilleure approximation des fonctions dune variable relle par des expressions dordre donn, C.R. Acad. Sci. Paris 166 (1918), 799-802.
16. G. Polya and I. J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math. Volume 8, Number 2 (1958), 295-334
17. F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, with the collaboration of J. Pl. Adam Hilger, Ltd., Bristol, 1990.
18. B. Shekhtman and L. Skrzypek, On the uniqueness of the Fourier projection in L_{p} spaces. J. Concr. Appl. Math. 8 (2010), no. 3, 439-447.
19. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, 1970, 415 pp..
20. S. B. Stechkin, On the approximation of periodic functions by de la Vallée Poussin sums, Anal. Math. 4 (1) (1978) 61-74.
21. V. Totik, Strong approximation by the de la Vallée-Poussin and Abel means of Fourier series, J. Indian Math. Soc. 45 (1981), no. 1-4, 85-108.
22. A. Zygmund, Trigonometric series, Vols. I and II, Cambridge Mathematical Library, Cambridge University Press, 2002, (Vol. I) xiv + 383 pp., (Vol. II) viii + 364 pp.,

[^0]: Beata Deregowska
 Pedagogical University of Cracow, Institute of Mathematics, Podchorazych 2, 30-084 Krakow, Poland
 E-mail: bderegowska@up.krakow.pl
 Simon Foucart
 Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368
 E-mail: foucart@tamu.edu
 Barbara Lewandowska
 Faculty of Mathematics and Computer Science, Jagiellonian University, Lojasiewicza 6, 30-048 Krakow, Poland
 E-mail: barbara.lewandowska@im.uj.edu.pl
 Lesław Skrzypek
 Department of Mathematics and Statistics, University of South Florida, 4202 E. Fowler Ave., CMC 342,
 Tampa, FL 33620-5700
 E-mail: skrzypek@usf.edu

