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Abstract

A matrix whose entries are independent subexponential random variables is not likely to

satisfy the classical restricted isometry property in the optimal regime of parameters. However,

it is known that uniform sparse recovery is still possible with high probability in the optimal

regime if ones uses `1-minimization as a recovery algorithm. We show in this note that such a

statement remains valid if one uses a new variation of iterative hard thresholding as a recovery

algorithm. The argument is based on a modified restricted isometry property featuring the

`1-norm as the inner norm.
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We consider the standard compressive sensing problem where one aims at recovering s-sparse vectors

x ∈ RN acquired as y = Ax ∈ Rm with m� N . It is by now well known that if the measurement

matrix A ∈ Rm×N satisfies the so-called restricted isometry property of order s, i.e., if

(1) (1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse vectors z ∈ RN

with some small δ ∈ (0, 1), then this task can be carried out in a stable and robust way by

a variety of recovery algorithms, e.g. basis pursuit (i.e., `1-minimization), orthogonal matching

pursuit, compressive sampling matching pursuit, iterative hard thresholding, or hard thresholding

pursuit, to name just a few. We refer to the textbook [5] which gathers background information

in one place. It is also well known that the restricted isometry property of order s holds with

high probability for random matrices A = B/
√
m ∈ Rm×N in the optimal regime of parameters

m � s ln(eN/s) when B ∈ Rm×N is populated with independent identically distributed mean-zero

subgaussian random variables normalized so that E(b2i,j) = 1, see e.g. [5, Section 9.1]. If subgaussian

random variables are replaced by subexponential (aka Ψ1 or pregaussian) random variables, then

the resulting matrix A ∈ Rm×N satisfies the restricted isometry property of order s with high
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probability provided m � s ln2(eN/s) and this number of measurements cannot be reduced to

match the subgaussian case, as established in [1]. Nonetheless, with m � s ln(eN/s), it was shown

in [4] that random matrices A = B/m ∈ Rm×N , where B ∈ Rm×N is populated with independent

identically distributed mean-zero subexponential random variables normalized so that E(|bi,j |) = 1,

do satisfy a version of the restricted isometry property modified to feature the `1-norm as the inner

norm. Precisely, with failure probability at most C exp(−cδ3m), one has

(2) (1− δ) � z� ≤ ‖Az‖1 ≤ (1 + δ) � z � for all s-sparse vectors z ∈ RN ,

and we shall denote by δs the smallest such constant δ ∈ (0, 1). Contrary to (1), the outer norm

� · � is not the `2-norm anymore. It depends a priori on the probability measure µ associated to

the subexponential distribution via

(3) � z� :=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣ N∑
j=1

tjzj

∣∣∣∣ dµ(t1) · · · dµ(tN ).

However, it is comparable to the `2-norm in the sense that there are constants β ≥ α > 0 such that

(4) α‖z‖2 ≤ �z� ≤ β‖z‖2 for all vectors z ∈ RN .

Explicit values involving the variance σ = E(b2i,j) ≥ 1 were derived in [4] for the constants α, β,

leading to

(5) γ :=
β

α
∈
[
1,
√

8σ
]
.

For instance, for symmetric Weibull random variables with exponent r ≥ 1, we have γ ∈ [1, 4],

since σ =
√

Γ(1 + 2/r)/Γ(1+1/r) ≤
√

Γ(3)/Γ(2) =
√

2. The importance of the modified restricted

isometry property lies in the fact that (2) is enough to guarantee stable and robust sparse recovery

by `1-minimization, so that s-sparse recovery from subexponetial measurements is still highly likely

in the regime m � s ln(eN/s). This was the main message of [4]. However, this article focused only

on `1-minimization and left open the possibility of sparse recovery via other algorithms. This is

the problem addressed in this note. Since it seems rather unlikely that, say, the unaltered iterative

hard thresolding algorithm as proposed in [2] would allow for sparse recovery in the optimal regime

of parameters, we put forward a fresh variation on the underlying principle. Precisely, our novel

algorithm consists in producing a sequence (xn)n≥0 of sparse vectors constructed from y ∈ Rm by

iterating the scheme initiated at x0 = 0 and given as

(6) xn+1 = Hκs

(
xn + νnA

∗sgn(y −Axn)
)
.

Here, Ht denotes the usual hard thresholding operator that keeps t largest absolute entries of vector

and sends the other ones to zero, A∗ denotes the transpose of A, and sgn denotes the sign function

applied componentwise. Intuitively, (6) can be interpreted as the sparsification of a (sub)gradient

descent step for the function z 7→ ‖y −Az‖1, instead of z 7→ ‖y −Az‖22 in classical iterative hard

thresholding. The exact values of the parameters κ, νn ∈ R are revealed in the following theorem,

which is the main result of this note. The reason for our specific choice is revealed by the proof.
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Theorem 1. Let A ∈ Rm×N be a matrix satisfying (2) with δ(2κ+1)s < 1/8. For all x ∈ RN and

all e ∈ Rm, if x] denotes any cluster point of the sequence (xn)n≥0 produced by (6) applied to

y = Ax + e and with parameters depending on the constants from (4)-(5) as

κ := d16γ4e,(7)

νn :=
‖y −Axn‖1

β2
,(8)

then, for any index set S ⊆ {1, . . . , N} of size s,

(9) ‖xS − x]‖2 ≤ d‖AxS + e‖1,

where the constant d depends only on α, β, and δ(2κ+1)s.

Remark. Before turning to the proof, a few comments are in order.

(i) In the ideal situation where x is exactly s-sparse (i.e., xS = x and xS = 0 for some index set S

of size s) and where there is no measurement error (i.e., e = 0), the result guarantees that x] = x,

meaning that x is exactly recovered as the limit of the sequence (xn)n≥0. Moreover, the proof

informs us that the convergence is geometric, i.e., there is a ρ ∈ (0, 1) such that ‖x−xn‖2 ≤ ρn‖x‖2
for all n ≥ 0. Note in particular that after a finite number n̄ := dln(‖x‖2/ε)/ ln(1/ρ)e of iterations,

we have ‖x− xn̄‖2 ≤ ε.

(ii) In the more realistic situation incorporating sparsity defect and measurement error, the conver-

gence of the sequence (xn)n≥0 is not necessarily guaranteed but the existence of cluster points is,

and any cluster point x] satisfies (9). We also point out that the error estimate (9) can be replaced

by

(10) ‖x− x]‖2 ≤
C√
s

min
s−sparse z∈RN

‖x− z‖1 +D‖e‖1,

provided the algorithm is run with parameter 2s instead of s, so that H2κs appears in lieu of Hκs

in (6) and the condition δ(4κ+2)s < 1/8 prevails instead of δ(2κ+1)s < 1/8. It is somewhat folklore

to derive (10) from (9) using the sort-and-split technique, see e.g. [3, Section 4.3]. However, since

the argument is typically based on the standard restricted isometry property (1) rather than the

modified version (2), we give a full justification for completeness. Given x ∈ RN , we consider an

index set S0 corresponding to s largest absolute entries of x, an index set S1 corresponding to s

next largest absolute entries of x, an index set S2 corresponding to s next largest absolute entries

of x, etc. Then we write

(11) ‖x− x]‖2 ≤ ‖xS0∪S1
‖2 + ‖xS0∪S1 − x]‖2.

The first term in the right-hand side of (11) is bounded as

(12) ‖xS0∪S1
‖2 ≤

‖xS0
‖1√
s

,
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see e.g. [5, Proposition 2.3], while the second term is bounded with the help of Theorem 1 (applied

with 2s instead of s) as

‖xS0∪S1 − x]‖2 ≤ d‖AxS0∪S1
+ e‖1 = d

∥∥∥∥A(∑
k≥2

xSk

)
+ e

∥∥∥∥
1

≤ d
∑
k≥2

‖AxSk
‖1 + d‖e‖1(13)

≤ d
∑
k≥2

(1 + δs)β‖xSk
‖2 + d‖e‖1 ≤ d(1 + δs)β

∑
k≥2

‖xSk−1
‖1√

s
+ d‖e‖1

≤ d(1 + δs)β
‖xS0

‖1√
s

+ d‖e‖1.

Substituting (12) and (13) into (11) gives the desired result.

(iii) The error estimate (10) is the most classical, except that it usually features ‖e‖2 instead of

‖e‖1 for subgaussian measurements, see e.g. [5, Theorems 6.12, 6.21, 6.25, 6.28]. The discrepancy is

in fact due to the normalization of the measurement matrix A, and (10) is in reality slightly better

than the usual version with ‖e‖2. Indeed, suppose that an s-sparse vector x ∈ RN is observed

via v = Bx + w for an unnormalized matrix B ∈ Rm×N . In the subgaussian case where we take

A = B/
√
m, we deal with the measurement vector y = v/

√
m and measurement error e = w/

√
m,

so the usual error estimate would read ‖x − x]‖2 ≤ D‖e‖2 = D‖w‖2/
√
m. In the subexponetial

case where we take A = B/m, we deal with the measurement vector y = v/m and measurement

error e = w/m, so the error estimate (10) reads ‖x− x]‖2 ≤ D‖e‖1 = D‖w‖1/m, which is slightly

better by virtue of ‖w‖1 ≤
√
m‖w‖2.

We now turn to the proof of Theorem 1, which relies on two key lemmas stated below, the first one

being borrowed from [6].

Lemma 2. For any u,v ∈ RN , if u is s-sparse, then (provided N ≥ (κ+ 1)s)

(14) ‖u−Hκs(v)‖2 ≤ η‖u− v‖2, η :=
1 +
√

4κ+ 1√
4κ

.

Lemma 3. For any u ∈ RN and any e ∈ Rm, if u is supported on an index set T of size t and if

ν := ‖Au + e‖1/β2, then

(15) ‖u− ν(A∗sgn(Au + e))T ‖2 ≤
(

1− 1− 4δt
2γ2

)
‖u‖2 + d‖e‖1,

where d is a constant depending only on α, β, and δt ≤
√

2− 1.

Proof. Let us first prove a variation of the estimate (15) where ν is replaced by ν̃ := ‖Au‖1/β2.

By expanding squares, we have

(16) ‖u− ν̃(A∗sgn(Au + e))T ‖22 = ‖u‖22 − 2ν̃〈u, (A∗sgn(Au + e))T 〉+ ν̃2‖(A∗sgn(Ax + e))T ‖22.
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Since u is supported on T , we observe that

〈u, (A∗sgn(Au + e))T 〉 = 〈u,A∗sgn(Au + e)〉 = 〈Au, sgn(Au + e)〉(17)

= 〈Au + e, sgn(Au + e)〉 − 〈e, sgn(Au + e)〉
= ‖Au + e‖1 − 〈e, sgn(Au + e)〉
≥ ‖Au‖1 − 2‖e‖1.

We also deduce from (2) and (4) that

‖(A∗sgn(Au + e))T ‖22 = 〈A∗sgn(Au + e), (A∗sgn(Au + e))T 〉(18)

= 〈sgn(Au + e),A((A∗sgn(Au + e))T )〉
≤ ‖A((A∗sgn(Au + e))T )‖1
≤ (1 + δt) � (A∗sgn(Au + e))T�

≤ (1 + δt)β‖(A∗sgn(Au + e))T ‖2,

which, after simplification, yields the estimate

(19) ‖(A∗sgn(Au + e))T ‖2 ≤ (1 + δt)β.

Substituting (17) and (19) into (16), while taking ν̃ = ‖Au‖1/β2 into account, we arrive at

(20) ‖u− ν̃(A∗sgn(Au + e))T ‖22 ≤ ‖u‖22 −
2− (1 + δt)

2

β2
‖Au‖21 +

4

β2
‖Au‖1‖e‖1.

Invoking (2) and (4) once more, we also notice that

‖Au‖1 ≥ (1− δt) � u� ≥ (1− δt)α‖u‖2,(21)

‖Au‖1 ≤ (1 + δt) � u� ≤ (1 + δt)β‖u‖2.(22)

Next, using (21) and (22) in (20), while making sure that 2− (1 + δt)
2 ≥ 0, gives

‖u− ν̃(A∗sgn(Au + e))T ‖22 ≤ (1− c′)‖u‖22 + d′‖u‖2‖e‖1,

with c′ := (2−(1+δt)
2)(1−δt)2/γ2 = ((1−2δt)

2−δ4
t )/γ

2 ≥ (1−4δt)/γ
2 =: c′′ and d′ := 4(1+δt)/β.

It follows that

‖u− ν̃(A∗sgn(Au + e))T ‖2 ≤
[
(1− c′′)

(
‖u‖22 +

d′

1− c′′
‖u‖2‖e‖1

)]1/2

(23)

≤
(

1− c′′

2

)(
‖u‖2 +

d′

2(1− c′′)
‖e‖1

)
.

This is (15) with ν replaced by ν̃. To obtain the genuine estimate (15), we simply write

(24) ‖u− ν(A∗sgn(Au + e))T ‖2 ≤ ‖u− ν̃(A∗sgn(Au + e))T ‖2 + |ν − ν̃|‖(A∗sgn(Au + e))T ‖2.

We bound the first term on the right-hand side as in (23), and we bound the second term by

(1 + δt)‖e‖1/β by using |ν − ν̃| = |‖Au + e‖1 − ‖Au‖1|/β2 ≤ ‖e‖1/β2 while keeping in mind the

fact established in (19) that ‖(A∗sgn(Au + e))T ‖2 ≤ (1 + δt)β. This completes the proof.

5



An IHT algorithm for sparse recovery from subexponential measurements

With Lemmas 2 and 3 now at our disposal, we can conclude this note swiftly by supplying the

awaited proof of our main result.

Proof of Theorem 1. It is enough to show that, for all n ≥ 0,

(25) ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + d‖AxS + e‖1

for some ρ ∈ (0, 1), which will follow from the validity, for all n ≥ 0, of the prospective inequality

(26) ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + d′‖e′‖1,

where e′ := AxS + e. To prove the latter, let us consider the index sets Sn := supp(xn) and

Sn+1 := supp(xn+1) of size κs, and let us remark that xn+1 defined in (6) is also obtained by

applying the hard thresholding operator Hκs to (xn + νnA
∗sgn(y −Axn))S∪Sn∪Sn+1 . Therefore,

by Lemma 2 applied with u = xS and v = (xn + νnA
∗sgn(y −Axn))S∪Sn∪Sn+1 yields

‖xS − xn+1‖2 ≤ η‖xS − (xn + νn(A∗sgn(y −Axn))S∪Sn∪Sn+1‖2(27)

= η‖xS − xn − νn(A∗sgn(A(xS − xn) + e′))S∪Sn∪Sn+1‖2,

where, thanks to our choice of κ = d16γ4e,

(28) η =
1 +
√

1 + 4κ√
4κ

≤ 2 + 2
√
κ

2
√
κ

= 1 +
1√
κ
≤ 1 +

1

4γ2
.

Now, calling upon Lemma 3 applied with u = xS − xn, T = S ∪ Sn ∪ Sn+1, and e replaced by e′,

while using the fact that δ(2κ+1)s ≤ 1/8, we obtain

(29) ‖xS − xn − νn(A∗sgn(A(xS − xn) + e′))S∪Sn∪Sn+1‖2 ≤
(

1− 1

4γ2

)
‖xS − xn‖2 + d‖e′‖1.

Combining (27), (28), and (29) leads to

(30) ‖xS − xn+1‖2 ≤
(

1− 1

16γ4

)
‖xS − xn‖2 + d′‖e′‖1.

This is the prospective inequality (26) with ρ := 1−1/(16γ4) < 1, and our proof is now complete.

Remark. Similar theoretical guarantees still hold if the stepsize νn in (6) is replaced by τnνn with

τn ∈ (τ−, τ+), where τ− := 1/(1 + 4γ2) and τ+ := (2 + 1/4γ2)/((1 + 1/4γ2)(2 − 1/4γ2)). Indeed,

for each n ≥ 1, (27) remains valid in the form

‖xS−Hκs(x
n+ τnνnA

∗sgn(y−Axn))‖2 ≤ η‖xS−xn− τnνn(A∗sgn(A(xS−xn)+e′))S∪Sn∪Sn+1‖2,

and (29) can be replaced by

‖xS − xn − τnνn(A∗sgn(A(xS − xn) + e′))S∪Sn∪Sn+1‖2
≤ ‖(1− τn)(xS − xn)‖2 + τn‖xS − xn − νn(A∗sgn(A(xS − xn) + e′))S∪Sn∪Sn+1‖2
≤ |1− τn|‖xS − xn‖2 + τn

[
(1− 1/(4γ2))‖xS − xn‖2 + d‖e′‖1

]
.
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Therefore, we can derive that

‖xS −Hκs(x
n + τnνnA

∗sgn(y −Axn))‖2 ≤ θ‖xS − xn‖2 + d′‖e′‖1,

where θ := (1 + 1/4γ2)(|1 − τn| + τn(1 − 1/4γ2)) satisfies θ < 1. If τn ∈ [τ−, 1), this follows from

θ = (1 + 1/4γ2)(1 − τn/4γ2) < (1 + 1/4γ2)(1 − τ−/4γ2) = 1, and if τn ∈ (1, τ+], this follows from

θ = (1 + 1/4γ2)(τn(2− 1/4γ2)− 1) < (1 + 1/4γ2)(τ+(2− 1/4γ2)− 1) = 1.
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