
On the dimension of multivariate spline spaces,
especially on Alfeld splits

Simon Foucart∗ †

Tatyana Sorokina‡

Abstract

A computational method to obtain explicit formulas for the dimension of spline spaces
over simplicial partitions is described. The method is applied to conjecture the dimension
formula for the Alfeld split of an n-simplex and for several other tetrahedral partitions.
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1 Introduction

Throughout the paper, let ∆n denote a simplicial partition of a polyhedral domain Ω ⊆ Rn, so
that if any two simplices in ∆n intersect, then their intersection is a facet of ∆n. For example,
∆2 is a triangulation of a polygon Ω ⊆ R2, ∆3 is a tetrahedral partition of a polyhedron Ω ⊆ R3.
Let Pd,n denote the space of polynomials of degree ≤ d in n variables, and let

Srd(∆n) :=
{
s ∈ Cr(Ω) : s|T ∈ Pd,n for each simplex T ∈ ∆n

}
denote the space of Cr splines of degree ≤ d in n variables over ∆n. Our goal in this paper
is to determine the dimension of this space for some particular partitions ∆n. For arbitrary
partitions, determining a closed formula is still a major open problem, even in the bivariate
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†This author is supported by the NSF grant DMS-1120622
‡Towson University, 7800 York Road, Towson, MD 21252, tsorokina@towson.edu

1



case n = 2. In this case, it is known [9, p.240] that if ∆2 is a shellable (regular with no holes)
triangulation, then

(1) dimSrd(∆2) ≥
(
d+ 2

2

)
+ EI

(
d+ 1− r

2

)
− VI

[(
d+ 2

2

)
−
(
r + 2

2

)]
+
∑
v∈VI

σv,

where EI is the number of interior edges, VI is the number of interior vertices, VI is the set of
interior vertices of ∆2, and

σv :=

d−r∑
j=1

max{r + j + 1− jmv, 0}, mv := number of different edge slopes meeting at v.

The right-hand side of (1) is the correct expression for the dimension if d ≥ 3r+1, see [9, p.248
and p.273]. Not much is known for d ≤ 3r, and it is somewhat staggering that the dimensions
of S1

3 (∆2) and of S1
2 (∆2) remain uncertain in general. Let us point out that the right-hand side

of inequality (1) can be rewritten as a linear combination of binomial coefficients — a form
that is favored in this paper:

dimSrd(∆2) ≥
(
d+ 2

2

)
+ (EI − 3VI)

(
d+ 1− r

2

)
+ VI

(
d+ 1− µ

2

)
+ VI

(
d+ 1− ν

2

)
+
(

3VI −
∑
v∈VI

mv

)(µ+ 1− r
2

)
,

where
µ := r +

⌊r + 1

2

⌋
, ν := r +

⌈r + 1

2

⌉
.

In the case of a cell C2 — a triangulation with one interior vertex v — it is known that the
lower bound is the correct dimension, namely

dimSrd(C2) =

(
d+ 2

2

)
+(EI−3)

(
d+ 1− r

2

)
+

(
d+ 1− µ

2

)
+

(
d+ 1− ν

2

)
+(3−m)

(
µ+ 1− r

2

)
,

where m ≤ EI is the number of different slopes of the EI interior edges meeting at v. In
fact, the formula for the cell is the basis of the argument used to derive (1). This example
demonstrates that the dimension depends not only on the combinatorics of ∆n — number of
vertices, edges, and other faces — but also on its exact geometry. Applying this dimension
formula to the Clough–Tocher split ∆CT of a triangle, that is a cell with m = EI = 3, we
obtain

dimSrd(∆CT ) =

(
d+ 2

2

)
+

(
d+ 1− µ

2

)
+

(
d+ 1− ν

2

)
.

The main experimental result of this paper is a dimension formula for the generalization of
the Clough–Tocher split to higher dimensions. The split of a tetrahedron with one interior
vertex, four interior edges and six interior faces was introduced in [2]. We shall refer to
the split of a simplex in Rn with one interior vertex and

(
n+1
k

)
interior k-dimensional faces,

0 ≤ k ≤ n, as the Alfeld split An. The following is our conjecture on the dimension.
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Conjecture 1. The dimension of the space of Cr splines of degree ≤ d in n variables over the
Alfeld split An of a simplex is given by

dimSrd(An)
?
=

(
d+ n

n

)
+


n

(
d+ n− r+1

2 (n+ 1)

n

)
, if r is odd,

(
d+ n− 1− r

2(n+ 1)

n

)
+ · · ·+

(
d− r

2(n+ 1)

n

)
, if r is even.

This formula was obtained using the computational method that we introduce in Section 2.
In Section 3, we describe the steps leading to Conjecture 1. In this section, we also report
without details other formulas obtained via this method for several tetrahedral partitions. In
Section 4, we discuss the potential of the method. We conclude with spline-based derivations
of Hilbert series in the Appendix.

2 The computational method

In this section, we show how to derive an explicit formula for the dimension of Srd(∆n), in the
form of a linear combination of binomial coefficients, using computed values of this dimension
for a finite number of parameters r and d. The first subsection reveals why the sequence
{dimSrd(∆n)}d≥0 depends only on a finite number of its values, while the second subsection
describes how to obtain the required formula.

2.1 Primitive method via Hilbert polynomial

Let us for now fix the number n of variables, the simplicial partition ∆n, and the smoothness
parameter r. It is well-known in Algebraic Geometry that the dimension of Srd(∆n) agrees
with a polynomial of degree n in variable d when d is sufficiently large. This polynomial is
called the Hilbert polynomial, and it is denoted by H := H∆n,r throughout this paper. We
denote by d? := d?∆n,r

the smallest integer such that

dimSrd(∆n) = H(d) for all d ≥ d?.

The sequence {dimSrd(∆n)}d≥0 is determined by its first d? + n+ 1 values. Indeed, the terms

{dimSrd(∆n), d? ≤ d ≤ d? + n}

define {dimSrd(∆n)}d≥d? by interpolation of the Hilbert polynomial, while the values

{dimSrd(∆n), 0 ≤ d ≤ d? − 1}
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complete the first d? terms of the sequence. The Hilbert polynomial H(d) can also be tracked
via Bernstein–Bézier methods, which additionally provide some ground for a conjecture on d?

(see Appendix for details):

(2) d?∆n,r

?
≤ r2n + 1.

This bound is likely to be an overestimation. The examples of Section 3 hint to this, and so
does the improved bound d?∆2,r

≤ 3r + 2 valid when n = 2 for a shellable triangulation [8].
Reducing the bound would reduce the number of dimension values to be computed. Since
splines with degrees not exceeding smoothness are simply polynomials, we have

dimSrd(∆n) =

(
d+ n

n

)
for d ≤ r.

Thus, assuming (2), only the r(2n− 1) + n+ 1 values {dimSrd(∆n), r+ 1 ≤ d ≤ r2n + n+ 1} are
left to be computed. An additional saving can be made by also dropping the computations for
some degrees larger than d, since we have[

dimSrd(∆n) = dimPd,n =

(
d+ n

n

)]
=⇒

[
dimSrk(∆n) = dimPk,n =

(
k + n

n

)
for k ≤ d

]
.

2.2 Sophisticated method via Hilbert series

Let n, ∆n, and r be fixed. Assuming that computing dimSrd(∆n) is possible for any d ≥ 0,
the previous method gives us access to the whole sequence {dimSrd(∆n)}d≥0, but it comes
short of supplying an explicit formula. The method presented in this subsection rectifies
the situation. It relies on another common concept in Algebraic Geometry — the generating
function of the sequence {dimSrd(∆n)}d≥0, which is known as the Hilbert series. According to
[6, Theorem 2.8], it satisfies

(3)
∑
d≥0

dimSrd(∆n) zd =
P (z)

(1− z)n+1
,

for some polynomial P := P∆n,r with integer coefficients. Denoting these coefficients by
ak = ak,∆n,r, and denoting the degree of P by k? = k?∆n,r

, that is,

P (z) =

k?∑
k=0

akz
k, ak? 6= 0,

two further particulars are established in [6, Theorem 4.5]:

(4) P (1) =
k?∑
k=0

ak = N, P ′(1) =
k?∑
k=0

kak = (r + 1)F int,
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where N and F int represent the number of simplices and interior facets of ∆n, respectively.
These statements can also be deduced from Bernstein–Bézier methods, as outlined in the
Appendix. In the particular case when ∆n is a single simplex, the space Srd(∆n) is just the
space Pd,n of polynomials of degree d in n variables. Then it can be seen that P = 1 from the
identity

(5)
∑
d≥0

(
d+ n

n

)
zd =

1

(1− z)n+1
.

This identity is clear for n = 0 and is inductively obtained by successive differentiations
with respect to z for n ≥ 1. While the derivation of the polynomial P from the dimensions
dimSrd(∆n) was straightforward, identity (5) conversely provides an explicit formula for the
dimensions dimSrd(∆n) in terms of the coefficients of P . Indeed, the formula

(6) dimSrd(∆n) =
k?∑
k=0

ak

(
d+ n− k

n

)
was isolated in [6] and it follows from

∑
d≥0

dimSrd(∆n) zd =

k?∑
k=0

ak
zk

(1− z)n+1
=

k?∑
k=0

∑
d≥0

ak

(
d+ n

n

)
zd+k =

∑
d≥0

k?∑
k=0

ak

(
d+ n− k

n

)
zd

by identifying the coefficients in front of each zd. Taking into account that

(
d+ n− k

n

)
=


(d− k + n)(d− k + n− 1) · · · (d− k + 1)

n!
, if d ≥ k,

0 =
(d− k + n)(d− k + n− 1) · · · (d− k + 1)

n!
, if k − n ≤ d ≤ k − 1,

0 , if d ≤ k − n− 1,

we observe that, for d ≥ k? − n, the dimension of Srd(∆n) agrees with the Hilbert polynomial

H(d) :=

k?∑
k=0

ak
(d− k + n)(d− k + n− 1) · · · (d− k + 1)

n!
.

Moreover, for d = k? − n− 1, we have

H(k? − n− 1)− dimSrk?−n−1(∆n) = ak?

(
(−1)(−2) · · · (−n)

n!
− 0

)
= (−1)nak? 6= 0.

The definition of d? therefore yields d? = k? − n, and consequently, we see that

k? = d? + n.

This was intuitively anticipated because the determination of the sequence {dimSrd(∆n)}d≥0

requires d? +n+ 1 pieces of information while the equivalent determination of the polynomial
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P requires the k? + 1 pieces of information corresponding to its coefficients. Now we describe
a practical way to determine these coefficients from the computed values {dimSrd(∆n)}d?+n

d=0 . It
is simply based on the observation that

ak =
1

k!

dkP (z)

dzk
|z=0 =

1

k!

dk

dzk

(
(1− z)n+1

∑
d≥0

dimSrd(∆n) zd
)
|z=0

=
1

k!

k∑
`=0

(
k

`

)
dk−`

dzk−`

(
(1− z)n+1

)
|z=0

d`

dz`

(∑
d≥0

dimSrd(∆n) zd
)
|z=0

=
1

k!

k∑
`=0

(
k

`

)
(−1)k−`

(n+ 1)!

(n+ 1− k + `)!
`! dimSr` (∆n)

=
k∑

`=0

(−1)k−`
(
n+ 1

k − `

)
dimSr` (∆n).(7)

In particular, the value of dimSr0(∆n) = 1 yields a0 = 1, then the value of dimSr1(∆n) yields
a1, the values of dimSr1(∆n) and of dimSr2(∆n) yield a2 and so on. This shows that the com-
putation of the coefficients ak can be performed sequentially, along with the computation of
the dimensions dimSrk(∆n). As long as dimSrk(∆n) equals

(
k+n
n

)
, identity (5) ensures that the

coefficients ak agree with the coefficients of the constant polynomial P = 1:

a0 = 1, a1 = 0, a2 = 0, · · · , ad? = 0,

where d? denotes the largest integer such that dimSrd?(∆n) =
(
d?+n
n

)
. As a matter of fact,

applying (7) to a partition consisting of a single simplex, we obtain

0 =

k∑
`=0

(−1)k−`
(
n+ 1

k − `

)(
`+ n

n

)
, k ≥ 1.

We may therefore also express the coefficient ak as

(8) ak =
k∑

`=0

(−1)k−`
(
n+ 1

k − `

)
δr` (∆n), k ≥ 1,

where δr` (∆n) is the codimension of the polynomial space P`,n in the spline space Sr` (∆n), i.e.,

δr` (∆n) := dimSr` (∆n)−
(
`+ n

n

)
,

which is less costly to compute than the dimension of Sr` (∆n). We finally note that at most
min{n + 2, k − d?} nonzero terms enter the sum in (8), since the summand is nonzero only
when ` ≥ k − n− 1 and ` ≥ d? + 1.
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3 Application to specific partitions

In this section, we demonstrate the usefulness of our computational method on several specific
partitions. In the case of the Alfeld split of a tetrahedron in R3, we explain in details how the
formula was conjectured. The details are omitted for the Alfeld split of a simplex in Rn, and
for several tetrahedral partitions in R3 presented at the end of the section. We recall that our
method relies on the computation of dimSrd(∆n) once d, r, and ∆n have been fixed. This step
was performed using the interactive applet [1] for n = 3, and other codes in Java and Fortran
for n > 3, all written by Peter Alfeld.

3.1 Trivariate splines over the Alfeld split of a tetrahedron

When r is fixed, in order to find an explicit formula for the whole sequence {dimSrd(A3)}d≥0 of
dimensions for the trivariate Cr splines over the Alfeld split A3, we only need to compute

{dimSrd(A3), 0 ≤ d ≤ 8r + 4}.

For r = 1, 2, 3, we were able to compute enough values of the dimensions to derive the sequence
a(r) := (a

(r)
0 , a

(r)
1 , a

(r)
2 , . . .) of coefficients of PA3,r with absolute certainty. We obtained

a(0) = (1, 1, 1, 1, 0, . . .)

a(1) = (1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

a(2) = (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

a(3) = (1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .).

For r ≥ 4, the values of the dimensions that we were able to compute yielded the start of
the sequence a(r) with some certainty, but we could not be completely sure that all nonzero
coefficients had been found. We obtained

a(4) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

a(5) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

a(6) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, . . .)

a(7) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, . . .)

a(8) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, . . .).

Inspection of the sequences a(1), . . ., a(8) strongly suggests the pattern of nonzero coefficients

a1+2r = a2+2r = a3+2r = 1 for r even, a2+2r = 3 for r odd.
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Note that this is consistent with both identities of (4). Therefore, according to (6), the conjec-
tured formula for the 3-dimensional Alfeld split is

(9) dimSrd(A3)
?
=

(
d+ 3

3

)
+


3

(
d+ 1− 2r

3

)
, r odd,(

d+ 2− 2r

3

)
+

(
d+ 1− 2r

3

)
+

(
d− 2r

4

)
, r even.

We also report the value of the largest integer d? for which the spline space Srd?(A3) reduces
to the polynomial space Pd?,3 and the value of the smallest integer d? for which dimSrd?(A3)

agrees with the Hilbert polynomial H(d?). They are

d? =

{
2r + 1, r odd,

2r, r even,
d? =

{
2r − 1, r odd,

2r, r even.

3.2 Multivariate splines over the Alfeld split of a simplex

For n = 4, 5, 6, we computed some values of the dimensions for the space of Cr-splines of
degree ≤ d over the Alfeld split An using the codes made available to us by Peter Alfeld. Our
computational method suggested the following general formula announced in Conjecture 1

dimSrd(An)
?
=

(
d+ n

n

)
+


n

(
d+ n− r+1

2 (n+ 1)

n

)
, if r is odd,

n∑
j=1

(
d+ n− r

2(n+ 1)− j
n

)
, if r is even.

Let us note that for even values of r the formula can be expressed differently since

n∑
j=1

(
d+ n− r

2(n+ 1)− j
n

)
=

(
d+ n− r

2(n+ 1)

n+ 1

)
−
(
d− r

2(n+ 1)

n+ 1

)
.

We also note that the result can be equivalently formulated via the polynomial PAn,r of (3) as

(10) PAn,r(z) =


1 + n z

r+1
2

(n+1), r odd,

1 +
n∑

j=1
z

r
2

(n+1)+j , r even.

Finally, we point out the values of the integers d? and d? as

d? =

{
r+1

2 (n+ 1)− 1, r odd,
r
2(n+ 1), r even,

d? =

{
r+1

2 (n+ 1)− n, r odd,
r
2(n+ 1), r even.
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3.3 Trivariate splines over some tetrahedral partitions

In this section, we report conjectured formulas for several tetrahedral partitions obtained by
our method and comment on the information they bring out. The names of the partitions
considered below follow the names in Alfeld’s applet menu, see [1] for illustrations.

Type-I split of a cube. This partition of a cube consists of 6 tetrahedra, all sharing one
main diagonal of the cube. This diagonal is the only interior edge of the partition. There are
no interior split points. Type-I split has 6 interior triangular faces, and 18 boundary edges
comprised of twelve edges of the cube and six diagonals of its faces. Based on formula (12) for
r = 0 and on computations for r ∈ {1, . . . , 8}, we conjecture that

dimSrd(∆3)
?
=

(
d+ 3

3

)
+ 3

(
d+ 3− (r + 1)

3

)
+


2

(
d+ 3− 3r+3

2

3

)
, r odd,

(
d+ 3− 3r+2

2

3

)
+

(
d+ 3− 3r+4

2

3

)
, r even,

in which case we have

d?
?
= r, d?

?
=


3r − 3

2
, r odd,

3r − 2

2
, r even.

Worsey–Farin split of a tetrahedron. This partition is a refinement of the Alfeld split A3

of a tetrahedron obtained by applying the Clough–Tocher split A2 to each face of the tetrahe-
dron. The Worsey–Farin split consists of 12 subtetrahedra meeting at 1 interior point. This
partition has 18 interior triangular faces, and 8 interior edges. Based on formula (12) for r = 0

and on computations for r ∈ {1, . . . , 8}, we conjecture that

dimSrd(∆3)
?
=

(
d+ 3

3

)
+


8

(
d+ 3− 3r+3

2

2

)

4

(
d+ 3− 3r+2

2

3

)
+ 4

(
d+ 3− 3r+4

2

3

)

+


3

(
d+ 3− (2r + 2)

3

)
, r odd,

(
d+ 3− (2r + 1)

3

)
+

(
d+ 3− (2r + 2)

3

)
+

(
d+ 3− (2r + 3)

3

)
, r even,
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in which case we have

d?
?
=


3r + 1

2
, r odd,

3r

2
, r even,

d?
?
=

{
2r − 1, r odd,

2r, r even.

Generic octahedron. This partition of an octahedron consists of 8 tetrahedra meeting at 1
interior split point which cannot be collinear with any two vertices of the octahedron. There
are 12 interior triangular faces and 6 interior edges in this partition. Based on formula (12)
for r = 0 and on computations for r ∈ {1, . . . , 8}, we conjecture that

dimSrd(∆3)
?
=

(
d+ 3

3

)

+


(r + 1)

(
d+ 3− (2r + 1)

3

)
+ 7

(
d+ 3− (2r + 2)

3

)
− (r + 1)

(
d+ 3− (2r + 3)

3

)
, r = 2 mod 3,

(r + 3)

(
d+ 3− (2r + 1)

3

)
+ 3

(
d+ 3− (2r + 2)

3

)
− (r − 1)

(
d+ 3− (2r + 3)

3

)
, otherwise,

in which case we have
d?

?
= 2r, d?

?
= 2r.

This example suggests that the parity of r does not always dictates the behavior of dimSrd(∆n)

with respect to r. It also suggests that the coefficients ak are not necessarily independent of r.

Regular octahedron. This partition of an octahedron consists of 8 tetrahedra meeting at 1
interior split point taken to be the intersection point of all three diagonals of the octahedron.
Based on formula (12) for r = 0 and on computations for r ∈ {1, . . . , 6}, we conjecture that

dimSrd(∆3)
?
=

(
d+ 3

3

)
+ 3

(
d+ 3− (r + 1)

3

)
+ 3

(
d+ 3− (2r + 2)

3

)
+

(
d+ 3− (3r + 3)

3

)
,

in which case we have
d?

?
= r, d?

?
= 3r.

Since the regular octahedron has the same number of interior and boundary faces, edges, and
vertices as the generic octahedron, but an additional geometric requirement is imposed, this
example confirms that the dimension depends not only on the combinatorics of the partition
but also on its geometry.

Generic 8-cell. The easiest way to visualize this partition is to start with a refinement of
the Alfeld split A3 of a tetrahedron obtained by applying the Clough–Tocher split A2 to two
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faces of the tetrahedron. We denote the new split points on these faces by u and v. This
partition consists of 8 subtetrahedra meeting at 1 interior point. The vertices u and v are
moved to the exterior of the original tetrahedron without changing the topology of the parti-
tion. This process results in a partition that has the same number of interior and boundary
faces, edges, and vertices as both octahedral partitions described above. However, connectiv-
ity of the faces is different. For example, each interior edge of the octahedral split is shared
by exactly four tetrahedra. In the 8-cell, two interior edges are shared by five tetrahedra,
another two are shared by four tetrahedra, and the remaining two edges are shared by three
tetrahedra. Based on computations for r ∈ {2, . . . , 8}, we conjecture that, for r ≥ 2,

dimSrd(∆3)
?
=

(
d+ 3

3

)

+


2r

(
d+ 3− (2r + 1)

3

)
− (2r − 9)

(
d+ 3− (2r + 2)

3

)
− 2

(
d+ 3− (2r + 3)

3

)
, r odd,

(2r + 1)

(
d+ 3− (2r + 1)

3

)
− (2r − 7)

(
d+ 3− (2r + 2)

3

)
−
(
d+ 3− (2r + 3)

3

)
, r even,

in which case we would have
d?

?
= 2r, d?

?
= 2r.

When compared with both octahedral partitions, this example reveals that topology of the
partition also influences dimension. Moreover, the example suggests that the predicted de-
pendence of ak on r is not always valid for small values of r. Indeed, formula (12) for r = 0

gives a(0) = (1, 3, 3, 1, 0, . . .) and computations for r = 1 gives a(1) = (1, 0, 0, 4, 3, 0, . . .), which do
not follow the pattern

a0 = 1, a2r+1 = 2r, a2r+2 = 9− 2r, a2r+3 = −2, r odd,

a0 = 1, a2r+1 = 2r + 1, a2r+2 = 7− 2r, a2r+3 = −1, r even.

4 Discussion

Supersplines. The superspline spaces are obtained by imposing additional smoothness
across some faces of a simplicial partition. The arguments given in the Appendix to establish
the form of the Hilbert series carry through for certain superspline spaces — the Algebraic
Geometry arguments probably do as well. Since Alfeld’s trivariate applet can handle super-
smoothness, it is possible to conjecture formulas for superspline spaces over specific partitions
in the same way as we did in Section 3. This investigation will be informative to quantify
the conjecture that smoothness across j-faces automatically implies some higher smoothness
across i-faces for i < j.

11



Towards theoretical improvements. The main shortcomings of our method are its high
complexity and limited reliability.
Complexity. At present, we need a number of computations of spline dimensions which is
exponential in n, and each computation is also very costly even for moderate n. This quickly
becomes prohibitive. One way to resolve this issue is to lower the bound on d?. Ideally, it
would be a drop from r2n + 1 down to a quantity that is linear in n. This tentative drop of the
lower bound on d? is supported by several observations: for n = 2 and shellable triangulations,
we have d? ≤ 3r + 2; for n = 3, reasonably low values of d? are reported in Section 3; and we
observed a linear behavior in n of d? for the Alfled splits. One can also envision that further
theoretical information will help to reduce the number of computations. For instance, if a
specific partition is known to yield nonnegative coefficients ak, then we can stop computing
dimSrd(∆n) as soon as the conditions

∑d
k=0 ak = Fn and

∑d
k=0 kak = (r + 1)F int

n−1 are satisfied.
Reliability. Even if all necessary values of dimSrd(∆n) are available for a fixed r, the formula
we deduce is only valid for this fixed r. At present, the formula we infer for all values of r relies
on a plausible guess. Some theoretical information on the type of dependence of dimSrd(∆n)

on r would be decisive in this respect. The results of Section 3 suggest dependence on the
parity of r, sometimes dependence on the divisibility of r by 3, and occasionally the predicted
dependence is not valid for smaller values of r.

Towards computational improvements. To compute the dimension of Srd(∆n), Alfeld’s
codes translate the set of smoothness conditions into a linear system for the Bernstein–Bézier
coefficients, then the matrix of the system is reduced by Gaussian elimination, and its rank
is determined. It may be possible to find faster alternatives. The discussion in [7] hints at a
practical method using Gröbner bases. Additionally, when computing dimSrd(∆n), it should be
possible to use the knowledge of the dimensions of the spaces with lower degree and smooth-
ness, since the values {dimSrd(∆n), 0 ≤ d ≤ d? + n} are determined sequentially. Finally, to
deduce the coefficients ak, it may be sensible to compute only the quantities δrd(∆n) appear-
ing in (8), or some suitable linear combinations of {dimSrd(∆n), 0 ≤ d ≤ d? + n}. This latter
approach could take advantage of the fact that the sequence {ak} appears to have only few
nonzero terms.

A optimistic final perspective. Should the theoretical and computational improvements
materialize, a stand-alone program for the explicit determination of the dimensions ought
to be implemented. With modern (or future) computational power, the dimension formulas
could be obtained for a wide variety of partitions. It is not unrealistic that some expressions
for the coefficients ak could then be inferred in terms of the smoothness r, the combinatorial
parameters of ∆n, and other topological parameters — especially in the generic case where
the geometry does not play a role.

Acknowledgements. We thank Peter Alfeld for the essential computational tools he created
and for the enlightening thoughts he shared with us.
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Appendix: Hilbert series via Bernstein–Bézier methods

We justify here form (3) of the Hilbert series without resorting to Algebraic Geometry. It was
shown in [5] that the dimension of a subspace of Srd(∆n) for d ≥ r2n + 1 is a polynomial in d.
This subspace has additional (or super) smoothness r2n−j−1 across every j-dimensional face
of ∆n. Our starting point here is the widely accepted assumption that dimSrd(∆n) is also a
polynomial in d for d ≥ r2n + 1, since in this case one can apply the technique of partitioning
the minimal determining set into non-overlapping subsets associated with each face, see [4].
However, unless additional smoothness is imposed, it is not clear that the cardinalities of the
subsets are polynomials in d. Next, we make the following simple claim.

Claim 1. Let {ud}d≥0 be a sequence for which there exists a polynomial Q of degree m such
that ud = Q(d) whenever d ≥ d̄ for some d̄. Then there exists a polynomial R such that∑

d≥0

ud z
d =

R(z)

(1− z)m+1
.

Proof. We write the polynomial Q as

Q(d) =:
m∑
k=0

qk

(
d+ k

k

)
.

Then, for the generating function of the sequence {ud}d≥0, we have

∑
d≥0

ud z
d =

∑
d≥0

Q(d) zd +
∑
d≥0

(ud −Q(d)) zd =
m∑
k=0

qk
∑
d≥0

(
d+ k

k

)
zd +

d̄∑
d=0

(ud −Q(d)) zd

=
m∑
k=0

qk
1

(1− z)k+1
+

d̄∑
d=0

(ud −Q(d)) zd.

The latter indeed takes the form R(z)/(1− z)n+1 for some polynomial R.

Applying Claim 1 to {dimSrd(∆n)}d≥0 proves identity (3). The fact that the coefficients of
R = P∆n,r are integers follows from (7), since the values of dimSr` (∆n) are all integers. We
now establish the two identities of (4). To this end, we notice that the lower and upper bounds
derived in [3] yield

dimSrd(∆n) = Fn

(
d+ n

n

)
− (r + 1)F int

n−1

(
d+ n− 1

n− 1

)
+O(dn−2).

Therefore, for d large enough, the quantity

(11) ud := dimSrd(∆n)− Fn

(
d+ n

n

)
+ (r + 1)F int

n−1

(
d+ n− 1

n− 1

)
13



reduces to a polynomial of degree ≤ n− 2. Applying Claim 1 to {ud}d≥0 defined by (11), we see
that, for some polynomial R,

P∆n,r(z)

(1− z)n+1
− Fn

(1− z)n+1
+

(r + 1)F int
n−1

(1− z)n
=
∑
d≥0

ud z
d =

R(z)

(1− z)n−1
.

Rearranging the latter, we obtain

P∆n,r(z) = Fn − (r + 1)(1− z)F int
n−1 + (1− z)2R(z),

which in turn shows that P∆n,r(1) = Fn and P ′∆n,r
(1) = (r + 1)F int

n−1.

We conclude the appendix with a formula for P∆n,0. Using the Bernstein–Beziér technique of
counting domain points (as in e.g. [4]), it is easy to see that the dimension of C0 splines on ∆n

depends only on the combinatorics of the partition:

dimS0
d(∆n) =


1, d = 0,

∑n
k=0 Fn−k

(
d−1
n−k
)
, d ≥ 1,

where Fj , 0 ≤ j ≤ n, is the number of j-dimensional faces in ∆n. Using (3) and (5) we obtain

P∆n,0(z)

(1− z)n+1
= 1 +

∑
d≥1

n∑
k=0

Fn−k

(
d− 1

n− k

)
zd = 1 +

n∑
k=0

Fn−kz
n−k+1

∑
d′≥0

(
d′ + n− k
n− k

)
zd
′

= 1 +
n∑

k=0

Fn−kz
n−k+1

(1− z)n−k+1
.

Thus, with the convention that F−1 = 1, we have

(12) P∆n,0(z) =

n+1∑
k=0

Fn−kz
n+1−k(1− z)k.

Both identities of (4) are now immediate:

P∆n,0(1) = Fn, and P ′∆n,0(1) = (n+ 1)Fn − Fn−1 = F int
n−1,

where the last equality reflects the fact that every interior facet is shared by two simplices.
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[7] L. J. Billera and L. L. Rose, Gröbner basis methods for multivariate splines, in: Math-
ematical methods in computer aided geometric design, T. Lyche and L. L. Schumaker
(eds.), 1989, 93–104.

[8] D. Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7
(1991), 56–75.

[9] M.-J. Lai and L. L. Schumaker, Spline functions on triangulations, Cambridge University
Press, Cambridge, 2007.

15


