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Abstract

This note extends an attribute of the LASSO procedure to a whole class of related procedures,

including square-root LASSO, square LASSO, LAD-LASSO, and an instance of generalized

LASSO. Namely, under the assumption that the input matrix satisfies an `p-restricted isometry

property (which in some sense is weaker than the standard `2-restricted isometry property

assumption), it is shown that if the input vector comes from the exact measurement of a sparse

vector, then the minimizer of any such LASSO-type procedure has sparsity comparable to

the sparsity of the measured vector. The result remains valid in the presence of moderate

measurement error when the regularization parameter is not too small.
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1 Introduction

The purpose of this note is to extend a result established in [8], namely that the LASSO output

has sparsity at most proportional to the sparsity of the vector giving rise to the LASSO input.

More precisely, consider a vector x ∈ RN measured via y = Ax ∈ Rm for some matrix A ∈ Rm×N ,

m� N , and suppose that x is s-sparse, meaning that

‖x‖0 := |supp(x)| ≤ s, where supp(x) = {j ∈ [1 : N ] : xj 6= 0}.

Let xλ ∈ RN be the output of the LASSO procedure with regularization parameter λ > 0, i.e., let

xλ be a solution of

minimize
z∈RN

1

2
‖y −Az‖22 + λ‖z‖1.

Assume that the measurement matrix A ∈ Rm×N satisfies the standard restricted isometry property

of order t (proportional to s) and constant δ ∈ (0, 1), meaning that

(1)
√

1− δ ‖z‖2 ≤ ‖Az‖2 ≤
√

1 + δ ‖z‖2 whenever ‖z‖0 ≤ t.
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Then, as shown in [8], there is a constant Cδ depending on δ such that ‖xλ‖0 ≤ Cδ s. For instance,

the choice δ = 0.4 guarantees that ‖xλ‖0 ≤ 4s.

In this note, a similar result is established for a generalization of the LASSO procedure branching

out in four directions:

• the power of the norm on y−Az can be any q ≥ 1—in particular, the case q = 1 corresponds

to the square-root LASSO (see [2]);

• in fact, the norm on y−Az is not restricted to be the `2-norm, as any `p-norm with p ∈ [1, 2]

is possible—in particular, the case p = 1 and q = 1 corresponds to the least absolute deviation

(LAD) LASSO (see [12]);

• the `1-norm on z can be raised to any power r ≥ 1—in particular, the case r = 2 corresponds

to the square LASSO, which can be recast as a nonnegative least squares problem (see [6]);

• the `1-norm can act not only on z but also on B−1z for some invertible matrix B ∈ RN×N—

this corresponds to the generalized LASSO (see [11], where B−1 can instead be a rectangular

matrix).

As in [8], the full result incorporates measurement errors. However, for simplicity, a particularized

version is stated here first.

Theorem 1. Let p ∈ [1, 2], q ≥ 1, and r ≥ 1. Consider a vector x ∈ RN such that B−1x is

s-sparse for some invertible matrix B ∈ RN×N with condition number κB := ‖B‖2→2‖B−1‖2→2.

Suppose that the vector x is measured via y = Ax ∈ Rm for some matrix A ∈ Rm×N satisfying the

nonstantard restricted isometry property of order t = b(2γκB)2sc+ 1 with ratio γ = β/α, i.e.,

α‖z‖2 ≤ ‖Az‖p ≤ β‖z‖2 whenever ‖B−1z‖0 ≤ t.

Then, for any λ > 0, the solution xλ of the LASSO-type procedure

minimize
z∈RN

1

q
‖y −Az‖qp + λ

1

r
‖B−1z‖r1

has sparsity at most proportional to s, namely

‖xλ‖0 ≤ bχ2sc, χ := 2γκB.

The restrictions p, q, r ≥ 1 are here to make the optimization program convex. The restriction

p ≤ 2 is here to make the nonstandard restricted isometry property assumption realizable in the

regime m � s ln(eN/s). This assumption is in fact weaker than the standard restricted isometry

property assumption, as discussed in Subsection 2.2.
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The remainder of this note is dedicated to the proof of Theorem 1, or rather of the more general

version given in Theorem 5. The latter shows that the conclusion remains unchanged when the

measurement vector y = Ax + e features a nonzero error vector e ∈ Rm, provided its magnitude

‖e‖p is small enough compared to λ. From a reversed point of view, favored here, it can also

be claimed that the LASSO-type minimizer has sparsity at most proportional to s, provided the

regularization parameter λ is large enough compared to ‖e‖p.

The organization is now straightforward: Section 2 establishes side results needed in the said proof

and Section 3 completes the arguments.

2 Preliminary results

This section collects some auxiliary results that will be invoked later. The author is not aware of

earlier appearances of these results, but the vastness of the literature around compressive sensing

makes such appearances not unlikely.

2.1 Characterization of LASSO-type minimizers

This subsection establishes a necessary and sufficient condition for a vector to be a solution of the

general LASSO-type procedure. This condition is essential in the subsequent considerations. In the

case of standard LASSO, i.e., p = 2, q = 2, and r = 1, it seems to be folklore—it can be found e.g.

in [9, Section 3.4], [10, Section 2.1], and [7, Section 15.1]. The arguments below could be shortcut

by exploiting the notion of subdifferential, but a more elementary proof has been preferred, at the

expense of brevity.

Proposition 2. Let p > 1, q > 1, and r ≥ 1. Given y ∈ Rm, A ∈ Rm×N , and B ∈ RN×N , the

matrix B being invertible, a LASSO-type minimizer

xλ = argmin
z∈RN

1

q
‖y −Az‖qp + λ

1

r
‖B−1z‖r1

is characterized, with νλ := λ‖y −Axλ‖p−qp ‖B−1xλ‖r−11 and Sλ := supp(B−1xλ), by(
B>A>

(
sgn(y −Axλ) |y −Axλ|p−1

))
j

= νλsgn((B−1xλ)j), j ∈ Sλ,(2) ∣∣(B>A>(sgn(y −Axλ) |y −Axλ|p−1
))
`

∣∣ ≤ νλ, ` 6∈ Sλ.(3)

Proof. Notice first that it is enough to consider the case B = IN by setting z′ = B−1z and A′ = AB.

Second, thanks to the convexity of the objective function, temporarily denoted by F , notice that a
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global minimizer xλ is equivalently a local minimizer, so it is characterized by F (xλ) ≤ F (xλ + tu)

for all u ∈ RN and all t ∈ R small enough in absolute value. Fixing u ∈ RN , one shall expand

F (xλ + tu) around t = 0. To start, setting aside the eventuality that y − Axλ = 0 for now and

considering I := {i ∈ [1 : m] : (y −Axλ)i 6= 0}, one writes

‖y −A(xλ + tu)‖pp =

m∑
i=1

|(y −Axλ)i − t(Au)i|p

=
∑
i∈I
|(y −Axλ)i|p

(
1− t (Au)i

(y −Axλ)i

)p
+ |t|p

∑
i 6∈I
|(Au)i|p.

In view of |t|p = o(t) (since p > 1) and of (1 + tξ)η = 1 + tηξ + o(t), used repeatedly below for

several choices of η (here for η = p), one obtains

‖y −A(xλ + tu)‖pp =
∑
i∈I
|(y −Axλ)i|p

(
1− tp (Au)i

(y −Axλ)i

)
+ o(t)

= ‖y −Axλ‖pp − tp
∑
i∈I

sgn((y −Axλ)i)|(y −Axλ)i|p−1(Au)i + o(t)

= ‖y −Axλ‖pp − tp
m∑
i=1

sgn((y −Axλ)i)|(y −Axλ)i|p−1(Au)i + o(t)

= ‖y −Axλ‖pp − tp〈A>
(
sgn(y −Axλ) |y −Axλ|p−1

)
, u〉+ o(t),

where the last-but-one step relied on p > 1 through |(y −Axλ)i|p−1 = 0 for i 6∈ I. It follows that

‖y −A(xλ + tu)‖qp =

[
‖y −Axλ‖pp

(
1− tp

〈A>
(
sgn(y −Axλ) |y −Axλ|p−1

)
, u〉

‖y −Axλ‖pp
+ o(t)

)]q/p
= ‖y −Axλ‖qp

(
1− tq

〈A>
(
sgn(y −Axλ) |y −Axλ|p−1

)
, u〉

‖y −Axλ‖pp
+ o(t)

)
= ‖y −Axλ‖qp − tq‖y −Axλ‖q−pp 〈A>

(
sgn(y −Axλ) |y −Axλ|p−1

)
, u〉+ o(t).(4)

To continue, with Sλ := {j ∈ [1 : N ] : xλj 6= 0} (recall that B = IN is assumed here), one writes

‖xλ + tu‖1 =
∑
j∈Sλ

sgn((xλ + tu)j)(x
λ + tu)j + |t|

∑
` 6∈Sλ
|u`| =

∑
j∈Sλ

sgn(xλj )(xλ + tu)j + |t|
∑
` 6∈Sλ
|u`|

= ‖xλ‖1 + t
∑
j∈Sλ

sgn(xλj )uj + |t|
∑
` 6∈Sλ
|u`|,

where the last-but-one step used the fact that, for j ∈ Sλ, sgn((xλ + tu)j) = sgn(xλj ) when |t| is

small enough. It follows that

‖xλ + tu‖r1 =

[
‖xλ‖1

(
1 + t

∑
j∈Sλ sgn(xλj )uj

‖xλ‖1
+ |t|

∑
` 6∈Sλ |u`|
‖xλ‖1

)]r
= ‖xλ‖r1

(
1 + tr

∑
j∈Sλ sgn(xλj )uj

‖xλ‖1
+ |t|r

∑
` 6∈Sλ |u`|
‖xλ‖1

+ o(t)

)
= ‖xλ‖r1 + tr‖xλ‖r−11

∑
j∈Sλ

sgn(xλj )uj + |t|r‖xλ‖r−11

∑
`6∈Sλ
|u`|+ o(t).(5)
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According to (4) and (5), the validity of F (xλ) ≤ F (xλ + tu) for all t small enough in absolute

value is equivalent to

0 ≤ t
(
− ‖y −Axλ‖q−pp 〈A>

(
sgn(y −Axλ) |y −Axλ|p−1

)
, u〉+ λ‖xλ‖r−11

∑
j∈Sλ

sgn(xλj )uj

)
+ |t|

(
λ‖xλ‖r−11

∑
` 6∈Sλ
|u`|
)

= t
{ ∑
j∈Sλ

(
− ‖y −Axλ‖q−pp

(
A>
(
sgn(y −Axλ) |y −Axλ|p−1

))
j

+ λ‖xλ‖r−11 sgn(xλj )
)
uj

}
+ |t|

{ ∑
6̀∈Sλ

(
− sgn(t)sgn(u`)‖y −Axλ‖q−pp

(
A>
(
sgn(y −Axλ) |y −Axλ|p−1

))
`

+ λ‖xλ‖r−11

)
|u`|
}

for all t small enough in absolute value. The latter inequality holds for all such t’s and all u ∈ RN if

and only if the first term in curly brackets equals zero for all u supported on Sλ and the second term

in curly brackets is nonnegative for all u supported on the complement of Sλ. This first condition

holds if and only if (2) is satisfied and this second condition holds if and only if (3) is satisfied.

The full characterization (2)–(3) of the LASSO-type minimizer has now been established in the

sufficient case B = IN , save for the eventuality that y−Axλ = 0. But this cannot occur (justifying

in retrospect that νλ is always well defined). Indeed, if y − Axλ = 0, then (4) would simply be

replaced by ‖y−A(xλ+ tu)‖qp = |t|q‖Au‖qp = o(t) (since q > 1) and, for all u ∈ RN supported on Sλ

and all t small enough in absolute value, F (xλ) ≤ F (xλ+tu) would read 0 ≤ t{λ‖xλ‖r−11 sgn(xλj )uj},
which is of course impossible.

From the above characterization, one easily sees that xλ = 0 for λ ≥ ‖B>A>
(
sgn(y) |y|p−1

)
‖∞‖y‖q−pp

in the usual case r = 1. In other words, the output of the LASSO-type procedure is as sparse as

can be for λ large enough. In the case r > 1, however, xλ = 0 would force νλ = 0, so (2)-(3) do not

hold in general, and the output of the LASSO-type procedure is not the zero vector (although it

converges to it) even for λ large enough. This remark reinforces the significance of the main result

that the output of the LASSO-type procedure is sparse when λ is large enough.

2.2 Variation on the restricted isometry property

The standard restricted isometry property (1) is not appropriate to the present setting, where the

sparsity does not concern the vector x itself, but B−1x. Thus, the restricted isometry property

(6)
√

1− δ ‖z‖2 ≤ ‖Az‖2 ≤
√

1 + δ ‖z‖2 whenever ‖B−1z‖0 ≤ t

would be more appropriate. This property—a special case of the D-restricted isometry property [3]

where the dictionary D is the invertible matrix B—holds for properly scaled subgaussian random

matrices A ∈ Rm×n with failure probability at most 2 exp(−cδ2m) provided m ≥ Cδ−2t ln(eN/t).
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Still, this restricted isometry property is not yet appropriate to the present setting, which puts

an `p-norm on the measurement vectors Az. Thus, the nonstandard restricted isometry property

utilized here reads

(7) α‖z‖2 ≤ ‖Az‖p ≤ β‖z‖2 whenever ‖B−1z‖0 ≤ t.

It is to be noted that the constants α and β need not be close to one—they could e.g. scale with m.

The only requirement is that the restricted isometry ratio γ := β/γ is bounded by an absolute

constant. For the main result to be nonvacuous, it is important to point out that this nonstandard

restricted isometry property holds for subgaussian matrices A ∈ Rm×N with failure probability

at most 2 exp(−cm) provided m ≥ Ct ln(eN/t), with constants c, C depending on γ, hence being

absolute. To see this, one could follow typical proofs of the D-restricted isometry property while

making suitable modifications, or realize that (7) is actually a consequence of the usual D-restricted

isometry property, as revealed by the observation below. Thus, the nonstandard restricted isometry

propery (7) is a weaker assumption than the standard restricted isometry property, in the sense

that it holds with overwhelming probability for at least as many ensembles as (6). In fact, it holds

for more: with B = IN , the `1-version of (7) holds for Laplace ensembles in the optimal regime

m � t ln(eN/t), see [5], while (6) necessitates m = Ω(t ln2(eN/t)), see [1].

Proposition 3. Given p′ ≤ p ≤ 2, if an ensemble of random matrices satisfies the `p-version

of (7) with failure probability at most 2 exp(−cm) provided m ≥ Ct ln(eN/t), then it satisfies the

`p′-version of (7) with failure probability at most 2 exp(−c′m) provided m ≥ C ′t ln(eN/t).

Proof. Let θ ∈ (0, 1) to be chosen soon. Assuming that (1− θ)m ≥ Ct ln(eN/t), the event that all

the row-submatrices AI , |I| ≥ (1− θ)m, of a matrix A ∈ Rm×N from the random ensemble satisfy

the `p-version of (7) occurs with failure probability at most

m∑
k=(1−θ)m

(
m

k

)
× 2 exp(−ck) ≤

θm∑
`=0

(
m

`

)
× 2 exp(−c(1− θ)m) ≤

(
em

θm

)θm
× 2 exp(−c(1− θ)m)

= 2 exp
(
− (c(1− θ)− θ ln(e/θ))m

)
.

In this event, for any z ∈ RN with ‖B−1z‖0 ≤ t, one has ‖Az‖p′ ≤ m1/p′−1/p‖Az‖p, so that

‖Az‖p′ ≤ β′‖z‖2, β′ := βm1/p′−1/p.

Moreover, according to Stechkin’s estimate for the error of best sparse approximation in `p in term

of the norm in `p′ , see e..g. [7, Theorem 2.5], there is some I ⊆ [1 : m] of size |I| = (1− θ)m such

that ‖AIz‖p ≤ (1/(θm)1/p
′−1/p)‖Az‖p′ , Since ‖AIz‖p ≥ α‖z‖2, one derives that

‖Az‖p′ ≥ α′‖z‖2, α′ := α(θm)1/p
′−1/p.

Choosing the constant θ ∈ (0, 1) such that c(1−θ)−θ ln(e/θ) = c/2 =: c′ and setting C ′ = C/(1−θ),
it has been proved that, provided m ≥ C ′t ln(eN/t), the `p′-version of (7) holds with failure

probability at most 2 exp(−c′m), while the restricted isometry ratio γ′ = β′/α′ = γ(1/θ)1/p
′−1/p is

bounded by an absolute constant.
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2.3 Robust null space property from nonstandard restricted isometry property

The robust null space property, introduced in [7, Section 4.3], is a sufficient—and somewhat

necessary—condition for robust sparse recovery by `1-minimization (which corresponds to λ = 0).

The standard robust null space property of order s with constants ρ ∈ (0, 1) and τ > 0, with respect

to a norm ‖ · ‖ on Rm, reads:

‖vS‖1 ≤ ρ ‖vSc‖1 + τ ‖Av‖ for all v ∈ RN and S ⊆ [1 : N ] with |S| = s.

It is well-known that the standard restricted isometry property (1) implies this standard robust

null space property (for ‖ ·‖ =
√
s‖ ·‖2). Here, it is shown that the nonstandard restricted isometry

property (7) implies a nonstandard robust null space property order s with constants ρ ∈ (0, 1) and

τ > 0, which reads:

(8) ‖(B−1v)S‖1 ≤ ρ ‖(B−1v)Sc‖1 + τ
√
s‖Av‖p for all v ∈ RN and S ⊆ [1 : N ] with |S| = s.

Special cases of the argument are routine, see e.g. [4, Theorem 14.4] for the case p = 1 and B = IN .

Proposition 4. Given p ≥ 1, if a matrix A ∈ Rm×N satisfies the restricetd isometry property (7) of

order t = d((1+ρ)γκB/ρ)2se with ratio γ = β/α, then it satisfies the robust null space property (8)

of order s with constants ρ and τ = (1 + ρ)‖B−1‖2→2
√
s/α with respect to the `p-norm on Rm.

Proof. Fixing v ∈ RN , note that it is enough to prove (8) for an index set S of s largest absolute

entries of B−1v. Let T0 ⊇ S be an index set of t largest absolute entries of B−1v, and define also

index sets T1, T2, . . . such that

T1 is an index set of next t largest absolute entries of B−1v,

T2 is an index set of next t largest absolute entries of B−1v,

...

For any k ≥ 1, the inequality ‖(B−1v)Tk‖2 ≤ ‖(B−1v)Tk−1
‖1/
√
t is easily obtained by comparing

averages. Now, using (among other things) the leftmost inequality of (7), one can write

‖B(B−1v)T0‖2 ≤
1

α
‖AB(B−1v)T0‖p =

1

α

∥∥∥AB(B−1v −∑
k≥1

(B−1v)Tk

)∥∥∥
p

≤ 1

α

(∑
k≥1
‖AB(B−1v)Tk‖p + ‖Av‖p

)
.
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Next, using (among other things) the rightmost inequality of (7), one continues with

‖B(B−1v)T0‖2 ≤
β

α

∑
k≥1
‖B(B−1v)Tk‖2 +

1

α
‖Av‖p

≤ γ‖B‖2→2

∑
k≥1
‖(B−1v)Tk‖2 +

1

α
‖Av‖p

≤ γ‖B‖2→2

∑
k≥1

1√
t
‖(B−1v)Tk−1

‖1 +
1

α
‖Av‖p

≤ γ‖B‖2→2√
t
‖B−1v‖1 +

1

α
‖Av‖p.

Then, a bound on ‖(B−1v)S‖1 is obtained via

‖(B−1v)S‖1 ≤
√
s‖(B−1v)S‖2 ≤

√
s‖(B−1v)T0‖2 ≤

√
s‖B−1‖2→2‖B(B−1v)T0‖2

≤ γκB
√
s

t
‖B−1v‖1 +

√
s‖B−1‖2→2

α
‖Av‖p ≤

ρ

1 + ρ
‖B−1v‖1 +

√
s‖B−1‖2→2

α
‖Av‖p,

where the value t = d((1 + ρ)γκB/ρ)2se was used in the last step. Finally, decomposing ‖B−1v‖1
as ‖(B−1v)S‖1 + ‖(B−1v)Sc‖1 and rearranging, one deduces that

‖(B−1v)S‖1 ≤ ρ‖(B−1v)Sc‖1 +
(1 + ρ)‖B−1‖2→2

√
s

α
‖Av‖p,

which is the announced robust null space property.

3 The sparsity bound and its proof

In general, without any assumption that y ∈ Rm comes from a sparse vector, one can guarantee

that, for (one of) the output(s) xλ of the LASSO-type procedure, the vector B−1xλ is m-sparse.

Indeed, assuming uniqueness of xλ for simplicity, if Sλ = supp(B−1xλ) had size |Sλ| > m, then

the columns of AB ∈ Rm×N indexed by Sλ would be linearly dependent, hence there would exist

some v ∈ RN supported on Sλ such that ABv = 0. Thus, for u := Bv ∈ RN and t ∈ R small

enough in absolute value, the vector xλ + tu would be another LASSO-type minimizer, in view of

A(xλ + tu) = Axλ and of

‖B−1(xλ + tu)‖1 = 〈sgn(B−1(xλ + tu)), B−1(xλ + tu)〉 = 〈sgn(B−1xλ), B−1xλ + tB−1u〉

= ‖B−1xλ‖1 +
t

νλ
〈B>A>

(
sgn(y −Axλ) |y −Axλ|p−1

)
, B−1u〉

= ‖B−1xλ‖1 +
t

νλ
〈sgn(y −Axλ) |y −Axλ|p−1, Au〉

= ‖B−1xλ‖1.
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The main result below shows that, under a favorable condition on A ∈ Rm×N , if y ∈ Rm does come

from a sparse vector, then B−1 applied to the output of the LASSO-type procedure is not simply

m-sparse, but Cs-sparse, even with measurement error such that ‖e‖p ≤ cmin{‖y‖p, λ1/(q−r)}.
The constants C and c, appearing under different names below, have not been optimized.

Theorem 5. Let p ∈ [1, 2], q ≥ 1, and r ≥ 1. Consider a vector x ∈ RN such that B−1x is

s-sparse for some invertible matrix B ∈ RN×N with condition number κB := ‖B‖2→2‖B−1‖2→2.

Suppose that the vector x is measured via y = Ax + e ∈ Rm for some error vector e ∈ Rm with

‖e‖p ≤ (1/3)‖y‖p and some matrix A ∈ Rm×N satisfying the nonstandard restricted isometry

property of order t := b(6γκB)2sc+ 1 with ratio γ = β/α, i.e.,

α‖z‖2 ≤ ‖Az‖p ≤ β‖z‖2 whenever ‖B−1z‖0 ≤ t.

Then, for any λ > λ∗ = 2q−1βr‖B‖r2→2‖e‖
q−r
p , the solution xλ of the LASSO-type procedure

minimize
z∈RN

1

q
‖y −Az‖qp + λ

1

r
‖B−1z‖r1

has sparsity at most proportional to s, namely

‖B−1xλ‖0 ≤ bχ2sc, χ := 6γκB.

Proof (Part I). The content of this part of the proof is valid for any e ∈ Rm, but its conclusion only

pertains to e = 0. The case p = 1 or q = 1 is treated apart, as it is not covered by Proposition 2.

The case p > 1 and q > 1. The first step consists in bounding ‖B−1x‖1−‖B−1xλ‖1 from above. To

do so, according to Proposition 4 specified with ρ = 1, the robust null space property (8) of order s

holds. When applied to v = x−xλ and S = supp(B−1x), while taking ‖(B−1v)Sc‖1 = ‖(B−1xλ)Sc‖1
and ‖(B−1v)S‖1 = ‖B−1x − (B−1xλ)S‖1 ≥ ‖B−1x‖1 − ‖(B−1xλ)S‖1 into account, it implies that

‖B−1x‖1 − ‖(B−1xλ)S‖1 ≤ ‖(B−1xλ)Sc‖1 + (2‖B−1‖2→2
√
s/α)‖A(x − xλ)‖p. In other words, one

has

‖B−1x‖1 − ‖B−1xλ‖1 ≤
2‖B−1‖2→2

√
s

α
‖A(x− xλ)‖p

≤ 2‖B−1‖2→2
√
s

α

(
‖y −Axλ‖p + ‖e‖p

)
.(9)

The second step consists in bounding ‖B−1x‖1 − ‖B−1xλ‖1 from below. To do so, one relies on

(2)–(3) to remark that ‖B−1xλ‖1 = (1/νλ)〈B>A>
(
sgn(y − Axλ) |y − Axλ|p−1

)
, B−1xλ〉 and that

‖B−1x‖1 ≥ (1/νλ)〈B>A>
(
sgn(y −Axλ) |y −Axλ|p−1

)
, B−1x〉. Thus, one deduces that

‖B−1x‖1 − ‖B−1xλ‖1 ≥
1

νλ
〈B>A>

(
sgn(y −Axλ) |y −Axλ|p−1

)
, B−1x−B−1xλ〉

=
1

νλ
〈sgn(y −Axλ) |y −Axλ|p−1, A(x− xλ)〉

=
1

νλ
〈sgn(y −Axλ) |y −Axλ|p−1, y −Axλ − e〉

=
1

νλ
(
‖y −Axλ‖pp − 〈sgn(y −Axλ) |y −Axλ|p−1, e〉

)
.(10)

9
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By contradiction to the desired conclusion ‖B−1xλ‖0 ≤ bχ2sc, assume now that Sλ := supp(B−1xλ)

has size |Sλ| ≥ bχ2sc+ 1. One can then consider a subset T of Sλ having size |T | = bχ2sc+ 1. The

vector u :=
[
B>A>

(
sgn(y − Axλ) |y − Axλ|p−1

)]
T

is then t-sparse and the nonstandard restricted

isometry property yields ‖ABu‖p ≤ β‖Bu‖2 ≤ β‖B‖2→2‖u‖2. Moreover,

‖u‖22 = 〈B>A>
(
sgn(y −Axλ) |y −Axλ|p−1

)
, u〉 = 〈sgn(y −Axλ) |y −Axλ|p−1, ABu〉

≤ ‖sgn(y −Axλ) |y −Axλ|p−1‖p′‖ABu‖p,

where p′ = p/(p − 1) is the conjugate exponent of p. From the estimation of ‖ABu‖p and the

observation that ‖sgn(y−Axλ) |y−Axλ|p−1‖p′ = ‖y−Axλ‖p−1p , the above inequality rearranges as

‖y − Axλ‖p−1p ≥ (1/(β‖B‖2→2))‖u‖2. But according to (2) and T ⊆ Sλ, one has ‖u‖2 = νλ
√
|T |,

and in turn

(11) ‖y −Axλ‖p−1p ≥
νλ
√
|T |

β‖B‖2→2
.

With all of this in place, one can easily conclude in the case e = 0—thus proving Theorem 1.

Indeed, (10) combined with (11) and with |T | > χ2s yields

‖B−1x‖1 − ‖B−1xλ‖1 >
χ
√
s

β‖B‖2→2
‖y −Axλ‖p,

where one used y −Axλ 6= 0 (see the end of the proof of Proposition 2), while (9) reads

‖B−1x‖1 − ‖B−1xλ‖1 ≤
2‖B−1‖2→2

√
s

α
‖y −Axλ‖p.

Making the choice χ = 2γκB, one obtains a contradiction to conclude that ‖B−1xλ‖0 ≤ bχ2sc.

The case p = 1 or q = 1. A limiting argument does the trick here. Fixing r ≥ 1 and λ > 0,

consider decreasing sequences (pn)n≥1 and (qn)n≥1 of indices greater than 1 but converging to p

and q, respectively. For each n ≥ 1, denote by x(n) ∈ RN the LASSO-type minimizer corresponding

to pn and qn, which is now known to be bχ2sc-sparse. Note that the sequence (x(n))n≥1 is bounded,

as can be seen by evaluating the LASSO-type objective function at z = 0 to write

λ
1

r
‖B−1x(n)‖r1 ≤

1

qn
‖y −Ax(n)‖qnpn + λ

1

r
‖B−1x(n)‖r1 ≤

1

qn
‖y‖qnpn ≤ ‖y‖

qn
1 ≤ max{‖y‖q11 , ‖y‖

q
1}.

Therefore, there is a subsequence (x(nk))k≥1 extracted from (x(n))n≥1 and converging to some

x∗ ∈ RN , say. With x̃ ∈ RN denoting (one of) the LASSO-type minimizer(s) corresponding to

p and q, one has, for any k ≥ 1,

1

qnk
‖y −Ax(nk)‖qnkpnk

+ λ
1

r
‖B−1x(nk)‖r1 ≤

1

qnk
‖y −Ax̃‖qnkpnk

+ λ
1

r
‖B−1x̃‖r1,

which passes to the limit as k → +∞ to give

1

q
‖y −Ax∗‖qp + λ

1

r
‖B−1x∗‖r1 ≤

1

q
‖y −Ax̃‖qp + λ

1

r
‖B−1x̃‖r1,

10
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showing that x∗ is a LASSO-type minimizer corresponding to p and q. But, the vector x∗ being

the limit of bχ2sc-sparse vectors, it must itself be a bχ2sc-sparse vector.

Dealing with the general situation where e 6= 0 is not much more complicated. One shall use the

following observation, which may be folklore knowledge.

Lemma 6. The function λ 7→ ‖y−Axλ‖p is continuous (for p > 1) and nondecreasing on (0,+∞),

with limλ→0 ‖y −Axλ‖p ≤ ‖e‖p and limλ→+∞ ‖y −Axλ‖p = ‖y‖p.

Proof. For µ > λ > 0, using the optimality of xµ and the optimality of xλ, one can write

1

q
‖y −Axµ‖qp + µ

1

r
‖B−1xµ‖r1 ≤

1

q
‖y −Axλ‖qp + µ

1

r
‖B−1xλ‖r1

=
µ

λ

[
1

q
‖y −Axλ‖qp + λ

1

r
‖B−1xλ‖r1

]
−
(µ
λ
− 1
)1

q
‖y −Axλ‖qp

≤ µ

λ

[
1

q
‖y −Axµ‖qp + λ

1

r
‖B−1xµ‖r1

]
−
(µ
λ
− 1
)1

q
‖y −Axλ‖qp.

Rearranging the latter yields(µ
λ
− 1
)1

q
‖y −Axλ‖qp ≤

(µ
λ
− 1
)1

q
‖y −Axµ‖qp,

i.e., ‖y −Axλ‖p ≤ ‖y −Axµ‖p thanks to µ/λ− 1 > 0. Thus, the monotonicity claim is proved.

Next, for λ > 0, since the LASSO-type objective function at xµ is no larger than at x and at 0,

one has

1

q
‖y −Axλ‖qp + λ

1

r
‖B−1xλ‖r1 ≤


1

q
‖e‖qp + λ

1

r
‖B−1x‖r1,

1

q
‖y‖qp.

The first inequality gives ‖y − Axλ‖qp ≤ ‖e‖qp + (λq/r)‖B−1x‖r1. Letting λ → 0 yields the claim

about the first limit. The second inequality gives ‖B−1xλ‖r1 ≤ (r/(λq))‖y‖qp. Letting λ → +∞
yields B−1xλ → 0, hence xλ → 0, and the claim about the second limit follows.

Finally, to establish the continuity for p > 1, consider a sequence (λn)n≥1 of positive numbers

converging to some λ > 0. It is enough to show that the sequence (Axλn)n≥1 converges to Axλ.

By contradiction, if this is not so, then there exists ε > 0 and a subsequence (Axλnk )k≥1 such that

‖Axλnk − Axλ‖p ≥ ε for all k ≥ 1. By the boundedness of the sequence (xλnk )k≥1 (recall that

‖B−1xλnk‖r1 ≤ (r/(λnkq))‖y‖
q
p), there is also a subsequence (x

λnk` )`≥1 converging to some x̃ ∈ RN .

Passing to the limit as ` → +∞ in ‖Axλnk` − Axλ‖p ≥ ε shows in particular that Ax̃ 6= Axλ.

Passing to the limit in

1

q
‖y −Axλnk` ‖qp + λnk`

1

r
‖B−1xλnk` ‖r1 ≤

1

q
‖y −Axλ‖qp + λnk`

1

r
‖B−1xλ‖r1

11
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also shows that x̃ is a LASSO-type minimizer for the parameter λ, and hence so is (x̃ + xλ)/2.

But, by strict convexity of the `p-norm for p ≥ 1, one deduces that Ax̃ = Axλ. This provides the

required contradiction to conclude the proof.

Proof of Theorem 5 (Part II). To finish with the general situation where e 6= 0, one separates the

proof in three subparts: the first two subparts assume p > 1 and q > 1 and establish the existence

of λ∗ before estimating it, and the third subpart treats the case p = 1 or q = 1.

Existence of λ∗. By the assumption ‖e‖p ≤ (1/3)‖y‖p, one notices that 2‖e‖p belongs to the interval[
limλ→0 ‖y − Axλ‖p, limλ→+∞ ‖y − Axλ‖p

]
, so Lemma 6 guarantees the existence of λ[ > 0 such

that ‖y −Axλ[‖p = 2‖e‖p. Considering from now on any λ > λ[, Lemma 6 also guarantees that

‖y −Axλ‖p ≥ 2‖e‖p, i.e., ‖e‖p ≤
1

2
‖y −Axλ‖p.

Similarly to Part I of the proof but with χ to be chosen differently, it is assumed by contradiction

that |Sλ| ≥ bχ2sc+1 and one again picks some T ⊆ Sλ with |T | = bχ2sc+1. One shall still exploit

the inequalities (9), (10), and (11), which remain valid. Starting from (10), in view of

〈sgn(y −Axλ) |y −Axλ|p−1, e〉 ≤ ‖sgn(y −Axλ) |y −Axλ|p−1‖p′‖e‖p = ‖y −Axλ‖p−1p ‖e‖p,

one obtains

‖B−1x‖1 − ‖B−1xλ‖1 ≥
1

νλ
‖y −Axλ‖p−1p

(
‖y −Axλ‖p − ‖e‖p

)
≥ 1

νλ
‖y −Axλ‖p−1p

1

2
‖y −Axλ‖p

≥
√
|T |

2β‖B‖2→2
‖y −Axλ‖p,(12)

where (11) was used in the last step. As for (9), it now implies

(13) ‖B−1x‖1 − ‖B−1xλ‖1 ≤
3‖B−1‖2→2

√
s

α
‖y −Axλ‖p.

Because |T | > χ2s, the inequalities (12) and (13) become contradictory for the choice χ = 6γκB.

In summary, for any λ ≥ λ[, it has been proved that ‖B−1xλ‖0 ≤ bχ2sc. One can therefore select

λ∗ = λ[ in the statement of Theorem 5.

Estimation of λ∗. The objective here is to show that λ[ ≤ λ] for a more explicit λ], so that

‖B−1xλ‖0 ≤ bχ2sc holds whenever λ is larger than λ], which can then be selected as λ∗. Since it

is now known that s[ := ‖B−1xλ[‖0 ≤ bχ2sc, taking T = supp(B−1xλ
[
) in (11) gives

‖y −Axλ[‖p−1p ≥ νλ
[
√
s[

β‖B‖2→2
=
λ[‖y −Axλ[‖p−qp ‖B−1xλ[‖r−11

√
s[

β‖B‖2→2
,

12
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which in turn yields

(14) ‖y −Axλ[‖q−1p ≥ λ[‖B−1xλ[‖r−11

√
s[

β‖B‖2→2
, hence (2‖e‖p)q−1 ≥

λ[‖B−1xλ[‖r−11

β‖B‖2→2
.

From here, one bounds from below the `1-norm of B−1xλ
[

as

‖B−1xλ[‖1 ≥ ‖B−1xλ
[‖2 ≥

1

‖B‖2→2
‖xλ[‖2 ≥

1

β‖B‖2→2
‖Axλ[‖p

≥ 1

β‖B‖2→2
(‖y‖p − ‖y −Axλ

[‖p) ≥
1

β‖B‖2→2
(3‖e‖p − 2‖e‖p)

=
1

β‖B‖2→2
‖e‖p.

Substituting the latter into (14), one derives that λ[ ≤ 2q−1βr‖B‖r2→2‖e‖
q−r
p =: λ]. This justifies

the announced expression for λ∗.

The case p = 1 or q = 1. Let (pn)n≥1 and (qn)n≥1 be decreasing sequences of indices greater than 1

but converging to p and q, respectively. Any regularization parameter λ in the admissible range for

p and q is also in the admissible range for pn and qn when n is large enough. The limiting argument

of Part I then applies mutatis mutandis, since the bχ2sc-sparsity of all the corresponding x(n)’s is

ensured.

Remark. The expression λ∗ = 2q−1βr‖B‖r2→2‖e‖
q−r
p is certainly improvable, especially when q ≤ r.

For instance, when q = r, which includes square-root LASSO and square LASSO, the threshold λ∗

reduces to a positive quantity independent of the magnitude of e. But this does not transition

continuously to the case e = 0, where one can take λ∗ = 0, as revealed in Theorem 1.
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