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Abstract

It is shown that the iterative hard thresholding and hard thresholding pursuit algorithms

provide the same theoretical guarantees as `1-minimization for the recovery from imperfect

compressive measurements of signals that have almost sparse analysis expansions in a fixed

dictionary. Unlike other signal space algorithms targeting the recovery of signals with sparse

synthesis expansions, the ability to compute (near) best approximations by synthesis-sparse

signals is not necessary. The results are first established for tight frame dictionaries, before

being extended to arbitrary dictionaries modulo an adjustment of the measurement process.

Key words and phrases: compressive sensing, sparse recovery, iterative hard thresholding, hard

thresholding pursuit, restricted isometry property adapted to a dictionary, tight frames.
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1 Introduction

This note deals with the recovery of signals with sparse expansions in a fixed dictionary when these

signals are acquired through compressive linear measurements. The dictionary is represented by a

matrix D ∈ Cn×N , where n is the dimension of the signal space identified to Cn and N > n is the

dimension of the coefficient space CN . On first instance, we suppose that the dictionary is a tight

frame, i.e., that

DD∗ = In.

This assumption will be removed in Section 4. The signals f ∈ Cn of interest are assumed to be

(nearly) s-sparse with respect to D, which may have one of the two meanings:

• it is synthesis-sparse, i.e., f = Dx for some s-sparse x ∈ CN ,

• it is analysis-sparse, i.e., D∗f ∈ CN is s-sparse.
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coefficient space CN
(N > n)

D

D∗

{
x

D∗f

signal space Cn

f =

{
Dx

D(D∗f)

(n� m)

A

measurement space Cm

y = Af + e

Figure 1: The coefficient, signal, and measurement spaces

The set of analysis-sparse vectors is contained in the set of synthesis-sparse vectors by virtue of

f = D(D∗f). We target the stable and robust recovery of vectors in (the vicinity of) the smaller set

of analysis-sparse signals. The recovery method uses some linear information about f arranged as

a measurement vector y = Af + e ∈ Cm with m� n. Here, A ∈ Cm×n is called the measurement

matrix and e ∈ Cm represents a measurement error which equals the zero vector only in an idealized

setting but for which a bound ‖e‖2 ≤ η is typically available. The situation is summarized in

Figure 1.

In [2], the presumably first theoretical result on the recovery of dictionary-sparse vectors involved

the `1-minimizer

f ] = argmin
g
{‖D∗g‖1 subject to ‖y −Ag‖2 ≤ η} .

For a tight frame D, with σs(D
∗f)1 representing the error of best s-term approximation to D∗f

in `N1 , it was established that

(1) ‖f − f ]‖2 ≤ c
σs(D

∗f)1√
s

+ d η

is valid for all f and all e with ‖e‖2 ≤ η as soon as a restricted isometry condition for A adapted

to D holds. Precisely, the condition reads δD2s < δ∗ := 0.08, where δDt is the smallest constant δ ≥ 0

such that

(D-RIP) (1− δ)‖g‖22 ≤ ‖Ag‖22 ≤ (1 + δ)‖g‖22 whenever g = Dz for some s-sparse z ∈ CN .

This condition is fulfilled with overwhelming probability by m× n matrices populated by iid sub-

gaussian entries with variance 1/m provided m ≥ c(δ∗)s ln(eN/s). It is also fulfilled with high

probability for random partial Fourier matrices after sign randomization of their columns, see [10].

The result (1) was extended in [6] to reconstruction errors measured at the coefficient level in `p
for any p ∈ [1, 2]1, to loose (i.e., non-tight) frames provided the Moore–Penrose pseudoinverse D†

replaces D∗, and to pregaussian (aka subexponential) random matrices thanks to a modification

of (D-RIP) where the inner norm is taken to be the `1-norm and the outer norm depends on the

pregaussian distribution (this modified restricted isometry property appeared first in [7] for the

traditional case D = I).

1meaning that a bound on ‖D∗f −D∗f ]‖p was established — for p = 2 and for tight frames, it reduces to the

bound (1) on ‖f − f ]‖2.
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While the `1-analysis approach mentioned above concerns recovery of analysis-sparse vectors, other

popular compressive sensing algorithms adapted to the dictionary case target the recovery of

synthesis-sparse vectors. The theoretical guarantees, though, require the ability to best-approximate

by synthesis-sparse vectors [1, 3] or at least to near-best-approximate [9]. These tasks may be

achievable in specific situations, but they are hard in general. The purpose of this note is to show

that such a strong requirement is not necessary to obtain weaker reconstruction bounds similar

to (1). To illustrate this point, we state the following representative result.

Theorem 1. Suppose that D ∈ Cn×N satisfies DD∗ = In and that

m ≥ C s ln

(
eN

s

)
.

If A ∈ Cm×n is a random matrix populated by iid subgaussian entries with variance 1/m, then

with overwhelming probability

‖f − fHTP‖2 ≤ c
σs(D

∗f)1√
s

+ d ‖e‖2,

holds for all f ∈ Cn and all e ∈ Cm. Here, fHTP is the output of the hard thresholding pursuit

algorithm of order 2s adapted to D and applied to y = Af +e. It is obtained after a finite number

of iterations.

In this statement, the constants C, c, and d are universal. Throughout the note, they will represent

constants with values changing from line to line and possibly dependent on parameters δ and µ to

be fixed in due course. Theorem 1 is proven in Section 3. It relies on arguments put forward in

Section 2 to derive a similar statement for the simpler iterative hard thresholding algorithm. We

conclude in Section 4 by highlighting the adjustment needed to handle loose frames.

2 Iterative Hard Thresholding

We start by presenting the core of the argument on the illustrative case of an analysis-sparse signal

f ∈ Cn — it is assumed that D∗f is exactly s-sparse, see a future comment — which is measured

with perfect precision, so that y = Af . We consider the sequence (fk) of synthesis-sparse [sic]

signals defined by f0 = 0 and, for k ≥ 0, by

(2) fk+1 = D
{
Hs(D

∗gk)
}
, where gk := fk + A∗(y −Afk).

Here, Hs(z) is the hard thresholding operator applied to a vector z ∈ CN : it keeps the s largest

absolute entries of z and annihilates the other ones. The argument exploits the restricted isometry

property adapted to D, or rather one of its consequences established below.
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Lemma 2. For all signals g,h ∈ Cn written as g := Du and h = Dv with u,v ∈ CN ,

|〈g, (A∗A− I)h〉| ≤ δDt ‖g‖2‖h‖2, where t := card{supp(u) ∪ supp(v)}.

Proof. Let g′ := g/‖g‖2 and h′ = eiθh/‖h‖2 for θ ∈ [−π, π] chosen as the argument of the complex

number 〈g, (A∗A− I)h〉. We have

|〈g, (A∗A− I)h〉|
‖g‖2‖h‖2

= Re

(
e−iθ〈g, (A∗A− I)h〉

‖g‖2‖h‖2

)
= Re

(
〈g′, (A∗A− I)h′〉

)
= Re

(
〈Ag′,Ah′〉

)
− Re

(
〈g′,h′〉

)
=

1

4

(
‖A(g′ + h′)‖22 − ‖A(g′ − h′)‖22

)
− 1

4

(
‖g′ + h′‖22 − ‖g′ − h′‖22

)
=

1

4

(
‖A(g′ + h′)‖22 − ‖g′ + h′‖22

)
− 1

4

(
‖A(g′ − h′)‖22 − ‖g′ − h′‖22

)
≤ 1

4
δDt ‖g′ + h′‖22 +

1

4
δDt ‖g′ − h′‖22 =

1

4
δDt
(
2‖g′‖22 + 2‖h′‖22

)
= δDt .

The required result follows immediately after multiplying throughout by ‖g‖2‖h‖2.

With Lemma 2 established, we can prove that the sequence (fk) converges to f following the

argument proposed in [4] for the usual iterative hard thresholding algorithm. Thus, we start from

the observation that Hs(D
∗gk) is a better s-sparse approximation to D∗gk than D∗f is to write

‖D∗gk−Hs(D
∗gk)‖22 ≤ ‖D∗gk−D∗f‖22, i.e., ‖D∗(gk−f)+D∗f−Hs(D

∗gk)‖22 ≤ ‖D∗(gk−f)‖22.

After expanding the square on the left-hand side and rearranging, we arrive at

‖D∗f −Hs(D
∗gk)‖22 ≤ 2 Re〈D∗f −Hs(D

∗gk),D∗(f − gk)〉 = 2 Re〈D(D∗f −Hs(D
∗gk)), f − gk〉

= 2 Re〈f − fk+1, f − gk〉 = 2 Re〈f − fk+1, (I−A∗A)(f − fk)〉.

We now invoke Lemma 2, as well as the fact that ‖D‖2→2 = 1 (since D has all its nonzero singular

values equal to one by virtue of DD∗ = I), to derive

‖f − fk+1‖22 = ‖D(D∗f −Hs(D
∗gk))‖22 ≤ ‖D∗f −Hs(D

∗gk)‖22 ≤ 2 δD3s ‖f − fk+1‖2‖f − fk‖2,

or after simplification

‖f − fk+1‖2 ≤ ρ‖f − fk‖2, ρ := 2δD3s.

This ensures recovery of f as the limit of fk when k →∞ as soon as ρ < 1, i.e., δD3s < 1/2.

The unabridged argument is a variation on the simple case just presented. We do take note, though,

that the simple case is quite unrealistic, because requiring D∗f to be exactly s-sparse for f 6= 0

is very restrictive. Indeed, if the columns d1, . . . ,dN ∈ Cn of D are in general position, then

(D∗f)j = 0 for all j 6∈ S := supp(D∗f), i.e., 〈f ,dj〉 = 0 for all j ∈ S, means that f lies in the
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orthogonal complement of the space span{dj , j ∈ S} which has full dimension when N − s ≥ n, so

that exact sparsity is only possible for s > N −n. Let us point out in passing that this observation

has sparked some recent investigations into the cosparse analysis model, see e.g. [8, 11]. Back

to our setting, we therefore emphasize that the realistic situation occurs when σs(D
∗f)1 decays

quickly, rather than vanishes quickly, as s increases. Practical examples of this situation are given

in [2]. As a consequence, we do not make any sparsity assumption on D∗f from now on. Instead,

we group the indices in sets S0, S1, S2, ... of size s arranged by decreasing absolute entries of D∗f .

We then write f = D(D∗f) as the sum of a 2s-synthesis-sparse signal f̂ and a remainder signal f

as follows:

f = f̂ + f , where

{
f̂ := D

(
[D∗f ]S0∪S1

)
,

f := D
(
[D∗f ]S0∪S1

)
.

The remainder signal f is then absorbed in the measurement error by writing

y = Af + e = Af̂ + e, where e := Af + e.

It is useful to isolate the following estimates.

Lemma 3. One has

‖f‖2 ≤ Σ and ‖e‖2 ≤
√

1 + δDs Σ + ‖e‖2,

where the quantity Σ satisfies

Σ :=
∑
k≥2
‖[D∗f ]Sk

‖2 ≤
σs(D

∗f)1√
s

.

Proof. The bound on Σ is folklore: it is based on the inequalities

‖[D∗f ]Sk
‖2/
√
s ≤ max

j∈Sk

|(D∗f)j | ≤ min
j∈Sk−1

|(D∗f)j | ≤ ‖[D∗f ]Sk−1
‖1/s

written as ‖[D∗f ]Sk
‖2 ≤ ‖[D∗f ]Sk−1

‖1/
√
s and then summed for k ≥ 2. For the bound on ‖f‖2, we

simply invoke the triangle inequality ‖f‖2 = ‖
∑

k≥2D
(
[D∗f ]Sk

)
‖2 ≤

∑
k≥2 ‖D

(
[D∗f ]Sk

)
‖2 together

with the fact that ‖D‖2→2 ≤ 1. For the bound on ‖e‖2, we start from ‖e‖2 ≤ ‖Af‖2 + ‖e‖2 and

bound ‖Af‖2 with the help of (D-RIP) as

‖Af‖2 = ‖
∑
k≥2

AD
(
[D∗f ]Sk

)
‖2 ≤

∑
k≥2
‖AD

(
[D∗f ]Sk

)
‖2 ≤

∑
k≥2

√
1 + δDs ‖D

(
[D∗f ]Sk

)
‖2

≤
√

1 + δDs
∑
k≥2
‖[D∗f ]Sk

‖2 =
√

1 + δDs Σ.

The announced bound on ‖e‖2 is now apparent.
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In order to tackle the realistic situation discussed above, we replace the parameter s by 2s in (2).

For extra generality, we attach a free parameter µ in front of A∗(y −Afk) in the definition of gk.

All in all, the iterative hard thresholding algorithm of order 2s with parameter µ adapted to D —

D-IHTµ
2s for short — applied to y = Af + e = Af̂ + e consists in constructing a sequence (fk) of

synthesis-sparse signals defined by f0 = 0 and, for k ≥ 0, by

(D-IHTµ
2s) fk+1 = D

{
H2s(D

∗gk)
}
, gk := fk + µA∗(y −Afk).

With the notation introduced above, the main result of this section reads as follows.

Theorem 4. Given a tight frame D ∈ Cn×N and given µ ∈ (1/2, 3/2), suppose that the matrix

A ∈ Cm×n has a restricted isometry constant adapted to D of order 6s satisfying

(3) δD6s <
1/2− |1− µ|

µ
.

Then, for all f ∈ Cn and all e ∈ Cm, the sequence (fk) produced by (D-IHTµ
2s) applied to y = Af+e

satisfies, for any k ≥ 0,

(4) ‖f̂ − fk‖2 ≤ ρk‖f‖2 + cΣ + d ‖e‖2,

where ρ := 2(|1− µ|+ µδD6s) < 1. The constants c and d also depend only on µ and δD6s.

Proof. Let us use the shorthand notation δ for δD6s throughout the proof. In order to obtain the

bound (4), we could work as in the illustrative case at the signal level and show that, for any k ≥ 0,

(5) ‖f̂ − fk+1‖2 ≤ ρ‖f̂ − fk‖2 + cΣ + d ‖e‖2.

We shall instead work at the coefficient level: with x0 = 0 and xk+1 := H2s(D
∗gk) designating the

2s-sparse vector such that fk+1 = Dxx+1, we are going to establish that, for any k ≥ 0,

(6) ‖D∗f̂ − xk+1‖2 ≤ ρ‖D∗f̂ − xk‖2 + cΣ + d ‖e‖2.

This immediately implies

(7) ‖D∗f̂ − xk‖2 ≤ ρk‖D∗f̂‖2 + cΣ + d ‖e‖2,

and the estimate announced in (4) follows from ‖f̂ − fk‖2 = ‖D(D∗f̂ − xk)‖2 ≤ ‖D∗f̂ − xk‖2 and

from ‖D∗f̂‖2 = ‖f̂‖2 ≤ ‖f‖2 + ‖f‖2 ≤ ‖f‖2 + Σ. Now, in order to establish (6), we start with the

observation that xk+1 is a better 2s-term approximation to D∗gk than [D∗f ]S0∪S1 is to derive

‖D∗gk − xk+1‖22 ≤ ‖D∗gk − [D∗f ]S0∪S1‖22.

Exploiting the fact that [D∗f ]S0∪S1 = D∗f − [D∗f ]S0∪S1
= D∗f̂ + D∗f − [D∗f ]S0∪S1

, this reads

‖D∗(gk − f̂) + D∗f̂ − xk+1‖22 ≤ ‖D∗(gk − f̂)−D∗f + [D∗f ]S0∪S1
‖22.

6



S. Foucart

Expanding the squares and rearranging, we arrive at

‖D∗f̂ − xk+1‖22 ≤ 2 Re〈D∗f̂ − xk+1,D∗(f̂ − gk)〉(8)

+ 2 Re〈D∗(f̂ − gk),D∗f − [D∗f ]S0∪S1
〉

+ ‖D∗f − [D∗f ]S0∪S1
‖22.

The square root of the last term in the right-hand side of (8) is bounded as

(9) ‖D∗f − [D∗f ]S0∪S1
‖2 ≤ ‖D∗f‖2 +

∑
k≥2
‖[D∗f ]Sk

‖2 = ‖f‖2 + Σ ≤ 2Σ.

The middle term in the right-hand side of (8) is simply zero, as it reduces to

(10) 2 Re〈f̂ − gk,DD∗f −D
(
[D∗f ]S0∪S1

)
〉 = 2 Re〈f̂ − gk, f − f〉 = 0.

As for the first term in the right-hand side of (8), it takes the form

(11) 2 Re〈DD∗f̂ −Dxk+1, f̂ − gk〉 = 2 Re〈f̂ − fk+1, f̂ − fk − µA∗(y −Afk)〉

= 2(1− µ) Re〈f̂ − fk+1, f̂ − fk〉+ 2µRe〈f̂ − fk+1, (I−A∗A)(f̂ − fk)〉 − 2µRe〈f̂ − fk+1,A∗e〉.

In view of Cauchy–Schwarz inequality, of Lemma 2, and of (D-RIP), we notice that

|〈f̂ − fk+1, f̂ − fk〉| ≤ ‖f̂ − fk+1‖2‖f̂ − fk‖2,

|〈f̂ − fk+1, (I−A∗A)(f̂ − fk)〉| ≤ δ ‖f̂ − fk+1‖2‖f̂ − fk‖2,

|〈f̂ − fk+1,A∗e〉| = |〈A(f̂ − fk+1), e〉| ≤ ‖A(f̂ − fk+1)‖2‖e‖2
≤
√

1 + δ ‖f̂ − fk+1‖2‖e‖2.

Using these inequalities in (11) allows us to bound the first term in the right-hand side of (8) by

(12) 2‖f̂ − fk+1‖2
{
|1− µ|‖f̂ − fk‖2 + µ δ ‖f̂ − fk‖2 + µ

√
1 + δ ‖e‖2

}
.

Substituting (9), (10), and (12) into (8) yields

(13) ‖D∗f̂ − xk+1‖22 ≤ 2‖f̂ − fk+1‖2
{

(|1− µ|+ µ δ)‖f̂ − fk‖2 + µ
√

1 + δ ‖e‖2
}

+ 4Σ2.

Taking ‖f̂ − fk+1‖2 = ‖D(D∗f̂ −xk+1)‖2 ≤ ‖D∗f̂ −xk+1‖2 into account, we could deduce from (13)

that

‖f̂ − fk+1‖22 ≤ 2‖f̂ − fk+1‖2
{

(|1− µ|+ µ δ)‖f̂ − fk‖2 + µ
√

1 + δ ‖e‖2
}

+ 4Σ2

and proceed as we do below to obtain the bound (5). We shall instead deduce from (13), still using

‖f̂ − fk+1‖2 ≤ ‖D∗f̂ − xk+1‖2 but also ‖f̂ − fk‖2 ≤ ‖D∗f̂ − xk‖2, that

‖D∗f̂ − xk+1‖22 ≤ 2‖D∗f̂ − xk+1‖2
{

(|1− µ|+ µ δ)‖D∗f̂ − xk‖2 + µ
√

1 + δ ‖e‖2
}

+ 4Σ2.
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With {} denoting the above quantity in curly brackets, this inequality reads(
‖D∗f̂ − xk+1‖2 − {}

)2
≤ {}2 + 4Σ2 ≤ ({}+ 2Σ)2 .

It then follows that

‖D∗f̂ − xk+1‖2 ≤ {}+ ({}+ 2Σ) = 2 ({}+ Σ) ,

which does take the form of (7) after invoking Lemma 3 to bound ‖e‖2. It is easily verified that

ρ := 2(|1− µ|+ µ δ) satisfies ρ < 1 when (3) holds. This concludes the proof.

The argument presented above does not guarantee convergence of the sequence (fk). However, since

(4) implies boundedness of this sequence, at least it admits a convergent subsequence. We can give

error bounds for the recovery of f as the limit of such a convergent subsequence. In fact, we can

also give error bounds for the recovery of f as the iterate fk when the index k is large enough. Here

are the precise statements.

Corollary 5. Under the same hypotheses as in Theorem 4, if f [ denotes a cluster point of the

sequence (fk), then

(14) ‖f − f [‖2 ≤ c
σs(D

∗f)1√
s

+ d ‖e‖2.

Moreover, if a bound ‖e‖2 ≤ η is available, then

(15) ‖f − fk‖2 ≤ c
σs(D

∗f)1√
s

+ d η as soon as k ≥ ln(‖y‖2/η)

ln(1/ρ)
.

The constants c and d — different on both occurrences — depend only on µ and δD6s.

Proof. From the bound (4), we derive that, for any k ≥ 0,

‖f − fk‖2 ≤ ‖f̂ − fk‖2 + ‖f‖2 ≤ ρk‖f‖2 + cΣ + d ‖e‖2 + ‖f‖2 ≤ ρk‖f̂‖2 + cΣ + d ‖e‖2 + (1 + ρk)‖f‖2,

and invoking Lemma 3 to bound ‖f‖2 gives

(16) ‖f − fk‖2 ≤ ρk‖f̂‖2 + cΣ + d ‖e‖2.

For a convergent subsequence (fk
j
), taking the limit as j →∞ yields ‖f−f [‖2 ≤ cΣ+d ‖e‖2, which

implies (14) in view of the bound on Σ from Lemma 3. Next, when k ≥ ln(‖y‖2/η)/ ln(1/ρ), we

have ρk ≤ η/‖y‖2. Moreover, since
√

1− δD2s ‖f̂‖2 ≤ ‖Af̂‖2 = ‖y − e‖2 ≤ ‖y‖2 + ‖e‖2, we obtain

ρk‖f̂‖2 ≤ [(η/‖y‖2)‖y‖2 + ρk‖e‖2]/
√

1− δD2s ≤ [η + ‖e‖2]/
√

1/2. Substituting this inequality into

(16) and using the bounds on ‖e‖2 and Σ from Lemma 3 implies (15).
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Remark. It is also possible to derive reconstruction error bounds in `p for any p ∈ [1, 2]. To see

this, we start from the estimate (7) in the proof of Theorem 4, precisely from

‖D∗f̂ − xk‖2 ≤ ρk‖D∗f̂‖2 + cΣ + d ‖e‖2.

Noticing that D∗f̂ = D∗f −D∗f = [D∗f ]S0∪S1 + [D∗f ]S0∪S1
−D∗f , this gives

‖[D∗f ]S0∪S1 − xk‖2 ≤ ‖D∗f̂ − xk‖2 + ‖[D∗f ]S0∪S1
‖2 + ‖D∗f‖2

≤ ρk‖D∗f̂‖2 + cΣ + d ‖e‖2 +
∑
k≥2
‖[D∗f ]Sk

‖2 + ‖f‖2

≤ ρk‖D∗f̂‖2 + cΣ + d ‖e‖2 ≤ ρk‖Df̂‖2 + c
σs(D

∗f)1√
s

+ d ‖e‖2,

where Lemma 3 was used in the last two steps. Since [D∗f ]S0∪S1 − xk is 4s-sparse, it follows that

‖[D∗f ]S0∪S1 − xk‖p ≤ (4s)1/p−1/2‖[D∗f ]S0∪S1 − xk‖2(17)

≤ ρk(4s)1/p−1/2‖D∗f̂‖2 + c
σs(D

∗f)1

s1−1/p
+ d s1/p−1/2‖e‖2.

Moreover, it is easy to extend the argument of Lemma 3 to obtain

(18) ‖[D∗f ]S0∪S1
‖p ≤

∑
k≥2
‖[D∗f ]Sk

‖p ≤
σs(D

∗f)1

s1−1/p
.

Summing (17) and (18) yields

‖D∗f − xk‖p ≤ ρk(4s)1/p−1/2‖D∗f̂‖2 + c
σs(D

∗f)1

s1−1/p
+ d s1/p−1/2‖e‖2.

We deduce a bound at the coefficient level for the recovery of D∗f as a cluster point of the sequence

(xk), namely

‖D∗f − x[‖p ≤ c
σs(D

∗f)1

s1−1/p
+ d s1/p−1/2‖e‖2, p ∈ [1, 2].

At the signal level, in view of ‖f − fk‖p = ‖DD∗f −Dxk‖p ≤ ‖D‖p→p‖D∗f − xk‖p, a bound

‖f − f [‖p ≤ c′
σs(D

∗f)1

s1−1/p
+ d′ s1/p−1/2‖e‖2, p ∈ [1, 2],

also holds for the recovery of f as a cluster point of the sequence (fk). The constants c′ and d′

involving ‖D‖p→p can be made independent of p thanks to Riesz–Thorin theorem, but they a priori

depend on D, hence possibly on n and N .

3 Hard Thresholding Pursuit

The results established in the previous section for the iterative hard thresholding algorithm are

somewhat unsatisfying for a couple of reasons. First, even though the error bound (15) compares

9
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to (1), an estimation s for the sparsity level is required as an input of the algorithm, whereas

the `1-analysis minimization only requires an estimation η for the magnitude of the measurement

error as an input (besides y, A, and D, obviously). Second, the stopping criterion for the number

of iterations suggested by (15) — namely, k = dln(‖y‖2/η)/ ln(1/ρ)e — does not apply when no

measurement error is present (η = 0). To obtain exact recovery in this case, one really needs an

infinite number of iterations, which is of course impractical. This second drawback is resolved by

considering the hard thresholding pursuit algorithm of order 2s with parameter µ adapted to D

— D-HTPµ2s for short. This algorithm consists in constructing a sequence (fk) of synthesis-sparse

signals defined by f0 = 0 and, for k ≥ 0, by

(D-HTPµ2s)

{
Sk+1 = index set of 2s largest absolute entries of D∗

(
fk + µA∗(y −Afk)

)
,

fk+1 = D argmin{‖y −ADz‖2, supp(z) ⊆ Sk+1}.

A natural stopping criterion here is Sk+1 = Sk, since the sequence becomes stationary afterwards.

We also point out that the sequence (Sk) is eventually periodic, hence so is (fk), because there are

only finitely many index sets of size 2s. Therefore, if the sequences (Sk) and (fk) converge, then

they are eventually stationary, and Sk+1 = Sk does occur for some k ≥ 0. Note that, in the classical

setting and under some restricted isometry condition, convergence is guaranteed unconditionally

on the input y provided µ < 1 is suitably chosen, see [5], but the validity of this phenomenon

in the dictionary case is put in doubt by some modest numerical experiments. Regardless of

convergence issues, theoretical bounds for the recovery error exist and resemble the ones presented

in the previous section for iterative hard thresholding. They are stated below.

Theorem 6. Given a tight frame D ∈ Cn×N and given µ ∈ (1/2, 3/2), suppose that the matrix

A ∈ Cm×n has a restricted isometry constant adapted to D of order 6s small enough to ensure that

(19) δD6s <

√
1− δD6s/

(
2
√

1 + δD6s

)
− |1− µ|

µ
.

Then, for all f ∈ Cn and all e ∈ Cm, the sequence (fk) produced by (D-HTPµ2s) with y = Af + e

satisfies, for any k ≥ 0,

(20) ‖f̂ − fk‖2 ≤ %k‖f‖2 + cΣ + d ‖e‖2,

where % := 2(|1− µ|+ µ δD6s)
√

1 + δD6s/
√

1− δD6s < 1. The constants c and d also depend only on µ

and δD6s.

Proof. As in the proof of Theorem 4, we use the shorthand notation δ for δD6s. For any k ≥ 0, we

target the inequality

(21) ‖f̂ − fk+1‖2 ≤ %‖f̂ − fk‖2 + cΣ + d ‖e‖2

for some % < 1. In fact, we rely on the estimate (5) from the proof of Theorem 4, namely

(22) ‖f̂ − f̌k+1‖2 ≤ ρ‖f̂ − fk‖2 + cΣ + d ‖e‖2, ρ = 2(|1− µ|+ µδ),

10
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where f̌k+1 := D{H2s(D
∗(fk + µA∗(y −Afk)))}. By definition of fk+1, we have

‖y −Afk+1‖2 ≤ ‖y −Af̌k+1‖2, i.e., ‖A(f̂ − fk+1) + e‖2 ≤ ‖A(f̂ − f̌k+1) + e‖2.

Since the triangle inequality and the restricted isometry property adapted to D yield

‖A(f̂ − fk+1) + e‖2 ≥
√

1− δ ‖f̂ − fk+1‖2 − ‖e‖2,

‖A(f̂ − f̌k+1) + e‖2 ≤
√

1 + δ ‖f̂ − f̌k+1‖2 + ‖e‖2,

we deduce the estimate

‖f̂ − fk+1‖2 ≤
√

1 + δ

1− δ
‖f̂ − f̌k+1‖2 +

2√
1− δ

‖e‖2.

After substituting (22) into the latter inequality and invoking Lemma 3 to bound ‖e‖2, we see that

the desired inequality (21) holds with % given above. The fact that % < 1 is ensured by (19).

We can now deduce error bounds for the recovery of f as one of the signals produced by the hard

thresholding pursuit algorithm after a finite number of iterations. Note that an estimation for the

magnitude of the measurement error is not necessary here.

Corollary 7. With the same assumptions and notation as in Theorem 6, if f [ denotes the output

of (D-HTPµ2s) after the stopping criterion is met, then

‖f − f [‖2 ≤ c
σs(D

∗f)1√
s

+ d ‖e‖2.

Even if the stopping criterion is not met, the previous bound is valid for any element f [ of the

eventual cycle of the sequence (fk). The constants c and d depend only on µ and δD6s.

Proof. One essentially reproduce the proof of Corollary 5, coupled with the fact that the sequence

(fk) is at least eventually periodic if not eventually stationary.

4 Loose frame dictionaries

In this section, we consider the case of an arbitrary dictionary, i.e., we remove the requirement that

D ∈ Cn×N is a tight frame. It so happens that the previous recovery guarantees are still valid,

provided the measurement process is slightly modified. Precisely, the measurement matrix now

takes the form

A = G(DD∗)−1/2,

11
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where G ∈ Cm×n is populated by iid subgaussian entries with variance 1/m. The iterative hard

thresholding and hard thresholding pursuit algorithms are simply adjusted by replacing D∗ with

the Moore–Penrose pseudo-inverse

D† = D∗(DD∗)−1.

More explicitly, the adjusted algorithms are respectively

fk+1 = D
{
H2s

(
D†
(
fk + µA∗(y −Afk)

))}
,(D-IHTµ

2s) {
Sk+1 = index set of 2s largest absolute entries of D†

(
fk + µA∗(y −Afk)

)
,

fk+1 = D argmin{‖y −ADz‖2, supp(z) ⊆ Sk+1}.
(D-HTPµ2s)

We summarize the corresponding theoretical results in the following theorem.

Theorem 8. Given a full-rank matrix D ∈ Cn×N and given µ ∈ (1/2, 3/2), suppose that

m ≥ C s ln

(
eN

s

)
.

If A = G(DD∗)−1/2 where G ∈ Cm×n is a random matrix populated by iid subgaussian entries

with variance 1/m, then with overwhelming probability

‖f − f [‖2 ≤ c
σs(D

†f)1√
s

+ d ‖e‖2

holds for all f ∈ Cn and all e ∈ Cm. Here, f [ is any cluster point of the sequence produced by the

iterative hard thresholding or hard thresholding pursuit algorithm of order 2s with parameter µ

adapted to D and applied to y = Af + e. The constant C is universal, while the constants c and d

depend only on µ and D.

Proof. The key to the argument is the observation that

D̃ := (DD∗)−1/2D

is a tight frame. In order to capitalize on the results established so far, instead of working with the

true signals that are generically denoted g, we work with transposed signals that are generically

denoted g̃. The transposition rule is

g̃ = (DD∗)−1/2g.

Thus, measuring the signal f as y = Af + e through the matrix A is the same as measuring the

signal f̃ as y = Gf̃ + e through the matrix G. The assumptions of the theorem ensure that this

matrix G has the restricted isometry property adapted to D̃. Its restricted isometry constant δD̃6s
can be chosen small enough to make the results of Sections 2 and 3 applicable to the sequences

produced by the thresholding-based algorithms with inputs y, G, and D̃. These sequences are

12
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directly related to the sequences produced by the thresholding-based algorithms with inputs y, A,

and D, since the transposed versions of (D-IHTµ
2s) and (D-HTPµ2s) readily amount to

f̃k+1 = D̃
{
H2s

(
D̃∗
(
f̃k + µG∗(y −Gf̃k)

))}
,{

Sk+1 = index set of 2s largest absolute entries of D̃∗
(
f̃k + µG∗(y −Gf̃k)

)
,

f̃k+1 = D̃ argmin{‖y −GD̃z‖2, supp(z) ⊆ Sk+1}.
Therefore, as a consequence of the results from the previous sections, we obtain

‖f̃ − f̃ [‖2 ≤ c
σs(D̃

∗f̃)1√
s

+ d ‖e‖2.

It remains to take note of D̃∗f̃ = D†f and of ‖f−f [‖2 = ‖(DD∗)1/2(f̃−f̃ [)‖2 ≤ ‖D‖2→2‖f̃−f̃ [‖2.
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