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Abstract This note is concerned with deterministic constructions of 𝑚 ×𝑁 matrices
satisfying a restricted isometry property from ℓ2 to ℓ1 on 𝑠-sparse vectors. Similarly to
the standard (ℓ2 to ℓ2) restricted isometry property, such constructions can be found in
the regime 𝑚 ≍ 𝑠2, at least in theory. With effectiveness of implementation in mind,
two simple constructions are presented in the less pleasing but still relevant regime
𝑚 ≍ 𝑠4. The first one, executing a Las Vegas strategy, is quasideterministic and
applies in the real setting. The second one, exploiting Golomb rulers, is explicit and
applies to the complex setting. As a stepping stone, an explicit isometric embedding
from ℓ𝑛2 (C) to ℓ𝑐𝑛2

4 (C) is presented. Finally, the extension of the problem from sparse
vectors to low-rank matrices is raised as an open question.

1 Motivation from Sparse Vector Recovery

Almost twenty years ago [1, 2], the realization that high-dimensional but sparse
vectors could be efficiently recovered from far fewer linear measurements than
expected created a prolific field of research now known as compressive sensing
(or compressed sensing). To be specific, vectors 𝑥 ∈ K𝑁 , K ∈ {R,C}, are called
𝑠-sparse if

∥𝑥∥0 := |supp(𝑥) | ≤ 𝑠, where supp(𝑥) := { 𝑗 ∈ [1 : 𝑁] : 𝑥 𝑗 ≠ 0}.

Such vectors can be recovered from compressive measurements 𝐴𝑥 ∈ K𝑚 with
𝑚 being of the order of 𝑠 ln(𝑁/𝑠) ≪ 𝑁 . One refers to [3] for all the nitty-gritty
details. One simply mentions here that, on the one hand, the order 𝑠 ln(𝑁/𝑠) cannot
be lowered if one requires the recovery to be stable and, one the other hand, that
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random measurement matrices 𝐴 ∈ K𝑚×𝑁 with 𝑚 ≍ 𝑠 ln(𝑁/𝑠) fulfill, with high
probability, favorable properties that make 𝑠-sparse recovery possible. Thus, there
is an abundance of matrices suitable for compressive sensing in the optimal regime
𝑚 ≍ 𝑠 ln(𝑁/𝑠), but somehow the mathematical community is unable to pinpoint a
single one!

The most popular favorable property—the restricted isometry property (RIP),
introduced in [4]— stipulates that the matrix 𝐴 ∈ K𝑚×𝑁 should satisfy

(1 − 𝛿)∥𝑥∥2
2 ≤ ∥𝐴𝑥∥2

2 ≤ (1 + 𝛿)∥𝑥∥2
2 for all 𝑠-sparse 𝑥 ∈ K𝑁 . (1)

This standard version of the RIP is ubiquitous in ensuring the success of sparse
recovery via a variety of reconstruction algorithms, such as ℓ1-minimization (aka
basis pursuit), orthogonal matching pursuit (OMP), compressive sampling match-
ing pursuit (CoSaMP), iterative hard thresholding (IHT), hard thresholding pursuit
(HTP), to name but a few. It can be interpreted as saying that the linear map 𝑥 ↦→ 𝐴𝑥

provides an embedding from ℓ𝑁2 to ℓ𝑚2 with a distortion on 𝑠-sparse vectors equal to
𝛾 = (1 + 𝛿)/(1 − 𝛿) ≥ 1. The latter can be made arbitrarily close to one by taking
𝛿 > 0 small enough. However, the distortion need not be close to one to enable sparse
recovery: a requirement 𝛾 ≤ 𝛾∗ for a fixed threshold 𝛾∗ ≥ 1 is enough. Likewise,
the embedding need not map into ℓ𝑚2 : any ℓ𝑚𝑝 with 0 < 𝑝 ≤ 2 will be convenient.
This note concentrates on the case 𝑝 = 1—interestingly, this version appeared in [2].
Thus, instead of the standard version of the RIP, i.e., (1), one considers an ‘ℓ2 to ℓ1’
RIP stipulating that 𝐴 ∈ K𝑚×𝑁 should satisfy

𝛼∥𝑥∥2 ≤ ∥𝐴𝑥∥1 ≤ 𝛽∥𝑥∥2 for all 𝑠-sparse 𝑥 ∈ K𝑁 (2)

with distortion on 𝑠-sparse vectors bounded by a fixed threshold, say 𝛾 = 𝛽/𝛼 ≤ 𝛾∗.
I am an advocate of this alternative version, for several reasons:

• the theory of sparse recovery can be built from (2), and not only for basis pursuit
as presented in [5, Chapter 14], but also for iterative hard thresholding, see [6];

• the theory of one-bit compressive sensing can be built from (2) as well, as
presented [5, Chapter 17], so long as the distortion can be made close to one, which
is the case if 𝐴 is a Gaussian matrix or a partial Gaussian circulant matrix [7];

• Laplace matrices (more generally subexponential random matrices) satisfy (2)
in the optimal regime 𝑚 ≍ 𝑠 ln(𝑁/𝑠), see [8], while (1) would only hold in the
suboptimal regime 𝑚 ≍ 𝑠 ln2 (𝑁/𝑠);

• any ensemble of random matrices 𝐴 ∈ K𝑚×𝑁 yielding (1) with exponentially
small failure probability when 𝑚 ≍ 𝑠 ln(𝑁/𝑠) also yields (2) with exponentially
small failure probability when 𝑚 ≍ 𝑠 ln(𝑁/𝑠), see [9] for the precise statement.

This last point suggests that the ‘ℓ2 to ℓ1’ RIP is easier to fulfill than the standard
‘ℓ2 to ℓ2’ RIP, so it is plausible that deterministic constructions of RIP matrices are
more accessible through the ‘ℓ2 to ℓ1’ avenue. Since deterministic constructions exist
for the standard RIP with 𝑚 ≍ 𝑠2−𝜀 (see next section), the same is expected to hold
for the ‘ℓ2 to ℓ1’ RIP. This is indeed the case, but through a construction that may be
considered inadequate, because it combines two fairly theoretical results that are, in
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my view, not as explicit as hoped for. The purpose this note is to exhibit a couple of
simple constructions of matrices that fulfill the ‘ℓ2 to ℓ1’ RIP in the regime 𝑚 ≍ 𝑠4.
This is not the desired regime, for sure, but the advantage here is the simplicity of the
constructions. This simplicity is validated by the few-lines matlab implementation
found in the associated reproducible file (available on the author’s webpage).

The rest of this note is organized as follows. Section 2 discusses some known
facts about deterministic embeddings. Section 3 presents, in the case K = R, the
first deterministic construction of an embedding of 𝑠-sparse vectors from ℓ𝑁2 to ℓ𝑚1
with 𝑚 ≍ 𝑠4. Section 4 uncovers, in case K = C, an explicit isometric embedding
from ℓ

𝑝

2 to ℓ𝑚4 with 𝑚 ≍ 𝑝2, 𝑝 being a prime number. Section 5 exploits this
isometric embedding—or rather the argument leading to it—to present, in the case
K = C, a second deterministic, and actually explicit, construction of an embedding
of 𝑠-sparse vectors from ℓ𝑁2 to ℓ𝑚1 with 𝑚 ≍ 𝑠4. Section 6 briefly touches on the
mostly uncharted territory of deterministic restricted isometry properties for low-
rank matrices. Finally, as an aside, Section 7 recalls a connection between (almost)
isometric embeddings from ℓ𝑛2 to ℓ𝑁2𝑘 and (approximate) spherical designs.

2 Known Deterministic Results

The mathematical community’s incapability to create nonrandom matrices fulfilling
the standard RIP in the optimal regime is vexing. Nonrandom procedures are stuck
in the quadratic regime 𝑚 ≍ 𝑠2—in truth, 𝑚 ≍ 𝑠2polylog(𝑁). There are several ways
to reach this regime, mostly based on the notion of coherence. The coherence of a
matrix 𝐴 ∈ K𝑚×𝑁 with unit ℓ2-norm columns 𝑎1, . . . , 𝑎𝑁 ∈ K𝑚 is defined by

𝜇(𝐴) := max
𝑗≠ℓ

|⟨𝑎 𝑗 , 𝑎ℓ⟩|.

Indeed, to ensure that 𝛿𝑠 (𝐴), the smallest 𝛿 ∈ (0, 1) for which (1) holds, obeys
𝛿𝑠 (𝐴) < 𝛿∗ as soon as 𝑚 ≥ 𝐶𝑠2, it is sufficient make the coherence small as per

𝜇(𝐴) ≤ 𝑐
√
𝑚
, 𝑐 :=

√
𝐶 𝛿∗,

by virtue of the inequality 𝛿𝑠 (𝐴) < 𝑠𝜇(𝐴) (see e.g. [3, Proposition 6.2]). As examples
of matrices with small coherence, let me mention

• an 𝑚 × 𝑚2 matrix with columns formed by translations and modulations of the
Alltop vector ([10], see also [3, Proposition 5.13]): its coherence is 𝜇(𝐴) = 1/

√
𝑚;

• when 𝑝 is prime and 𝑑 < 𝑝, a 𝑝2 × 𝑝𝑑+1 matrix with binary entries in {0, 1/√𝑝}
([11], see also [5, Theorem 18.5]): its coherence is 𝜇(𝐴) ≤ 𝑑/𝑝 = 𝑑/

√
𝑚;

• when 𝑝 is prime and 𝑑 < 𝑝, a 𝑝 × 𝑝𝑑+1 matrix with entries

𝐴𝑘, 𝑓 =
1
√
𝑝

exp
(
𝑖2𝜋

𝑘 𝑓 (𝑘)
𝑝

)
(3)
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indexed by elements 𝑘 of F𝑝 and by polynomials 𝑓 over F𝑝 of degree at most 𝑑:
its coherence is 𝜇(𝐴) ≤ 𝑑/√𝑝 = 𝑑/

√
𝑚. The argument is simple but relies on a

deep result known as Weil bound (see e.g. [12, Proposition 5.3.8]), which says
that, if 𝑓 is a nonconstant polynomial over F𝑝 , then���� ∑︁

𝑘∈F𝑝
exp

(
𝑖2𝜋

𝑓 (𝑘)
𝑝

) ���� ≤ (deg( 𝑓 ) − 1)√𝑝.

There is a notable explicit construction that overcomes, albeit ever so slightly, the
quadratic barrier. Indeed, the article [13] uncovered an RIP matrix with 𝑚 ≍ 𝑠2−𝜀

rows, where 𝜀 > 0 was tiny. In a practitioner’s mind, this is viewed as an issue, but in
fact not as the most critical one: one also has 𝑚 ≥ 𝑁1−𝜀 , making the matrix almost
square and thus defeating the compressive sensing purpose of taking far fewer
measurements than the high ambient dimension. A similar issue occurs in [14]:
there, conditionally on a folklore conjecture in number theory, it was shown that the
quadratic barrier would be overcome by the Paley matrix fulfilling the ‘ℓ2 to ℓ2’ RIP,
but this matrix has 𝑚 = 𝑁/2 rows.

Turning now to the deterministic ‘ℓ2 to ℓ1’ RIP, which has not been explored, at
least to the best of my knowledge, one can follow the indirect strategy below:

(i) consider a deterministic linear map 𝐴′ : ℓ𝑁2 → ℓ𝑛2 with constant distortion on
𝑠-sparse vectors for 𝑛 ≍ 𝑠𝜂 ;

(ii) consider a deterministic linear map 𝐴′′ : ℓ𝑛2 → ℓ𝑚1 with constant distortion on
arbitrary vectors for 𝑚 ≍ 𝑛𝜃 .

Then, the deterministic map 𝐴 := 𝐴′′ ◦ 𝐴′ : ℓ𝑁2 → ℓ𝑚1 has constant distortion on
𝑠-sparse vectors for 𝑚 ≍ 𝑠𝜂𝜃 . For (i), one can take 𝜂 = 2 − 𝜀 according to [13].
For (ii), according to [15] (or [16])1, one can take 𝜃 = 1 + 𝜔 for any 𝜔 > 0. These
choices yields an ‘ℓ2 to ℓ1’ RIP in the regime 𝑚 ≍ 𝑠 (2−𝜀) (1+𝜔) for any 𝜔 > 0,
hence overcoming the quadratic barrier here, too. This is quite compelling until
the hands-on stage, because the theoretical results underlying the argument are not
easily implementable, despite being deterministic (which often means constructible
in polynomial time).

The general strategy is still valid, though, and one can gain in explicitness by
giving up on the smallest 𝜈 in 𝑚 ≍ 𝑠𝜈 . This is the spirit of Section 5, which obtains
𝜈 = 4 by way of taking 𝜂 = 2 in (i) and 𝜃 = 2 in (ii). For the first step, one can
exploit any of the small-coherence matrices listed above. For the second step, one
relies on the existence of deterministic constant-distortion linear embeddings from
ℓ𝑛2 to ℓ𝑐𝑛

2

1 . Such an existence result is stated in [19, Lemma 3.3] by citing [20] for
a construction of 4-wise independent families of vectors, which I would qualify as
deterministic but not explicit. The article [16] also claims without details that such
an existence result can be extracted from [21]. Section 5 will actually provide such

1 Both [15] and [16] rely on the construction of unbalanced expanders from [17]. This construction,
combined with the result of [18], has a direct implication in compressive sensing by providing a
deterministic linear embedding of sparse vectors from ℓ1 (not ℓ2) to ℓ1.
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an explicit map embedding ℓ𝑛2 into ℓ𝑐𝑛
2

1 . I suspect this construction to be very close
to what should have been extracted from [21]. It will yield an explicit embedding on
sparse vectors taking place in the complex setting. In the real setting, the construction
presented next in Section 3 is more direct, as it bypasses (i)-(ii), but I would qualify
it as quasideterministic rather than explicit. Both constructions pertain to the regime
𝑚 ≍ 𝑠4. This should definitely be improved to 𝑚 ≍ 𝑠𝜈 with 𝜈 ≤ 2, but for the moment
there is comfort in the simplicity of the constructions.

3 Simple embedding of 𝒔-sparse vectors from ℓ𝑵2 (R) to ℓ𝒄𝒔
4

1 (R)

The construction proposed in this section is not explicit, but rather (quasi)deterministic,
in the sense that it is outputted by the following Las Vegas algorithm:

for 𝑡 = 1, 2, . . .

• draw 𝐴 ∈ R𝑚×𝑁 populated with independent Rademacher random variables,
• check if conditions (a)-(b) of Theorem 1 below are satisfied for 𝜅 =

√︁
8 ln(𝑁),

and if they are, then return 𝐴.
The success of this procedure is guaranteed by the fact that conditions (a)-(b)

certify that 𝐴 yields an embedding on 𝑠-sparse vectors from ℓ𝑁2 to ℓ𝑚1 (by Theorem 1),
together with the fact that each draw of 𝐴 satisfies (a)-(b) for 𝜅 =

√︁
8 ln(𝑁) with

failure probability at most 1/3, so the failure probability after 𝑇 independent rounds
is at most (1/3)𝑇 . This vanishing quantity is never exactly zero, hence the procedure
cannot technically be qualified as deterministic, but quasideterministic sounds like
a suitable designation. Note that the verification of (a)-(b) can be performed in
polynomial time, precisely in O(𝑁4𝑚) multiplications.

Theorem 1 Let 𝐴 ∈ R𝑚×𝑁 be populated with entries 𝐴 𝑗 ,𝑘 = ±1. Assume that

(a)
���� 𝑚∑︁
𝑗=1

𝐴 𝑗 ,𝑘𝐴 𝑗 ,𝑘′

���� ≤ 𝜅
√
𝑚 for all distinct 𝑘, 𝑘 ′ ∈ [1 : 𝑁],

(b)
���� 𝑚∑︁
𝑗=1

𝐴 𝑗 ,𝑘𝐴 𝑗 ,𝑘′𝐴 𝑗 ,ℓ𝐴 𝑗 ,ℓ′

���� ≤ 𝜅
√
𝑚 for all distinct 𝑘, 𝑘 ′, ℓ, ℓ′ ∈ [1 : 𝑁].

Then, for any 𝛿 ∈ (0, 1), the linear map 𝐴 : ℓ𝑁2 → ℓ𝑚1 has the property that

𝛼𝑚∥𝑥∥2 ≤ ∥𝐴𝑥∥1 ≤ 𝛽𝑚∥𝑥∥2 for all 𝑠-sparse 𝑥 ∈ R𝑁 ,

with distortion 𝛾 = 𝛽/𝛼 ≤
√

3
(
(1 + 𝛿)/(1 − 𝛿)

)3/2 as soon as 𝑚 ≥ 𝜅2𝛿−2𝑠4.

Before justifying this theorem, it is worth observing that its assumptions (a)-(b) are
indeed fulfilled when 𝐴 ∈ R𝑚×𝑁 is a Rademacher random matrix and 𝜅 =

√︁
8 ln(𝑁).

Fixing distinct 𝑘, 𝑘 ′ in [1 : 𝑁], the 𝐴 𝑗 ,𝑘𝐴 𝑗 ,𝑘′ , 𝑗 ∈ [1 : 𝑚], are independent
Rademacher variables, so by Hoeffding inequality (see e.g. [3, Corollary 8.8])
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P

[���� 𝑚∑︁
𝑖=1

𝐴𝑖, 𝑗1 𝐴𝑖, 𝑗2

���� ≥ 𝜅
√
𝑚

]
≤ 2 exp

(
− 𝜅2

2

)
.

Hence, by a union bound, one derives

P[(a) fails] ≤
(
𝑁

2

)
2 exp

(
− 𝜅2

2

)
≤ 𝑁2 exp

(
− 𝜅2

2

)
=

1
𝑁2 .

Likewise, fixing distinct 𝑘, 𝑘 ′, ℓ, ℓ′ ∈ [1 : 𝑁], the 𝐴 𝑗 ,𝑘𝐴 𝑗 ,𝑘′𝐴 𝑗 ,ℓ𝐴𝑖,ℓ′ , 𝑗 ∈ [1 : 𝑚],
are independent Rademacher variables, so Hoeffding inequality followed by a union
bound once again yields

P[(b) fails] ≤
(
𝑁

4

)
2 exp

(
− 𝜅2

2

)
≤ 𝑁4

12
exp

(
− 𝜅2

2

)
=

1
12

.

Consequently, (a) and (b) are indeed both fulfilled with failure probability bounded,
for 𝑁 ≥ 2, as

P[(a) or (b) fail] ≤ 1
𝑁2 + 1

12
≤ 1

3
.

Before turning the attention to the proof of Theorem 1, it is also worth isolating
two key ingredients as separate lemmas, one being a technical calculation to be
reused later and the other one being a way to estimate the ℓ1-norm from below via
the ℓ2- and ℓ4-norms.

Lemma 1 Let 𝐵 ∈ C𝑞×𝑟 with |𝐵 𝑗 ,𝑘 | = 1 for all 𝑗 ∈ [1 : 𝑞] and 𝑘 ∈ [1 : 𝑟]. Then,
for any 𝑥 ∈ C𝑟 , one has

∥𝐵𝑥∥2
2 = 𝑞∥𝑥∥2

2 +
∑︁

1≤𝑘≠𝑘′≤𝑟

( 𝑞∑︁
𝑗=1

𝐵 𝑗 ,𝑘𝐵 𝑗 ,𝑘′

)
𝑥𝑘𝑥𝑘′ , (4)

∥𝐵𝑥∥4
4 = 2∥𝑥∥2

2∥𝐵𝑥∥
2
2 − 𝑞∥𝑥∥4

4 + Σ1 (5)

= 2∥𝑥∥2
2∥𝐵𝑥∥

2
2 − 𝑞∥𝑥∥4

4 +
∑︁
𝑘≠𝑘′

( 𝑞∑︁
𝑗=1

𝐵 𝑗 ,𝑘

2
𝐵2

𝑗 ,𝑘′

)
𝑥𝑘

2𝑥2
𝑘′ + Σ2, (6)

where the quantities Σ1 and Σ2 are given by

Σ1 :=
∑︁

(𝑘≠𝑘′ )≠(ℓ≠ℓ′ )

( 𝑞∑︁
𝑗=1

𝐵 𝑗 ,𝑘𝐵 𝑗 ,𝑘′𝐵 𝑗 ,ℓ𝐵 𝑗 ,ℓ′

)
𝑥𝑘𝑥𝑘′𝑥ℓ𝑥ℓ′ ,

Σ2 :=
∑︁

(𝑘≠𝑘′ )≠(ℓ≠ℓ′ )
(𝑘≠𝑘′ )≠(ℓ′≠ℓ )

( 𝑞∑︁
𝑗=1

𝐵 𝑗 ,𝑘𝐵 𝑗 ,𝑘′𝐵 𝑗 ,ℓ𝐵 𝑗 ,ℓ′

)
𝑥𝑘𝑥𝑘′𝑥ℓ𝑥ℓ′ .

Proof For the first identity, one writes
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∥𝐵𝑥∥2
2 =

𝑞∑︁
𝑗=1

(𝐵𝑥) 𝑗 (𝐵𝑥) 𝑗 =
𝑞∑︁
𝑗=1

( 𝑟∑︁
𝑘=1

𝐵 𝑗 ,𝑘𝑥𝑘

) ( 𝑟∑︁
𝑘′=1

𝐵 𝑗 ,𝑘′𝑥𝑘′

)
=

𝑞∑︁
𝑗=1

( 𝑟∑︁
𝑘=1

𝐵 𝑗 ,𝑘𝑥𝑘𝐵 𝑗 ,𝑘𝑥𝑘 +
∑︁
𝑘≠𝑘′

𝐵 𝑗 ,𝑘𝑥𝑘𝐵 𝑗 ,𝑘′𝑥𝑘′

)
=

𝑞∑︁
𝑗=1

𝑟∑︁
𝑘=1

|𝐵 𝑗 ,𝑘 |2 |𝑥𝑘 |2 +
𝑞∑︁
𝑗=1

∑︁
𝑘≠𝑘′

𝐵 𝑗 ,𝑘𝐵 𝑗 ,𝑘′𝑥𝑘𝑥𝑘′ ,

which, by virtue of |𝐵 𝑗 ,𝑘 | = 1, reduces to (4) after changing the order of summation.
For the second identity, one writes

∥𝐵𝑥∥4
4 =

𝑞∑︁
𝑗=1

[
(𝐵𝑥) 𝑗 (𝐵𝑥) 𝑗

]2
=

𝑞∑︁
𝑗=1

[( 𝑟∑︁
𝑘=1

𝐵 𝑗 ,𝑘𝑥𝑘

) ( 𝑟∑︁
𝑘′=1

𝐵 𝑗 ,𝑘′𝑥𝑘′

)]2

=

𝑞∑︁
𝑗=1

[ 𝑟∑︁
𝑘=1

|𝐵 𝑗 ,𝑘 |2 |𝑥𝑘 |2 + 𝑆 𝑗

]2
where 𝑆 𝑗 :=

∑︁
𝑘≠𝑘′

𝐵 𝑗 ,𝑘𝐵 𝑗 ,𝑘′𝑥𝑘𝑥𝑘′

=

𝑞∑︁
𝑗=1

[
∥𝑥∥2

2 + 𝑆 𝑗

]2
= 𝑞∥𝑥∥4

2 + 2∥𝑥∥2
2

𝑞∑︁
𝑗=1

𝑆 𝑗 +
𝑞∑︁
𝑗=1

𝑆2
𝑗 . (7)

Taking (4) into account, one notices that

𝑞∑︁
𝑗=1

𝑆 𝑗 = ∥𝐵𝑥∥2
2 − 𝑞∥𝑥∥2

2. (8)

Next, exploiting the fact that 𝑆 𝑗 ∈ R and separating the cases (𝑘 ≠ 𝑘 ′) = (ℓ ≠ ℓ′)
and (𝑘 ≠ 𝑘 ′) ≠ (ℓ ≠ ℓ′), one obtains

𝑆2
𝑗 = 𝑆 𝑗𝑆 𝑗

=
∑︁
𝑘≠𝑘′

|𝐵 𝑗 ,𝑘 |2 |𝐵 𝑗 ,𝑘′ |2 |𝑥𝑘 |2 |𝑥𝑘′ |2 +
∑︁

(𝑘≠𝑘′ )≠(ℓ≠ℓ′ )
𝐵 𝑗 ,𝑘𝐵 𝑗 ,𝑘′𝐵 𝑗 ,ℓ𝐵 𝑗 ,ℓ′𝑥𝑘𝑥𝑘′𝑥ℓ𝑥ℓ′ ,

from where it follows that
𝑞∑︁
𝑗=1

𝑆2
𝑗 =

𝑞∑︁
𝑗=1

( ∑︁
𝑘,𝑘′

|𝑥𝑘 |2 |𝑥𝑘′ |2 −
∑︁
𝑘

|𝑥𝑘 |4
)
+ Σ1 = 𝑞

(
∥𝑥∥4

2 − ∥𝑥∥4
4

)
+ Σ1. (9)

It remains to substitute (8) and (9) into (7) to arrive at (5).
For the last identity, one simply writes
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Σ1 =

{ ∑︁
(𝑘≠𝑘′ )≠(ℓ≠ℓ′ )
(𝑘≠𝑘′ )=(ℓ′≠ℓ )

+
∑︁

(𝑘≠𝑘′ )≠(ℓ≠ℓ′ )
(𝑘≠𝑘′ )≠(ℓ′≠ℓ )

}( 𝑞∑︁
𝑗=1

𝐵 𝑗 ,𝑘𝐵 𝑗 ,𝑘′𝐵 𝑗 ,ℓ𝐵 𝑗 ,ℓ′

)
𝑥𝑘𝑥𝑘′𝑥ℓ𝑥ℓ′

=
∑︁
𝑘≠𝑘′

( 𝑞∑︁
𝑗=1

𝐵 𝑗 ,𝑘

2
𝐵2

𝑗 ,𝑘′

)
𝑥𝑘

2𝑥2
𝑘′ + Σ2,

and substituting the latter into (5) directly leads to (6). □

As for the lower estimate of the ℓ1-norm, this is achieved via an upper estimate
of the ℓ4-norm, as stated below.

Lemma 2 For any 𝑦 ∈ C𝑚,

∥𝑦∥1 ≥
∥𝑦∥3

2

∥𝑦∥2
4
.

Proof This is Hölder inequality in disguise. Namely, one can easily rearrange

∥𝑦∥2
2 =

𝑚∑︁
𝑖=1

|𝑦𝑖 |1×
2
3+4× 1

3 ≤
(

𝑚∑︁
𝑖=1

|𝑦𝑖 |1
) 2

3
(

𝑚∑︁
𝑖=1

|𝑦𝑖 |4
) 1

3

= ∥𝑦∥
2
3
1 ∥𝑦∥

4
3
4

into the announced inequality. □

One is now ready to justify the main result of this section.

Proof (of Theorem 1) Let an 𝑠-sparse vector 𝑥 ∈ R𝑁 be fixed throughout the proof.
Applying Lemma 1 with the real matrix 𝐴 ∈ R𝑚×𝑁 taking the role of the complex
matrix 𝐵 ∈ C𝑞×𝑟 , one first observes, from (4), that

∥𝐴𝑥∥2
2 − 𝑚∥𝑥∥2

2 =
∑︁
𝑘≠𝑘′

( 𝑚∑︁
𝑗=1

𝐴 𝑗 ,𝑘𝐴 𝑗 ,𝑘′

)
𝑥𝑘𝑥𝑘′ .

Taking the bound (a) into consideration, as well as the sparsity of 𝑥, yields��∥𝐴𝑥∥2
2 − 𝑚∥𝑥∥2

2
�� ≤ ∑︁

𝑘≠𝑘′
𝜅
√
𝑚 |𝑥𝑘 | |𝑥𝑘′ | ≤ 𝜅

√
𝑚∥𝑥∥2

1 ≤ 𝜅𝑠
√
𝑚
𝑚∥𝑥∥2

2.

For 𝑚 ≥ 𝜅2𝛿−2𝑠2 (which is the case since 𝑚 ≥ 𝜅2𝛿−2𝑠4), this implies

(1 − 𝛿) 𝑚∥𝑥∥2
2 ≤ ∥𝐴𝑥∥2

2 ≤ (1 + 𝛿) 𝑚∥𝑥∥2
2. (10)

As a side note, this is the standard RIP for the renormalized matrix 𝐴/
√
𝑚. It was

derived solely from (a), which is nothing but a coherence assumption for this matrix.
Now, using the standard comparison of the ℓ1-norm and ℓ2-norm, one arrives at

∥𝐴𝑥∥1 ≤
√
𝑚 ∥𝐴𝑥∥2 ≤ (1 + 𝛿)1/2 𝑚∥𝑥∥2. (11)



Linearly Embedding Sparse Vectors from ℓ2 to ℓ1 9

Next, using (6) in Lemma 1 while taking into account that (𝑘 ≠ 𝑘 ′) ≠ (ℓ ≠ ℓ′) and
(𝑘 ≠ 𝑘 ′) ≠ (ℓ′ ≠ ℓ) means that 𝑘, 𝑘 ′, ℓ, ℓ′ are all distinct, and using assumption (b)
as well, one can write

∥𝐴𝑥∥4
4 ≤ 2∥𝑥∥2

2∥𝐴𝑥∥
2
2 + 𝑚∥𝑥∥4

2 +
∑︁

𝑘,𝑘′ ,ℓ,ℓ′

all distinct

���� 𝑚∑︁
𝑗=1

𝐴 𝑗 ,𝑘𝐴 𝑗 ,𝑘′𝐴 𝑗 ,ℓ𝐴 𝑗 ,ℓ′

����|𝑥𝑘 | |𝑥𝑘′ | |𝑥ℓ | |𝑥ℓ′ |
≤ (2(1 + 𝛿) + 1)𝑚∥𝑥∥4

2 + 𝜅
√
𝑚∥𝑥∥4

1 ≤ (3 + 2𝛿)𝑚∥𝑥∥4
2 + 𝜅

√
𝑚𝑠2∥𝑥∥4

2

=

(
3 + 2𝛿 + 𝜅𝑠2

√
𝑚

)
𝑚∥𝑥∥4

2 ≤ (3 + 3𝛿)𝑚∥𝑥∥4
2,

where the last step exploited 𝑚 ≥ 𝜅2𝛿−2𝑠4. This upper bound on ∥𝐴𝑥∥4, combined
with the lower bound on ∥𝐴𝑥∥2 from (10), ensures, according to Lemma 2, that

∥𝐴𝑥∥1 ≥
(
∥𝐴𝑥∥2

2
)3/2(

∥𝐴𝑥∥4
4
)1/2 ≥

(
(1 − 𝛿)𝑚∥𝑥∥2

2
)3/2(

3(1 + 𝛿)𝑚∥𝑥∥4
2
)1/2 =

(
(1 − 𝛿)3

3(1 + 𝛿)

)1/2

𝑚∥𝑥∥2. (12)

The estimates (11) and (12) together establish the result, noting in particular the
expression of the distortion. □

Remark 1 It is unclear if the above argument can be refined to improve the exponent
𝜈 = 4 for the regime 𝑚 ≍ 𝑠𝜈 where the ‘ℓ2 to ℓ1’ RIP provably holds. One point is
certain, however: for a matrix 𝐴 ∈ K𝑚×𝑁 whose entries all have modulus/absolute
value equal to one, one cannot beat 𝜈 = 2 if one estimates the ℓ1-norm from below
via an upper bound on the ℓ4-norm of the form ∥𝐴𝑥∥4

4 ≤ 𝐶𝑚∥𝑥∥4
2 for all 𝑠-sparse

vectors 𝑥 ∈ K𝑁 . Indeed, for a fixed 𝑖 ∈ [1 : 𝑚], if 𝑥 = 𝐴𝑆,𝑖 represents the 𝑖th rows
of 𝐴 restricted to a set 𝑆 ⊆ [1 : 𝑁] of size 𝑠, then

𝐶𝑚𝑠2 = 𝐶𝑚∥𝑥∥4
2 ≥ ∥𝐴𝑥∥4

4 =

𝑚∑︁
𝑗=1

|⟨𝐴:, 𝑗 , 𝐴𝑆,𝑖⟩|4 ≥ |⟨𝐴:,𝑖 , 𝐴𝑆,𝑖⟩|4 = 𝑠4,

which forces 𝑚 ≥ 𝐶−1𝑠2.

4 Explicit isometric embedding from ℓ 𝒑2 (C) into ℓ𝒄 𝒑
2

4 (C)

As mentioned earlier, deterministic linear embeddings from ℓ𝑛2 to ℓ𝑐𝑛
2

1 with constant
distortion have been claimed to exist in different places without full details, e.g.
stating that a construction can be extracted from [21]. In the latter, a central role
was played by Sidon sets, which are the same as Golomb rulers. In what follows,
I propose a Golomb-ruler argument which likely coincides with what should have
been extracted from [21]. Taking a detour via the ℓ4-norm, the argument actually
uncovers a deterministic embedding from ℓ

𝑝

2 (𝑝 being prime) to ℓ𝑐𝑝
2

4 whose distortion
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is exactly equal to one. This isometric embedding is singled out in this section. The
main ingredient, due to [22], is reproduced here for completeness.
Lemma 3 For a prime number 𝑝 ≥ 3, the integers

𝑔(𝑘) = 2𝑝𝑘 +
(
𝑘2)

𝑝
, 𝑘 ∈ [0 : 𝑝 − 1],

where
(
𝑘2)

𝑝
denotes the integer 𝑡 ∈ [0 : 𝑝 − 1] such that 𝑘2 ≡ 𝑡 mod 𝑝, form a

Golomb ruler, in the sense that

𝑔(𝑘) − 𝑔(𝑘 ′) ≠ 𝑔(ℓ) − 𝑔(ℓ′) whenever (𝑘 ≠ 𝑘 ′) ≠ (ℓ ≠ ℓ′).

Proof Let (𝑘 ≠ 𝑘 ′) ≠ (ℓ ≠ ℓ′) and suppose 𝑔(𝑘) − 𝑔(𝑘 ′) = 𝑔(ℓ) − 𝑔(ℓ′). Writing
𝑘 ′ = 𝑘 + 𝜎 and ℓ′ = ℓ + 𝜏 for some 𝜎, 𝜏 ∈ [−𝑝 + 1 : 𝑝 − 1] \ {0}, this reads
2𝑝𝑘 +

(
𝑘2)

𝑝
−2𝑝(𝑘 +𝜎) −

(
(𝑘 +𝜎)2)

𝑝
= 2𝑝ℓ +

(
ℓ2)

𝑝
−2𝑝(ℓ + 𝜏) −

(
(ℓ + 𝜏)2)

𝑝
, i.e.,(

𝑘2)
𝑝
−

(
(𝑘 + 𝜎)2)

𝑝
−

(
ℓ2)

𝑝
+

(
(ℓ + 𝜏)2)

𝑝
= 2𝑝(𝜎 − 𝜏). (13)

Since the left-hand side, in absolute value, is at most 2(𝑝 − 1) < 𝑝, the right-hand
side must be zero, so that 𝜎 = 𝜏. Taking

(
(𝑘 + 𝜎)2)

𝑝
≡

(
𝑘2)

𝑝
+

(
2𝜎𝑘

)
𝑝
+

(
𝜎2)

𝑝

mod 𝑝 into account, as well as
(
(ℓ + 𝜏)2)

𝑝
=

(
(ℓ +𝜎)2)

𝑝
≡

(
ℓ2)

𝑝
+

(
2𝜎ℓ

)
𝑝
+

(
𝜎2)

𝑝

mod 𝑝, looking at (13) modulo 𝑝 yields(
2𝜎ℓ

)
𝑝
−

(
2𝜎𝑘

)
𝑝
≡ 0 mod 𝑝, i.e., 2𝜎(ℓ − 𝑘) ≡ 0 mod 𝑝.

But since 2 . 0 and 𝜎 . 0 mod 𝑝, one deduces that ℓ − 𝑘 ≡ 0 mod 𝑝 and hence
that 𝑘 = ℓ. In view of 𝑘 ′ = 𝑘 + 𝜎 and ℓ′ = ℓ + 𝜏 with 𝜎 = 𝜏, it follows that
(𝑘 ≠ 𝑘 ′) = (ℓ ≠ ℓ′). This leads to a contradiction, showing that 𝑔 indeed generates
a Golomb ruler. □

The coveted isometric embedding from ℓ
𝑝

2 to ℓ
𝑐𝑝2

4 will be obtained by combining
Lemma 1 with Lemma 3. Before that, it is worth pausing to remark that 𝑔 maps
[0 : 𝑝 − 1] into [0 : 𝑞 − 1], where 𝑞 = 3𝑝(𝑝 − 1) + 1 is quadratic in 𝑝, and that
such a quadratic order is optimal. Indeed, for any Golomb ruler 𝑔 from [0 : 𝑝 − 1]
into [0 : 𝑞 − 1], all the distinct 𝑔(𝑘) − 𝑔(𝑘 ′) indexed by ordered pairs (𝑘 ≠ 𝑘 ′) are
contained in [−𝑞 + 1 : 𝑞 − 1], and as such 2𝑞 − 1 ≥ 𝑝(𝑝 − 1).
Theorem 2 For a prime number 𝑝 ≥ 3, let 𝑚 = 6𝑝2 − 6𝑝 + 1. Consider the matrix
𝐴′′ ∈ C𝑚×𝑝 with entries

𝐴′′
𝑗 ,𝑘 = exp

(
𝑖2𝜋

𝑗𝑔(𝑘)
𝑚

)
, 𝑗 ∈ [0 : 𝑚 − 1], 𝑘 ∈ [0 : 𝑝 − 1] . (14)

Then the matrix 𝑀 ∈ C(𝑚+𝑝)×𝑝 defined as

𝑀 :=


1

(2𝑚)1/4 𝐴
′′

1
21/4 𝐼𝑝

 (15)
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provides an isometric embedding from ℓ
𝑝

2 (C) into ℓ
𝑚+𝑝
2 (C), i.e.,

∥𝑀𝑥∥4 = ∥𝑥∥2 for all 𝑥 ∈ C𝑝 .

Proof Let a vector 𝑥 ∈ C𝑝 be fixed throughout the proof. For any 𝑘 ≠ 𝑘 ′, one
observes that

𝑚−1∑︁
𝑗=0

𝐴′′
𝑗 ,𝑘

𝐴′′
𝑗 ,𝑘′ =

𝑚−1∑︁
𝑗=0

exp
(
−𝑖2𝜋 𝑗 (𝑔(𝑘) − 𝑔(𝑘 ′))

𝑚

)
= 0,

owing to 𝑔(𝑘)−𝑔(𝑘 ′) ∈ [−𝑞+1 : 𝑞−1] ⊆ [−𝑚+1 : 𝑚−1] being nonzero (otherwise,
if 𝑔(𝑘) = 𝑔(𝑘 ′), choosing 𝑘 ′′ ∉ {𝑘, 𝑘 ′} would yield 𝑔(𝑘) − 𝑔(𝑘 ′′) = 𝑔(𝑘 ′) − 𝑔(𝑘 ′′)).
According to Lemma 1, and specifically to (4), one therefore has

∥𝐴′′𝑥∥2
2 = 𝑚∥𝑥∥2

2.

Next, for any (𝑘 ≠ 𝑘 ′) ≠ (ℓ ≠ ℓ′), one observes that

𝑚−1∑︁
𝑗=0

𝐴′′
𝑗 ,𝑘

𝐴′′
𝑗 ,𝑘′𝐴

′′
𝑗 ,ℓ𝐴

′′
𝑗 ,ℓ′ = exp

(
−𝑖2𝜋

𝑗
(
(𝑔(𝑘) − 𝑔(𝑘 ′)) − (𝑔(ℓ) − 𝑔(ℓ′))

)
𝑚

)
= 0,

owing to (𝑔(𝑘) − 𝑔(𝑘 ′)) − (𝑔(ℓ) − 𝑔(ℓ′)) ∈ [−2𝑞 + 2 : 2𝑞 − 2] = [−𝑚 + 1 : 𝑚 − 1]
being nonzero. According to Lemma 1 again, and specifically to (5), one obtains

∥𝐴′′𝑥∥4
4 = 2∥𝑥∥2

2∥𝐴
′′𝑥∥2

2 − 𝑚∥𝑥∥4
4 = 2𝑚∥𝑥∥4

2 − 𝑚∥𝑥∥4
4.

From here, it easily follows that

∥𝑀𝑥∥4
4 =

1
2𝑚

∥𝐴′′𝑥∥4
4 +

1
2
∥𝑥∥4

4 = ∥𝑥∥4
2,

which is the desired result. □

Remark 2 Isometric embeddings from ℓ2 to ℓ4 can alternatively be viewed through
the lenses of spherical designs and of tensors. In order not to be diverted from the
main goal, this connection will be brought forward much later, in Section 7.

5 Explicit embedding of 𝒔-sparse vectors from ℓ𝑵2 (C) to ℓ𝒄𝒔
4

1 (C)

Based on Theorem 2 in the previous section, a linear embedding from ℓ
𝑝

2 (C) to
ℓ
𝑐𝑝2

1 (C) with constant distortion can easily be generated. However, instead of using
the matrix 𝑀 from (15), which provided an isometric embedding from ℓ

𝑝

2 (C) to
ℓ
𝑐𝑝2

4 (C), the matrix 𝐴′′ from (14) is preferred, as it leads to a nicer expression for
the distortion. Recall that the proof of Theorem 2 revealed that, for any 𝑥 ∈ C𝑝 ,
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∥𝐴′′𝑥∥2 =
√
𝑚∥𝑥∥2 and ∥𝐴′′𝑥∥4 ≤ (2𝑚)1/4∥𝑥∥2.

Theorem 3 For a prime number 𝑝 ≥ 3, let 𝑚 = 6𝑝2−6𝑝+1. The matrix 𝐴′′ ∈ C𝑚×𝑝

defined in (14) provides an embedding from ℓ
𝑝

2 (C) into ℓ𝑚1 (C) with distortion at
most

√
2. Precisely, one has

𝑚
√

2
∥𝑥∥2 ≤ ∥𝐴′′𝑥∥1 ≤ 𝑚 ∥𝑥∥2 for all 𝑥 ∈ C𝑝 .

Proof Let a vector 𝑥 ∈ C𝑝 be fixed throughout this short proof. On the one hand,
comparing ℓ1- and ℓ2-norms yields

∥𝐴′′𝑥∥1 ≤
√
𝑚∥𝐴′′𝑥∥2 = 𝑚∥𝑥∥2.

On the other hand, according to Lemma 2, one has

∥𝐴′′𝑥∥1 ≥
∥𝐴′′𝑥∥3

2

∥𝐴′′𝑥∥2
4
≥

√
𝑚

3∥𝑥∥3
2√

2𝑚∥𝑥∥2
2

=
𝑚
√

2
∥𝑥∥2.

These two inequalities together justify the announced embedding. □

It is now time for the main result of this section, namely the awaited explicit linear
embedding of 𝑠-sparse vectors from ℓ𝑁2 (C) to ℓ𝑐𝑠

4

1 (C). It repeats the general strategy
(i)-(ii) outlined in Section 2.

Theorem 4 Given integers 𝑁, 𝑠 ≥ 1 with 𝑁 ≫ 𝑠4, let 𝑝 ≥ 3 be a prime number
between 9𝑠2⌈ ln2 (𝑁)

⌉
and 18𝑠2⌈ ln2 (𝑁)

⌉
and let 𝑚 = 6𝑝2 − 6𝑝 + 1 ≍ 𝑠4 ln2 (𝑁).

Then the matrix 𝐴 ∈ C𝑚×𝑁 indexed by [0 : 𝑚 − 1] and by an arbitrary 𝑁-set F of
polynomials over F𝑝 of degree at most 𝑑 = ⌈ln(𝑁/𝑝)/ln(𝑝)⌉ and with entries

𝐴𝑘, 𝑓 =
1
√
𝑝

𝑝−1∑︁
𝑘=0

exp

(
𝑖2𝜋

(
𝑗
2𝑝𝑘 + (𝑘2)𝑝

𝑚
+ 𝑘 𝑓 (𝑘)

𝑝

))
, 𝑘 ∈ [0:𝑚−1], 𝑓 ∈ F , (16)

provides an explicit embedding from ℓ𝑁2 (C) into ℓ𝑚1 (C) with distortion on 𝑠-sparse
vectors at most 2, namely

𝑚
√

3
∥𝑥∥2 ≤ ∥𝐴𝑥∥1 ≤ 2𝑚

√
3
∥𝑥∥2 for all 𝑠-sparse 𝑥 ∈ C𝑁 . (17)

Proof Picking a prime number 𝑝 between 9𝑠2⌈ ln2 (𝑁)
⌉

and 18𝑠2⌈ ln2 (𝑁)
⌉

is possible
by Bertrand postulate. One considers the smallest integer 𝑑 such that 𝑝𝑑+1 ≥ 𝑁 , i.e.,
𝑑 = ⌈ln(𝑁/𝑝)/ln(𝑝)⌉. Note that 1 < 𝑝 < 𝑑 since 𝑝2 ≲ 𝑠4polylog(𝑁) < 𝑁 and
𝑝𝑝 ≥ 𝑒𝑝 ≥ 𝑒ln(𝑁 ) = 𝑁 . From 𝑝𝑑 < 𝑁 , one also deduces that 𝑑 ≤ 𝑑 ln(𝑝) < ln(𝑁).
Let then 𝐴′ ∈ C𝑝×𝑝𝑑+1 be the ‘Weil’ matrix with entries defined in (3), recalling that
𝛿𝑠 (𝐴′) < 𝑠𝜇(𝐴) < 𝑠𝑑/√𝑝 < 𝑠 ln(𝑁)/(3𝑠 ln(𝑁)) = 1/3, so that
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∥𝐴′𝑥∥2
2


≤ (1 + 𝛿𝑠 (𝐴′))∥𝑥∥2

2 ≤ 4
3
∥𝑥∥2

2

≥ (1 − 𝛿𝑠 (𝐴′))∥𝑥∥2
2 ≥ 2

3
∥𝑥∥2

2

for all 𝑠-sparse 𝑥 ∈ C𝑝𝑑+1
.

Let also 𝐴′′ ∈ C𝑚×𝑝 be the ‘Golomb’ matrix with entries defined in (14), recalling
that

∥𝐴′′𝑥∥1


≤ 𝑚∥𝑥∥2

≥ 𝑚
√

2
∥𝑥∥2

for all 𝑥 ∈ C𝑝 .

As a result, for the matrix 𝐴 := 𝐴′′ × 𝐴′ ∈ C𝑚×𝑝𝑑+1 and for any 𝑠-sparse 𝑥 ∈ C𝑝𝑑+1 ,

∥𝐴𝑥∥1 = ∥𝐴′′ (𝐴′𝑥)∥1


≤ 𝑚∥𝐴′𝑥∥2 ≤ 𝑚

√︂
4
3
∥𝑥∥2 =

2𝑚
√

3
∥𝑥∥2,

≥ 𝑚
√

2
∥𝐴′𝑥∥2 ≥ 𝑚

√
2

√︂
2
3
∥𝑥∥2 =

𝑚
√

3
∥𝑥∥2.

This strongly resembles the desired inequalities (17), expect that the matrix 𝐴 has
𝑝𝑑+1 columns, while the matrix 𝐴 should have 𝑁 columns. But one can simply
remove 𝑝𝑑+1 −𝑁 arbitrary columns from 𝐴 ∈ C𝑚×𝑝𝑑+1 to create a matrix 𝐴 ∈ C𝑚×𝑁

satisfying (17). The entries of this matrix, indexed by 𝑗 in [0 : 𝑚 − 1] and by 𝑓 in a
set F of polynomials over F𝑝 of degree at most 𝑑 with size 𝑁 , are given by

𝐴 𝑗 , 𝑓 =

𝑝−1∑︁
𝑘=0

𝐴′′
𝑗 ,𝑘𝐴

′
𝑘, 𝑓 =

𝑝−1∑︁
𝑘=0

exp
(
𝑖2𝜋

𝑗𝑔(𝑘)
𝑚

)
1
√
𝑝

exp
(
𝑖2𝜋

𝑘 𝑓 (𝑘)
𝑝

)
,

which reduces to the expression announced in (16). □

6 Outlook into low-rank recovery

The theory of compressive sensing also deals with objects of nominally high but
intrinsically low dimension beyond 𝑠-sparse vectors 𝑥 ∈ K𝑁 , prototypically with
matrices 𝑋 ∈ K𝑛×𝑛 of rank at most 𝑟. In this scenario, too, one can recover such
objects from their compressive measurements A(𝑋) ∈ K𝑚 with 𝑚 being of the order
of 𝑛𝑟 ≪ 𝑛2. This coup can be achieved (see [23]) by nuclear norm minimization
when the linear map A : K𝑛×𝑛 → K𝑚 satisfies an RIP of the form

(1 − 𝛿)∥𝑋 ∥2
𝐹 ≤ ∥A(𝑋)∥2

2 ≤ (1 + 𝛿)∥𝑋 ∥2
𝐹 for all rank-𝑟 𝑋 ∈ K𝑛×𝑛. (18)

For 𝑚 ≍ 𝑛𝑟, this RIP is fulfilled when 𝐴1, . . . , 𝐴𝑚 ∈ K𝑛×𝑛 in A(𝑍)𝑖 = ⟨𝐴𝑖 , 𝑋⟩𝐹
are independent random matrices populated with independent properly normalized
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gaussian entries, see [24]. But, as in the vector case, no deterministic linear map
A : K𝑛×𝑛 → K𝑚 is known in this optimal regime 𝑚 ≍ 𝑛𝑟. Worst, I am not aware of
simple deterministic constructions overcoming the trivial regime 𝑚 ≍ 𝑛2 and I have
not seen an effective analog of the notion of coherence.

Interestingly, the theory of low-rank recovery can also be built from a modification
of the RIP featuring the ℓ1-norm as the inner norm, see [5, Chapter 16], namely from

(1 − 𝛿)∥𝑋 ∥𝐹 ≤ ∥A(𝑋)∥1 ≤ (1 + 𝛿)∥𝑋 ∥𝐹 for all rank-𝑟 𝑋 ∈ K𝑛×𝑛. (19)

This alternative version seems even more relevant in the present scenario. Indeed,
when 𝑚 ≍ 𝑛𝑟, the rank-one measurements

A(𝑍)𝑖 = ⟨𝑏𝑖 , 𝑍𝑎𝑖⟩ = ⟨𝐴𝑖 , 𝑍⟩𝐹 , 𝐴𝑖 := 𝑏𝑖𝑎
∗
𝑖 ,

with independent properly normalized gaussian vectors 𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚 ∈ K𝑛

do not lead to the RIP (18) but to the RIP (19), while the latter still enables low-
rank recovery via nuclear norm minimization, see [25]. It also enables low-rank
recovery via iterative-thresholding-type algorithms, see [26]. But the possibility of
fulfilling this modified RIP in a regime 𝑚 ≍ 𝑛𝜆𝑟𝜇 ≪ 𝑛2 with deterministic matrices
𝐴1, . . . , 𝐴𝑚 ∈ K𝑛×𝑛—of rank one or even unrestricted—is a wide open question.
This question is hereby set as a challenge to the readers.

7 Addendum: isometric embeddings, spherical designs, tensors

As mentioned in Remark 2, isometric embedding from ℓ𝑁2 (K) to ℓ2𝑘 (K),K ∈ {R,C},
have connections with spherical designs and tensors. This is made precise by the
following result, found in [27] for the caseK = R. There is a connection with cubature
formulas on the sphere, too, as found e.g. in [28]. I thank G. Paouris who recently
brought the latter to my attention—it also contains an explicit isometric embedding
from ℓ𝑛2 (C) into ℓ

Θ(𝑛4 )
2 (C) when 𝑛 is an odd prime power.

Theorem 5 Let 2𝑘 ≥ 2 be an even integer. The following properties are equivalent:

1) There exists 𝐴 ∈ K𝑁×𝑛 providing an isometric embedding from ℓ𝑛2 into ℓ𝑁2𝑘 , i.e.,
∥𝐴𝑥∥2𝑘 = ∥𝑥∥2 for all 𝑥 ∈ K𝑛;

2) There exist 𝑥1, . . . , 𝑥𝑁 ∈ 𝑆𝑛2 and 𝜏1, . . . , 𝜏𝑁 ≥ 0 with 𝜏1 + · · · + 𝜏𝑁 = 1 such that
𝑁∑︁

𝑖, 𝑗=1
𝜏𝑖𝜏𝑗 |⟨𝑥𝑖 , 𝑥 𝑗⟩|2𝑘 =

∫
𝑆𝑛

2 ×𝑆𝑛
2

|⟨𝑥, 𝑦⟩|2𝑘𝑑𝜎(𝑥)𝑑𝜎(𝑦),

where 𝜎 is the normalized standard measure on the unit sphere 𝑆𝑛2 of ℓ𝑛2 ;
3) There exist 𝑥1, . . . , 𝑥𝑁 ∈ 𝑆𝑛2 and 𝜏1, . . . , 𝜏𝑁 ≥ 0 with 𝜏1 + · · · + 𝜏𝑁 = 1 such that

𝑁∑︁
𝑖=1

𝜏𝑖 ⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖) =
∫
𝑆𝑛

2

⊗𝑘 (𝑥 ⊗ 𝑥)𝑑𝜎(𝑥).
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Since RIPs are not genuine isometric embeddings, but almost isometric ones, this
result will be established in a slightly stronger form for the sake of completeness.
Towards this end, some pieces of notations and some identities are brought forth as
a preamble. First, one considers the quantity 𝛿 (independent of 𝑥 ∈ 𝑆𝑛2 ) defined by

𝛿 = 𝛿𝑛,2𝑘 :=
∫
𝑆𝑛

2

|⟨𝑥, 𝑦⟩|2𝑘𝑑𝜎(𝑦) =


(2𝑘 − 1) · · · 3 · 1

(𝑛 + 2𝑘 − 2) · · · (𝑛 + 2) · 𝑛 for K = R,

𝑘!
(𝑛 + 𝑘 − 1) · · · (𝑛 + 1) · 𝑛 for K = C,

whose numerical value is given in [27] for K = R and in [29] for K = C. Note that
𝛿 coincides with the double integral appearing in 2). As for the integral appearing
in 3), called distribution 2𝑘-tensor (when K = R), it shall be denoted by 𝐷. Thus,

𝐷 = 𝐷𝑛,2𝑘 :=
∫
𝑆𝑛

2

⊗𝑘 (𝑦 ⊗ 𝑦)𝑑𝜎(𝑦).

Using the standard notion of inner product on tensor spaces, one verifies below that,
for any 𝑥 ∈ 𝑆𝑛2 ,

⟨⊗𝑘 (𝑥 ⊗ 𝑥), 𝐷⟩ = 𝛿 and ⟨𝐷, 𝐷⟩ = 𝛿. (20)

To justify the leftmost identity of (20), it suffices to write

⟨⊗𝑘 (𝑥 ⊗ 𝑥), 𝐷⟩ =
〈
⊗𝑘 (𝑥 ⊗ 𝑥),

∫
𝑆𝑛

2

⊗𝑘 (𝑦 ⊗ 𝑦)𝑑𝜎(𝑦)
〉

=

∫
𝑆𝑛

2

〈
⊗𝑘 (𝑥 ⊗ 𝑥), ⊗𝑘 (𝑦 ⊗ 𝑦)

〉
𝑑𝜎(𝑦)

=

∫
𝑆𝑛

2

⟨𝑥 ⊗ 𝑥, 𝑦 ⊗ 𝑦⟩𝑘 𝑑𝜎(𝑦) =
∫
𝑆𝑛

2

(
|⟨𝑥, 𝑦⟩|2

) 𝑘
𝑑𝜎(𝑦)

= 𝛿.

To justify the rightmost identity of (20), it suffices to write

⟨𝐷, 𝐷⟩ =
〈 ∫

𝑆𝑛
2

⊗𝑘 (𝑥 ⊗ 𝑥)𝑑𝜎(𝑥), 𝐷
〉
=

∫
𝑆𝑛

2

〈
⊗𝑘 (𝑥 ⊗ 𝑥), 𝐷

〉
𝑑𝜎(𝑥) =

∫
𝑆𝑛

2

𝛿𝑑𝜎(𝑥)

= 𝛿.

From here, an important identity follows easily, namely: for any 𝑥1, . . . , 𝑥𝑁 ∈ 𝑆𝑛2
and any 𝜏1, . . . , 𝜏𝑁 ≥ 0 with 𝜏1 + · · · + 𝜏𝑁 = 1,



 𝑁∑︁

𝑖=1
𝜏𝑖 ⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖) − 𝐷





2

2
=

𝑁∑︁
𝑖, 𝑗=1

𝜏𝑖𝜏𝑗 |⟨𝑥𝑖 , 𝑥 𝑗⟩|2𝑘 − 𝛿. (21)

Indeed, the justification of (21) simply reads
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 𝑁∑︁
𝑖=1

𝜏𝑖 ⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖) − 𝐷





2

2

=

𝑁∑︁
𝑖, 𝑗=1

𝜏𝑖𝜏𝑗 ⟨⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖), ⊗𝑘 (𝑥 𝑗 ⊗ 𝑥 𝑗 )⟩ − 2 Re
〈 𝑁∑︁

𝑖=1
𝜏𝑖 ⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖), 𝐷

〉
+ ⟨𝐷, 𝐷⟩

=

𝑁∑︁
𝑖, 𝑗=1

𝜏𝑖𝜏𝑗 ⟨𝑥𝑖 ⊗ 𝑥𝑖 , 𝑥 𝑗 ⊗ 𝑥 𝑗⟩𝑘 − 2
𝑁∑︁
𝑖=1

𝜏𝑖 Re
〈
⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖), 𝐷

〉
+ ⟨𝐷, 𝐷⟩

=

𝑁∑︁
𝑖, 𝑗=1

𝜏𝑖𝜏𝑗
(
|⟨𝑥𝑖 , 𝑥 𝑗⟩|2

) 𝑘 − 2
𝑁∑︁
𝑖=1

𝜏𝑖 Re(𝛿) + 𝛿,

where both identities of (20) were used in the last step. Taking
∑𝑁

𝑖=1 𝜏𝑖 = 1 into
account then leads to the desired identity (21). Note that it implies the so-called
Sidelnikov inequality, namely

𝑁∑︁
𝑖, 𝑗=1

𝜏𝑖𝜏𝑗 |⟨𝑥𝑖 , 𝑥 𝑗⟩|2𝑘 ≥ 𝛿 whenever 𝑥1, . . . , 𝑥𝑁 ∈ 𝑆𝑛2 , 𝜏1, . . . , 𝜏𝑁 ≥ 0,
𝑁∑︁
𝑖=1

𝜏𝑖 = 1.

After this preparatory work, one can now state and prove the slight generalization
of Theorem 5, which is retrieved as the special case 𝜀1 = 𝜀2 = 𝜀3 = 0.

Theorem 6 Let 2𝑘 ≥ 2 be an even integer. For 𝜀1, 𝜀2, 𝜀3 ≥ 0 that depend on each
other, the following properties are equivalent:

1’) There exists a matrix 𝐴 ∈ K𝑁×𝑛 for which

(1 − 𝜀1)∥𝑥∥2𝑘
2 ≤ ∥𝐴𝑥∥2𝑘

2𝑘 ≤ (1 + 𝜀1)∥𝑥∥2𝑘
2 for all 𝑥 ∈ K𝑛;

2’) There exist 𝑥1, . . . , 𝑥𝑁 ∈ 𝑆𝑛2 and 𝜏1, . . . , 𝜏𝑁 ≥ 0 with 𝜏1 + · · · + 𝜏𝑁 = 1 such that

𝑁∑︁
𝑖, 𝑗=1

𝜏𝑖𝜏𝑗 |⟨𝑥𝑖 , 𝑥 𝑗⟩|2𝑘 ≤ 𝛿 + 𝜀2;

3’) There exist 𝑥1, . . . , 𝑥𝑁 ∈ 𝑆𝑛2 and 𝜏1, . . . , 𝜏𝑁 ≥ 0 with 𝜏1 + · · · + 𝜏𝑁 = 1 such that



 𝑁∑︁
𝑖=1

𝜏𝑖 ⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖) − 𝐷






2
≤ 𝜀3.

Proof 2’) ⇔ 3’) with 𝜀3 =
√
𝜀2. This equivalence results from identity (21).

3’) ⇒ 1’) with 𝜀1 = 𝜀3/𝛿. For any 𝑥 ∈ K𝑛, one observes that the leftmost identity
of (20) yields ⟨𝐷, ⊗𝑘 (𝑥 ⊗ 𝑥)⟩ = 𝛿∥𝑥∥2𝑘

2 by homogeneity. One also observes that
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𝑖=1

𝜏𝑖 ⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖), ⊗𝑘 (𝑥 ⊗ 𝑥)
〉
=

𝑁∑︁
𝑖=1

𝜏𝑖 ⟨⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖), ⊗𝑘 (𝑥 ⊗ 𝑥)⟩

=

𝑁∑︁
𝑖=1

𝜏𝑖
(
|⟨𝑥𝑖 , 𝑥⟩|2

) 𝑘
.

From both these observations, it follows that���� 𝑁∑︁
𝑖=1

𝜏𝑖 |⟨𝑥𝑖 , 𝑥⟩|2𝑘 − 𝛿∥𝑥∥2𝑘
2

���� = ����〈 𝑁∑︁
𝑖=1

𝜏𝑖 ⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖) − 𝐷, ⊗𝑘 (𝑥 ⊗ 𝑥)
〉����

≤




 𝑁∑︁

𝑖=1
𝜏𝑖 ⊗𝑘 (𝑥𝑖 ⊗ 𝑥𝑖) − 𝐷






2




 ⊗𝑘 (𝑥 ⊗ 𝑥)





2

≤ 𝜀3∥𝑥∥2𝑘
2 .

Therefore, setting 𝑎𝑖 := (𝜏𝑖/𝛿)
1

2𝑘 𝑥𝑖 for each 𝑖 ∈ [1 : 𝑁], the above becomes���� 𝑁∑︁
𝑖=1

|⟨𝑎𝑖 , 𝑥⟩|2𝑘 − ∥𝑥∥2𝑘
2

���� ≤ 𝜀1∥𝑥∥2𝑘
2 ,

which reduces to 1’) for the matrix 𝐴 ∈ K𝑁×𝑛 with rows 𝑎∗1, . . . , 𝑎
∗
𝑁

.
1’) ⇒(2’) with 𝜀2 = 4𝜀1𝛿 when 𝜀1 ≤ 1/2. With 𝑎∗1, . . . , 𝑎

∗
𝑁

denoting the rows of
the matrix 𝐴 ∈ K𝑁×𝑛, the almost isometric embedding takes the form

(1 − 𝜀1)∥𝑥∥2𝑘
2 ≤

𝑁∑︁
𝑖=1

|⟨𝑎𝑖 , 𝑥⟩|2𝑘 ≤ (1 + 𝜀1)∥𝑥∥2𝑘
2 for all 𝑥 ∈ K𝑛. (22)

First, integrating (22) over 𝑥 ∈ 𝑆𝑛2 implies that 1 − 𝜀1 ≤ ∑𝑁
𝑖=1 ∥𝑎𝑖 ∥2𝑘

2 𝛿 ≤ 1 + 𝜀1.
Setting 𝑆 :=

∑𝑁
𝑖=1 ∥𝑎𝑖 ∥2𝑘

2 , this means that

𝛿

1 + 𝜀1
≤ 1

𝑆
≤ 𝛿

1 − 𝜀1
. (23)

Second, setting 𝑥𝑖 := 𝑎𝑖/∥𝑎𝑖 ∥2 ∈ 𝑆𝑛2 for each 𝑖 ∈ [1 : 𝑁] and selecting 𝑥 = 𝑥 𝑗 in (22)
yields

1 − 𝜀1 ≤
𝑁∑︁
𝑖=1

∥𝑎𝑖 ∥2𝑘
2 |⟨𝑥𝑖 , 𝑥 𝑗⟩|2𝑘 ≤ 1 + 𝜀1.

Defining 𝜏𝑖 := ∥𝑎𝑖 ∥2𝑘
2 /𝑆, multiplying the latter by 𝜏𝑗 and summing over 𝑗 ∈ [1 : 𝑁]

leads to
1 − 𝜀1

𝑆
≤

𝑁∑︁
𝑖, 𝑗=1

𝜏𝑖𝜏𝑗 |⟨𝑥𝑖 , 𝑥 𝑗⟩|2𝑘 ≤ 1 + 𝜀1
𝑆

. (24)

From the estimates (23) and (24), one finally concludes that
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𝑁∑︁
𝑖, 𝑗=1

𝜏𝑖𝜏𝑗 |⟨𝑥𝑖 , 𝑥 𝑗⟩|2𝑘 ≤ 1 + 𝜀1
1 − 𝜀1

𝛿 ≤ (1 + 4𝜀1)𝛿,

where the last step used 𝜀1 ≤ 1/2. This is the desired inequality with 𝜀2 = 4𝜀1𝛿. □
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